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Purpose and Overview

I The quality of the output is no better than the quality
of inputs.

I We will discuss the 4 steps of input model development:

I Collect data from the real system
I Identify a probability distribution to represent the input

process
I Choose parameters for the distribution
I Evaluate the chosen distribution and parameters for

goodness of fit.
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Data Collection

I One of the biggest tasks in solving a real problem.
GIGO – garbage-in-garbage-out

I Suggestions that may enhance and facilitate data
collection:

I Plan ahead: begin by a practice or pre-observing
session, watch for unusual circumstances

I Analyze the data as it is being collected: check
adequacy

I Combine homogeneous data sets, e.g. successive time
periods, during the same time period on successive days

I Be aware of data censoring: the quantity is not observed
in its entirety, danger of leaving out long process times

I Check for relationship between variables, e.g. build
scatter diagram

I Check for autocorrelation
I Collect input data, not performance data
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Identifying the Distribution

I Histograms

I Selecting families of distribution

I Parameter estimation

I Goodness-of-fit tests

I Fitting a non-stationary process
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Histograms

I A frequency distribution or histogram is useful in
determining the shape of a distribution

I The number of class intervals depends on:

I The number of observations
I The dispersion of the data
I Suggested: the square root of the sample size or

(Sturges’ rule)

k = b1 + 3.322 log10 nc

I For continuous data:

I Corresponds to the probability density function of a
theoretical distribution

I For discrete data:

I Corresponds to the probability mass function

I If few data points are available: combine adjacent cells
to eliminate the ragged appearance of the histogram
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Histograms II

Example

Vehicle Arrival Example: # of vehicles arriving at an
intersection between 7 AM and 7:05 AM was monitored for
100 random workdays.

There are ample data, so the histogram may have a cell for
each possible value in the data range



Input Modeling

Radu Tr̂ımbiţaş
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Selecting the Family of Distributions

I A family of distributions is selected based on:

I The context of the input variable
I Shape of the histogram

I Frequently encountered distributions:

I Easier to analyze: exponential, normal and Poisson
I Harder to analyze: beta, gamma and Weibull
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Selecting the Family of Distributions II

Use the physical basis of the distribution as a guide, for
example:

I Binomial: # of successes in n trials

I Poisson: # of independent events that occur in a fixed
amount of time or space

I Normal: dist’n of a process that is the sum of a number
of component processes

I Exponential: time between independent events, or a
process time that is memoryless

I Weibull: time to failure for components

I Discrete or continuous uniform: models complete
uncertainty

I Triangular: a process for which only the minimum, most
likely, and maximum values are known

I Empirical: resamples from the actual data collected
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Purpose &
Overview

Data Collection

Identifying the
Distribution

Histograms

Selecting the Family
of Distributions

Quantile-Quantile
Plots

Parameter Estimation

Goodness-of-Fit Tests

Kolmogorov-Smirnov
Test

p-Values and “Best
Fits”

Fitting a NSPP

Selecting Model
without Data

Multivariate and
Time-Series Input
Models

Covariance and
Correlation

Multivariate Input
Models

Time-Series Input
Models

References

Selecting the Family of Distributions III

I Remember the physical characteristics of the process

I Is the process naturally discrete or continuous valued?
I Is it bounded?

I No “true” distribution for any stochastic input process

I Goal: obtain a good approximation
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Quantile-Quantile Plots
I Q-Q plot is a useful tool for evaluating distribution fit
I If X is a random variable with cdf F , then the

q-quantile of X is the γ such that

F (γ) = P (X ≤ γ) = q, q ∈ [0, 1]

When F is invertible, γ = F−1(q).
I Let {xi : i = 1, 2, . . . , n} be a sample of data from X

and {yj : j = 1, 2, . . . , n} be the observations in
ascending order; then an approximation of yj , where j is
the ranking or order number, is given by

yj ≈ F−1

(
j − 0.5

n

)
I The plot of yj versus F−1

(
j−0.5

n

)
is

I Approximately a straight line if F is a member of an
appropriate family of distributions

I The line has slope 1 if F is a member of an appropriate
family of distributions with appropriate parameter values
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Q-Q plot - Example

Example

Check whether the door installation times follows a normal
distribution. Observation sorted in incresing orders

j Value j Value j Value

1 99.55 6 99.98 11 100.26

2 99.56 7 100.02 12 100.27

5 99.62 8 100.06 13 100.33

4 99.65 9 100.17 14 100.41

5 99.79 10 100.23 15 100.47

yj are plotted versus F−1((j − 0.5)/n) where F has a
normal distribution with the sample mean (99.99 sec) and
sample variance (0.28322 sec2).
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Q-Q plot - Example II
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Quantile-Quantile Plots

I Consider the following while evaluating the linearity of a
q-q plot:

I The observed values never fall exactly on a straight line
I The ordered values are ranked and hence not

independent, unlikely for the points to be scattered
about the line

I Variance of the extremes is higher than the middle.
Linearity of the points in the middle of the plot is more
important.

I Q-Q plot can also be used to check homogeneity

I Check whether a single distribution can represent both
sample sets

I Plotting the order values of the two data samples
against each other
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Parameter Estimation I

I Next step after selecting a family of distributions

I If observations in a sample of size n are X1,X2, . . . ,Xn

(discrete or continuous), the sample mean and variance
are:

X =

n

∑
i=1

Xi

n
, S2 =

n

∑
i=1

X 2
i − nX

2

n− 1

I If the data are discrete and have been grouped in a
frequency distribution:

X =

n

∑
j=1

fjXj

n
, S2 =

n

∑
i=1

fjX
2
j − nX

2

n− 1

where fj is the observed frequency of value Xj
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Parameter Estimation II

I When raw data are unavailable (data are grouped into
class intervals), the approximate sample mean and
variance are:

X =

c

∑
j=1

fjmj

n
, S2 =

c

∑
i=1

fjm
2
j − nX

2

n− 1

where fj is the observed frequency of in the jth class
interval, mj is the midpoint of the jth interval, and c is
the number of class intervals

I A parameter is an unknown constant, but an estimator
is a statistic.
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Parameter Estimation III
I Vehicle Arrival Example (continued): Table in the

histogram example 1 can be analyzed to obtain:

n = 100, k = 12,

f1 = 12,X1 = 0, f2 = 10,X2 = 1, . . .
k

∑
j=1

fjXj = 364,
k

∑
j=1

fjX
2
j = 2080

I Sample mean and variance

X =
364

100
= 3.64

S2 =
2080− 100 · 3.642

99
= 7.63
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Parameter Estimation IV

I The histogram suggests X to have a Possion
distribution

I However, note that sample mean is not equal to sample
variance.

I Reason: each estimator is a random variable, is not
perfect.
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Goodness-of-Fit Tests

I Conduct hypothesis testing on input data distribution
using:

I Kolmogorov-Smirnov test
I Chi-square test

I No single correct distribution in a real application exists.

I If very little data are available, it is unlikely to reject
any candidate distributions

I If a lot of data are available, it is likely to reject all
candidate distributions
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Chi-Square test I

I Intuition: comparing the histogram of the data to the
shape of the candidate density or mass function

I Valid for large sample sizes when parameters are
estimated by maximum likelihood

I By arranging the n observations into a set of k class
intervals or cells, the test statistics is:

χ2
0 =

k

∑
i=1

(Oi − Ei )
2

Ei

which approximately follows the chi-square distribution
with k − s − 1 degrees of freedom, where s = # of
parameters of the hypothesized distribution estimated
by the sample statistics.

I Oi - observed frequency, Ei - expected frequency

I Ei = npi , it must hold Ei > 5 (minimum requirement)
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Chi-Square test II

I The hypothesis of a chi-square test is:

I H0: The random variable, X, conforms to the
distributional assumption with the parameter(s) given
by the estimate(s).

I H1: The random variable X does not conform.

I If the distribution tested is discrete and combining
adjacent cell is not required (so that Ei > minimum
requirement):

I Each value of the random variable should be a class
interval, unless combining is necessary, and

pi = p(xi ) = P(X = xi )
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Chi-Square test III
I If the distribution tested is continuous:

pi =
∫ ai

ai−1

f (x)dx = F (ai )− F (ai−1),

where ai−1 and ai are the endpoints of the ith class
interval, and f (x) is the assumed pdf, F (x) is the
assumed cdf.

I Recommended number of class intervals (k):
Sample Size, n Number of Class Intervals, k

20 Do not use the chi-square test
50 5 to 10

100 10 to 20

>100 n1/2 to n/5

I Caution: Different grouping of data (i.e., k) can affect
the hypothesis testing result.

I Vehicle Arrival Example (continued):
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Chi-Square test IV

I H0: the random variable is Poisson distributed.
I H1: the random variable is not Poisson distributed.

I Degree of freedom is k − s − 1 = 7− 1− 1 = 5, hence,
the hypothesis is rejected at the 0.05 level of
significance.

χ2
0 = 27.68 > χ2

0.05,5 = 11.1
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Kolmogorov-Smirnov Test

I Intuition: formalize the idea behind examining a q-q
plot

I Recall from previous lectures:

I The test compares the continuous cdf, F (x), of the
hypothesized distribution with the empirical cdf, FN (x),
of the N sample observations.

I Based on the maximum difference statistics
D = max |F (x)− FN (x)|

I A more powerful test, particularly useful when:

I Sample sizes are small,
I No parameters have been estimated from the data.

I When parameter estimates have been made:

I Critical values in tables are biased, too large.
I More conservative, i.e., smaller Type I error than

specified.
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p-Values and “Best Fits” I

I p-value for the test statistics

I The significance level at which one would just reject H0

for the given test statistic value.
I A measure of fit, the larger the better
I Large p-value: good fit
I Small p-value: poor fit

I Vehicle Arrival Example (cont.):

I H0: data is Possion
I Test statistics: χ2

0 = 27.68, with 5 degrees of freedom
I p-value = 0.00004, meaning we would reject H0 with

0.00004 significance level, hence Poisson is a poor fit.

I p-value is important in practical implementation of
statistical tests in software packges and products

I
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p-Values and “Best Fits” II

I Many software use p-value as the ranking measure to
automatically determine the “best fit”. Things to be
cautious about:

I Software may not know about the physical basis of the
data, distribution families it suggests may be
inappropriate.

I Close conformance to the data does not always lead to
the most appropriate input model.

I p-value does not say much about where the lack of fit
occurs

I Recommended: always inspect the automatic selection
using graphical methods.
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Fitting a Non-stationary Poisson Process I

I Fitting a NSPP to arrival data is difficult, possible
approaches:

I Fit a very flexible model with lots of parameters or
I Approximate constant arrival rate over some basic

interval of time, but vary it from time interval to time
interval.

I Suppose we need to model arrivals over time [0,T], our
approach is the most appropriate when we can:

I Observe the time period repeatedly and
I Count arrivals / record arrival times.
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Fitting a Non-stationary Poisson Process II
I The estimated arrival rate during the ith time period is:

λ̂(t) =
1

n∆t

n

∑
j=1

Cij

where n = # of observation periods, ∆t = time interval
length, Cij = # of arrivals during the ith time interval
on the jth observation period

I Example: Divide a 10-hour business day [8am,6pm] into
equal intervals k = 20 whose length ∆t = 1/2 , and
observe over n = 3 days
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Selecting Model without Data I

I If data is not available, some possible sources to obtain
information about the process are:

I Engineering data: often product or process has
performance ratings provided by the manufacturer or
company rules specify time or production standards.

I Expert option: people who are experienced with the
process or similar processes, often, they can provide
optimistic, pessimistic and most-likely times, and they
may know the variability as well.

I Physical or conventional limitations: physical limits on
performance, limits or bounds that narrow the range of
the input process.

I The nature of the process.

I The uniform, triangular, and beta distributions are often
used as input models.

I Example: Production planning simulation.
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Selecting Model without Data II
I Input of sales volume of various products is required,

salesperson of product XYZ says that:

I No fewer than 1,000 units and no more than 5,000
units will be sold.

I Given her experience, she believes there is a 90%
chance of selling more than 2,000 units, a 25% chance
of selling more than 2,500 units, and only a 1% chance
of selling more than 4,500 units.

I Translating these information into a cumulative
probability of being less than or equal to those goals for
simulation input:

i Interval (Sales) Cumulative frequency, ci
1 [1000, 2000] 0.10

2 (2000,3000] 0.75

3 (3000,4000] 0.99

4 (4000,5000] 1
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Multivariate and Time-Series Input Models

I Multivariate:

I For example, lead time and annual demand for an
inventory model, increase in demand results in lead time
increase, hence variables are dependent.

I Time-series:

I For example, time between arrivals of orders to buy and
sell stocks, buy and sell orders tend to arrive in bursts,
hence, times between arrivals are dependent.
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Covariance and Correlation I

I Consider the model that describes relationship between
X1 and X2:

X1 − µ1 = β (X2 − µ2) + ε, ε ∼ N(0, σ2)

ε independent of X2

I β = 0, X1 and X2 are statistically independent
I β > 0, X1 and X2 tend to be above or below their

means together
I β < 0, X1 and X2 tend to be on opposite sides of their

means
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Covariance and Correlation II
I Covariance between X1 and X2 :

cov(X1,X2) = E [(X1 − µ1) (X2 − µ2)] = E (X1X2)−µ1µ2

where

cov(X1,X2)


= 0
< 0
> 0

=⇒ β


= 0
< 0
> 0

I Correlation between X1 and X2 (values between -1 and
1):

ρ = corr(X1,X2) =
cov(X1,X2)

σ1σ2

where

corr(X1,X2)


= 0
< 0
> 0

=⇒ β


= 0
< 0
> 0
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Covariance and Correlation III

I The closer ρ is to -1 or 1, the stronger the linear
relationship is between X1 and X2.

I A time series is a sequence of random variables
X1,X2,X3, . . . , are identically distributed (same mean
and variance) but dependent.

I cov(Xt,Xt + h) is the lag-h autocovariance
I corr(Xt,Xt + h) is the lag-h autocorrelation
I If the autocovariance value depends only on h and not

on t, the time series is covariance stationary
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Multivariate Input Models
I If X1 and X2 are normally distributed, dependence

between them can be modeled by the bivariate normal
distribution with parameters µ1, µ2, σ2

1 , σ2
2 and

correlation ρ
I To estimate µ1, µ2, σ2

1 , σ2
2 , see “Parameter Estimation”

(slides 14-17)
I To estimate ρ, suppose we have n independent and

identically distributed pairs (X11,X21), (X12,X22), . . . ,
(X1n,X2n), then:

ĉov(X1,X2) =
1

n− 1

n

∑
j=1

(
X1j − X 1

) (
X2j − X 2

)
=

1

n− 1

(
n

∑
j=1

X1jX2j − nX 1X 2

)

ρ(X1,X2) =
ĉov(X1,X2)

σ̂2
1 σ̂2

2
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Time-Series Input Models

I If X1,X2,X3, . . . is a sequence of identically distributed,
but dependent and covariance-stationary random
variables, then we can represent the process as follows:

I Autoregressive order-1 model, AR(1)
I Exponential autoregressive order-1 model, EAR(1)

I Both have the characteristics that: Lag-h
autocorrelation decreases geometrically as the lag
increases, hence, observations far apart in time are
nearly independent
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AR(1) Time-Series Input Models

I Consider the time-series model:

Xt = µ + φ (Xt−1 − µ) + εt , t = 2, 3, . . .

where ε1, ε2, . . . are i.i.d. normally distributed with
µε = 0 and variance σ2

ε

I If X1 is chosen appropriately, then

I X1, X2, . . . are normally distributed with mean = µ,
and variance = σ2/(1− φ2)

I Autocorrelation ρh = φh

I To estimate φ, µ, σ2
ε :

µ̂ = X , σ̂2
ε = σ̂2(1− φ̂2), φ̂ =

cov(Xt ,Xt+1)

σ̂2

where cov(Xt ,Xt+1) is the lag-1 autocovariance
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EAR(1) Time-Series Input Models

I Consider the time-series model:

Xt =

{
φXt−1, with probability φ
φXt−1 + εt , with probability 1− φ

t = 2, 3, . . . ,

where ε2, ε3, . . . are i.i.d. exponentially distributed
with µε = 1/λ, and 0 ≤ φ < 1

I If X1 is chosen appropriately, then

I X1, X2, . . . are exponentially distributed with mean
µ = 1/λ

I Autocorrelation ρh = φh , and only positive correlation
is allowed.

I To estimate φ, λ

λ =
1

X
, φ̂ = ρ̂ =

cov(Xt ,Xt+1)

σ̂2

where cov(Xt ,Xt+1) is the lag-1 autocovariance
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