Facultatea de Matematica si Informatica
2024 noiembrie 21, Joi
Curriculum vitae Europass
LISTA LUCRĂRILOR ŞTIINŢIFICE
A. CĂRŢI Şl CAPITOLE DE CĂRŢI:
1. A valószínűségszámítás elemei, (Introduction to probability theory, in Hungarian), Cluj University Press Printing House, Cluj-Napoca, 2001.
2. Contraction Methods in Fractal Theory, Cluj University Press Printing House, Cluj-Napoca, 2002.
3. Random Fractals, in Lectures on nonlinear analysis and its applications, Ed. Sapientia, Cluj, 2003, 293-366.
4. A matematikai statisztika elemei, Cluj University Press Printing House, Cluj-Napoca, 2005.
5. Probability Theory through Problems ans Applications, with H. Lisei and S. Micula, Cluj University Press, 2006.
6. Kalandozás a valószínűség világában, Kiváncsiságvezérelt matematika tanítás, Status Kiadó, 2010, pp. 207-222.
7. A Happy Cube puzzle elemzése, (cu András Szilárd si Sipos Kinga), Kiváncsisáagvezérelt matematika tanítás, Ed. Státus 2010, pp. 223-255
8. In lumea probabilitǎƫilor, in Predarea matematicii prin metode bazate pe curiozitate si investigatii, Editura Status, 2013, pp.210-226
9. Cubul puzzle Happy Cube (coautori Sz. Andras, A. Bartos Kocsis, K. Sipos), in Predarea matematicii prin metode bazate pe curiozitate si investigaƫii, Editura Status, 2013, pp. 227-258.
B. TRADUCERI:
1. Szirtes Tamás: Dimenzióanalízis, Typotex, Budapest, 2006, 806 pages.
C. EDITOR:
1. Lectures on nonlinear analysis and its applications, Sapientia Kiado, Cluj, 2003.
2. Lectures in functional programming, Springer Verlag, 2008.
3. 140 éves a kolozsvári magyar nyelvű egyetemi oktatás/140 de ani de învǎƫǎmânt universitar în limba maghiarǎ, Presa Universitarǎ Clujeanǎ, 2013.
D. ARTICOLE ÎN VOLUME
1.  Fractal analysis of normál and pathological body temperature graphs by children (with Z.EIIenes), Proceeding of the Tiberiu Popoviciu ItinerantSeminaroffunctional Equations, Approximation and Convexity.Cluj, 2001, 247-255.
2.  Brownian motion and fractal process using contraction method in probabilistic metric spaces, Seminar on Fixed Point Theory Cluj-Napoca, Proceedings of the International Conference on Nonlinear Operators, Differential Equations and Applications, September2001, vol. 3 (2002), 369-374.
3.  Fractal functions using contraction method in probabilistic metric spaces,(with J.Kolumban) Emergent Nature, M. M. Novak (ed) World Scientific, Proceedings of the Conference "Fractal 2002", 2002.03.17-20, Granada, 255-263.
4.  Multiresolution analysis based on Brownian motion, Proceedings of the International Symposium on Numerical Analysis and Approximation Theory, Cluj-Napoca, 9-11 May 2002, 400-409.
5.  Fractal functions and interpolation, Proceedings of the International Conference XV. DIDMATTECH 2002, Pedagogical Faculty of University of Constantine the Philosopher in Nitra, 318-322.
6.  Fractal analysis of architectural objects,(with Antonio Pedro Lima) Proceedings of I.S.A.M.A., The International Society of The Arts, Mathematics and Architecture, Freiburg, 22-26.2002., ed. D Guderian, 157-164 (2004)
7.  Fractal stochastic process, Proceedings of ICAM 2002, Borsa, 10-13.10.2002, Bul. Stiint. Seria B, Vol. 18(2002) Nr. 2, 341-346.
8. A new approach to IFS bounding, Seminar on Numerical and Statistical Calculus, 2004, 43-55 (with Z. Bodo)
9. Approximation of Stochastic Differential Equations Driven by Fractional Brownian Motion, (with Hannelore Lisei) in Probability 59, Birkhauser Verlag 2007.ISBN 978-3-7643-8457-9, pp. 229-244
10.  Stochastic Fractal Interpolation Function and its Applications to Fractal Analysis of Normál and Pathological Body Temperature Graphs by Children.in RECENT ADVANCES IN STOCHASTIC MODELING AND DATA ANALYSIS, World Scientific, 2007, ed. Christos H Skiadas, ISBN 978-981-270-968-4 Proceedings of Xllth International Conference on Applied Stochastic Models and Data Analysis (ASMDA 2007).
11. Approximation of solutions of SDE driven by multifractional Brownian motion, Proceeding of ICAI 2007 - 7th International Conference on Applied Informatics, Eger, Hungary January 28-31 2007.
12. Numerical approximation of solutions of stochastic dierential equations driven by multifractional Brownian motion, Applied Stochastic Models and Data Analysis ASMDA and DEMOGRAPHICS, J. Bozeman, V. Girardin and C. H. Skiadas (Eds): New Perspectives on Stochastic Modeling and Data Analysis, 2013, pp. 873-885.Conference on Applied Informatics, Eger, Hungary January 28-31 2007.
13. Interpolation Methods for Internet Trac, Applied Stochastic Models and Data Analysis ASMDA and DEMOGRAPHICS, J. Bozeman, V. Girardin and C. H. Skiadas (Eds): New Perspectives on Stochastic Modeling and Data Analysis, 2013, pp. 887-892, coautor I. Somogyi.Conference on Applied Informatics, Eger, Hungary January 28-31 2007.
14. Approximations of solutions of SDE driven by fractional Brownian motion, Oberwohlfach Report, 4(2014), pp. 39-43.Conference on Applied Informatics, Eger, Hungary January 28-31 2007.
15. Stochastic fractal interpolation with random variable as scaling parameters, International Conference on Mathematics and ist Applications, ICMA 2015, Politehnica Timisoara, Editor: Ioan Golet, Liviu Cadariu, 2016, pp. 127-132, coautor I. Somogyi..
 
E. ARTICOLE ÎN REVISTE
1.  Invariantsetsin Menger spaces, Studia Univ. Babeş-Bolyai, Mathematica, XLIII, 2(1998), 39-48 (with J.Kolumban);
2.  Invariant sets of random variables in complete metric spaces, Studia Univ. Babeş-Bolyai, Mathematica, XLVII, 3(2001), 49-66 (with J.Kolumban);
3.  Selfsimilar random fractal measures, Electronic Preprint, http://arXiv.org/abs/math.PR/0202100.
4.  Random fractal interpolation functions using contraction method in probabilistic metric spaces, (with J. Kolumban and E. Buzogány) Annalele Univ. Bucuresti, Ll, 1(2002), 13-24.
5.  Fixed point theorem in _E-spaces,(with J. Kolumban) Studia Univ. Babeş-Bolyai, Mathematica, XLVII, 4(2002),65-74.
6. Selfsimilar random measures using contraction methods in probabilistic metric spaces, International Journal of Mathematics and Mathematical Sciences, 52 (2003) 3299-3313 (with J. Kolumban, V. Varga).
7.Unsupervised classification for designing speaker identification systems, Studia Univ. Babeş-Bolyai, 49,1(2004), 3-13 (with M.Antal)
8.  Wavelet Approximation of the Solutions of Somé Stochastic Differential Equations, Pure Mathematics and Applications (PUMA), (with Hannelore Lisei), 2005, 213-223.
9.  Invariant sets in _E-spaces, PU.M.A. Vol. 17 (2006), No. 3-4, pp. 1-18
10.  Fractional Brownian Motion using contraction method in probabilistic metric space, Studia Univ. Babeş-Bolyai, 49, 4(2004), 107-115.
11.  Mathematical Excursion in FractalWorld, Creative Mathematics vol. 14 (2005), Department of Mathematics and Computer Science North University Baia Maré.
12.  Homogenization and Multiple scale expansion, (with Kolumban J.), Studia Univ. Babeş-Bolyai, 51, 4(2006),129-144.
13.  Diszkrét dinamikus rendszerek es káosz, Alkalmazott Matematikai Lapok (with Kolumban József), 25(2007), 1-17.
14.  Stochastic homogenization on selfsimilar structures, Proceedings in Applied Mathematics and Mechanics [PAMM], Volume 7, Issue 1, Pages 2080001 -2080002 , WILEY-VCH Verlag GmbH &Co. KGaA, Weinheim
15.Welke Wirrel Warrel is moeilijker?, with Andr'as Szil'ard, Sipos Kinga, Recreatieve wiskunde, NAW 5/12 nr. 2,(2011), 121-126.
16. Approximation ofthesolution of stochastic differential equations driven by multifractional Brownian motion, Studia Univ. Babeş-Bolyai, 54, 2(2011).
17. Approximation of Stochastic Differential Equations Driven by Step Fractional Brownian Motion, Annales Univ. Sci. Budapest., Sect. Comp. 37 (2012) 337-352 , with Robu Judit
18. Stochastic Two-scale Convergence and Iterated Function System, Journal of Mathematical Sciences, 209(2014), Issue 4, pp. 492-497.
19. Self-similar sets and fractals generated by Ciric type operators, Journal of nonlinear science, 8 (2015), pp. 1048-1058, coautor A. Petruşel.
20. Spline and fractal spline interpolation, Studia Univ. Babeş-Bolyai, Mathematica, 1(2015), pp. 193-200, coautor I. Somogyi.
21. Stochastic fractal interpolation with variable parameter, International Scientific Journal of Mathematics Issue 2, 1(2015), pp. 28-33, coautor I. Somogyi.
22. Cantor Type Fixed Sets of Iterated Multifunction Systems Corresponding to Self-Similar Networks, Applied Mathematics, (7)2016, pp.365-374, coautor L. Simon.
23. Interpolation methods for multivalued functions, Studia Univ. Babes-Bolyai, Mathematica, (3) 2016, pp. 377-382, coautor I. Somogyi.
24. Limit sets og graph-driven iterated (multi) function systems, Annales Univ. Sci. Budapest., Sect. Comp. 45 (2016), pp. 183-198, coautor L. Simon.
F. ARTICOLE DIDACTICE:
1.  Programozás Lógóban,(Programming in Logo, in Hungarian) Firka 3/1994
2.  Programozás Lógóban, Turtle-grafika, (Programming in Logo, in Hungarian), Firka 4/1994
3. A racionális szamok ábrázolása különböző számrendszerekben, (The representation of rational numbers, in Hungarian) Matematikai Lapok, 9/1995 (with J.Kolumban )
4. A valós szám fogalmának kialakítása, (About the notion of reál number, in Hungarian) Matematikai Lapok, 10/1995 (with J.Kolumban);
5.  Programozás Lógóban, rekurzió, (Programming in Logo, in Hungárián) Firka 1/1995;
6.  Programozás Lógóban, logo-csipkek,(Programming in Logo, in Hungarian) Firka 2/1995;
7. A Cantor halmaz,(The Cantor set, in Hungarian) Matematikai Lapok, 1/1996 (with J.Kolumban );
8. Asatorfuggveny,(in Hungarian)Matematikai Lapok, 4/1996 (with J.Kolumban);
9.  Prológ programozás, (Programming in Prológ, in Hungárián) Firka, 1/2001, 9-13.
10. Fraktálok Lógóban (Fractals using Logo, in Hungárián), HungaroLogo 2003 Conference, Budapest, 2003.09.20., 17-25.
11. Út a rugó megnyúlásától az elsőfokú függvényig, "Korszerű módszertani kihívások", Magyar Tannyelvű Tanítóképző Kar, Szabadka, 2010, 112-118.
 
G. ALTE PUBLICAŢII:
1. Afraktálanahzis alkalmazása az orvostudományban, (Application of fractal analysis in medicine, in Hungárián), EME-Orvostudományi Közlemények, (2000), (with Z.EIIenes)
2. A matematika és természettudományok oktatása Erdélyben, Termeszetudomany tanítása korszerűen és vonzóan, Budapest, 2011. augusztus 23.-25., konferencia kiadványa, 2011.
3.  Laudationes Hungarorum, Lustrum, Sollemnia aedificii a D.MCMXI inaugurati, Typotex Kiadó, pp. 2011, 79-82.
4.  Magyar informatikusképzés a Babes-Bolyai Tudományegyetemen, Informatika a felsőoktatásban 2014, Konferenciakiadvány, pp. 739-744, coautor J. Robu.
 
 
Cluj Napoca, la 27.01.2016,         Conf.dr. Anna Soos