
Random Variate Generation
Non-uniform RV

Radu Tr̂ımbiţaş

Faculty of Math and CS-UBB

1st Semester 2010-2011

Radu Tr̂ımbiţaş (Faculty of Math and CS-UBB) Random Variate Generation 1st Semester 2010-2011 1 / 75

Topics I

General principles

Inverse Transform Method
Acceptance-Rejection Method
Composition Method
Translation and Other Simple Transforms

Continuous Distributions

Inverse Transform by Numerical Solution
Specific Continuous Distribution

Discrete Distribution

Look-up Tables
Alias Method
Empirical Distribution
Specific Discrete Distributions

Multivariate Distribution

Radu Tr̂ımbiţaş (Faculty of Math and CS-UBB) Random Variate Generation 1st Semester 2010-2011 2 / 75

Topics II

General Methods

Special Distributions

Stochastic Processes

Point Processes

Time-Series Models and Gaussian Processes

Radu Tr̂ımbiţaş (Faculty of Math and CS-UBB) Random Variate Generation 1st Semester 2010-2011 3 / 75

Introduction

The basic problem is to generate a random variable X , whose
distribution is completely known and nonuniform

RV generators use as starting point random numbers distributed
U [0, 1] - so we need a good RN generator

Assume RN generates a sequence {U1, U2, . . . } IID

For a given distribution there exists more than one method

Assumption: a uniform RNG is available, and a call RN(0, 1)
produce a uniform r.n., independent of all variates generated by
previous calls

Radu Tr̂ımbiţaş (Faculty of Math and CS-UBB) Random Variate Generation 1st Semester 2010-2011 4 / 75

Choice Criteria

1 Exactness – a generator is exact if the distribution of variates has the
exact form desired; the opposite approximative generator

2 Mathematical validity – does it give what it is supposed to?

3 Speed – initial setup time + variable generation time the relative
contribution of these factors depends on application

4 Space – computer memory requirements of the generator; short
algorithms, but some of them make use of extensive tables, important
when if different tables need to be held simultaneously in memory

5 Simplicity, both algorithmic and implementational

6 Parametric stability – is it uniformly fast for all input parameters (e.g.
will it take longer to generate PP as rate increases?)

Radu Tr̂ımbiţaş (Faculty of Math and CS-UBB) Random Variate Generation 1st Semester 2010-2011 5 / 75

Inverse Transform Method (Continuous Case)

X , F cdf of X , f pdf of X
Let U := RN(0, 1)
return X := F−1(U)

Figure: Inverse transform - continuous case
Radu Tr̂ımbiţaş (Faculty of Math and CS-UBB) Random Variate Generation 1st Semester 2010-2011 6 / 75

Example - Exponential distribution

X ∼ Exp(a)

F (x) =

{
1− exp

(
x
a

)
, x > 0

0, otherwise
(1)

Solving u = F (x) for x yields

x = F−1(u) = −a ln(1− u) (2)

Generate u rv U [0, 1], then apply (2) to obtain X having cdf (1).

Example

Consider the case a = 1 (see Figure 2). The cdf for x > 0 is
F (x) = 1− exp(−x). Two random variates has been generated using (2).
The first r.n. generated is u1 = 0.7505and the corresponding x is
x1 = − ln(1− 0.7505) = 1. 388 3. Similarly, the random number
u2 = 0.1449 generates the exponential variate x2 = − ln(1− 0.1449) =
0.156 54.

Radu Tr̂ımbiţaş (Faculty of Math and CS-UBB) Random Variate Generation 1st Semester 2010-2011 7 / 75

Figure: Inverse transform for exponential distribution

Radu Tr̂ımbiţaş (Faculty of Math and CS-UBB) Random Variate Generation 1st Semester 2010-2011 8 / 75

Inverse Transform Method (Discrete Case) I

Suppose X has the distribution

(
xi
pi

)
. The cdf is

F (x) = P(X ≤ x) = ∑
i :xi≤x

pi .

We ”define” the inverse by

F−1(u) = min{x : u ≤ F (x)}

The method still works despite the discontinuities of F (see Figure 3)

U := RN(0, 1); i := 1;
while (F (xi) < U){i := i + 1}
return X = xi

Because the method uses a linear search, it can be ineficient if n is
large. More efficient methods are required.

Radu Tr̂ımbiţaş (Faculty of Math and CS-UBB) Random Variate Generation 1st Semester 2010-2011 9 / 75

Inverse Transform Method (Discrete Case) II

If a table of xi values with the corresponding F (xi) values are stored,
the method is called table look-up method. The method compares U
with each F (xi), returning, as X , the first xi encountered for which
F (xi) ≥ U.

Radu Tr̂ımbiţaş (Faculty of Math and CS-UBB) Random Variate Generation 1st Semester 2010-2011 10 / 75

Inverse Transform Method (Discrete Case)

Figure: Inverse transform method - Bin(4,0.25)

Radu Tr̂ımbiţaş (Faculty of Math and CS-UBB) Random Variate Generation 1st Semester 2010-2011 11 / 75

Example - Binomial Distribution

Example

X ∼ Bin(4, 0.25). The possible values of X are xi = i , i = 0, ..., 4, and
the values of F are given in Table 1. Suppose U = 0.6122 is a given
random number. Looking along the rows of F (xi) values, we see that
F (x0) = 0.3164 < U = 0.6122 < F (x1) = 0.7383. Thus x1 is the first xi
such that U ≤ F (xi); therefore X = 1. (see Figure 3).

i 0 1 2 3 4

pi 0.3164 0.4219 0.2109 0.0469 0.0039
F (xi) 0.3164 0.7383 0.9492 0.9961 1.0000

Table: Distribution of Bin(4, 0.25)

Radu Tr̂ımbiţaş (Faculty of Math and CS-UBB) Random Variate Generation 1st Semester 2010-2011 12 / 75

Inverse Transform Method - Correctness

Constructive proof:

Theorem

If U ∼ U [0, 1], then the random variable X = F−(U) has the distribution
function F , where F− is the inverse function of F defined as

F−(p) = inf{x : F (x) ≥ p}, 0 < p < 1.

Proof.

First, we have F−(F (x)) ≤ x for x ∈ R and F (F−(u)) ≥ u for
0 < u < 1. Thus

P(X ≤ x) = P(F−(U) ≤ x) = P(U ≤ F (x)) = F (x).

Radu Tr̂ımbiţaş (Faculty of Math and CS-UBB) Random Variate Generation 1st Semester 2010-2011 13 / 75

Acceptance-Rejection Method

X has density f (x) with bounded support

If F is hard (or impossible) to invert, too messy ... what to do?

Generate Y from a more manageable distribution and accept as
coming from f with a certain probability

Radu Tr̂ımbiţaş (Faculty of Math and CS-UBB) Random Variate Generation 1st Semester 2010-2011 14 / 75

Acceptance-Rejection Intuition

Density f (x) is really ugly ... Say, Orange!

M ′ is a “Nice” Majorizing function..., Say Uniform

Radu Tr̂ımbiţaş (Faculty of Math and CS-UBB) Random Variate Generation 1st Semester 2010-2011 15 / 75

Acceptance-Rejection Intuition

Throw darts at rectangle under M ′ until hit f

Prob{Accept X} is proportional to height of f (X) - called trial ratio

Radu Tr̂ımbiţaş (Faculty of Math and CS-UBB) Random Variate Generation 1st Semester 2010-2011 16 / 75

Acceptance-Rejection Correctness

The basic idea comes from the observation that if f is the target density,
we have

f (x) =
∫ f (x)

0
1du.

Thus, f can be thought as the marginal density of the joint distribution

(X , U) ∼ Unif {(x , u) : 0 < u < f (x)},

where U is called an auxiliary variable.

Theorem

Let X ∼ f (x) and let g(y) be a density function that satisfies
f (x) ≤ Mg(x) for some constant M ≥ 1. To generate a random variable
X ∼ f (x): (1) Generate Y ∼ g(y) and U ∼ Unif [0, 1] independently; (2)
If U ≤ f (Y)/Mg(Y) set X = Y ; otherwise return to step (1).

Radu Tr̂ımbiţaş (Faculty of Math and CS-UBB) Random Variate Generation 1st Semester 2010-2011 17 / 75

Acceptance-Rejection Proof

Proof.

The generated random variable X has distribution

P(X ≤ x) = P(Y ≤ x |U ≤ f (Y)/Mg(Y))

=
P(Y ≤ x , U ≤ f (Y)/Mg(Y))

P(U ≤ f (Y)/Mg(Y))

=

∫ x
−∞

∫ f (y)/Mg (y)
0 1 · du · g(y)dy∫ ∞

−∞

∫ f (y)/Mg (y)
0 1 · du · g(y)dy

=
∫ x

−∞
f (y)dy ,

which is the desired distribution.

Radu Tr̂ımbiţaş (Faculty of Math and CS-UBB) Random Variate Generation 1st Semester 2010-2011 18 / 75

Example - Gamma distribution

Example

We want to generate γ(b, 1), for b > 1 (see [Fishman, 1996]). The pdf is

f (x) = xb−1 exp(x)/Γ(b), x > 0.

The majorizing function is e(x) = K exp(−x/b)/b. If

K =
bb exp(1− b)

Γ(b)

then e(x) ≥ f (x) for x ≥ 0. The method is convenient for b not too
large. Figure 4 illustrates the generation.

Radu Tr̂ımbiţaş (Faculty of Math and CS-UBB) Random Variate Generation 1st Semester 2010-2011 19 / 75

Example - Gamma distribution

Figure: Acceptance-rejection method, gamma distribution, a = 2.

Radu Tr̂ımbiţaş (Faculty of Math and CS-UBB) Random Variate Generation 1st Semester 2010-2011 20 / 75

Composition Method I

Can be used when m can be expressed as a convex combination of
other distributions Fi , where we hope to be able to sample from Fi

more easily than from F directly.

F (x) =
∞

∑
i=1

piFi (x) and f (x) =
∞

∑
i=1

pi fi (x)

pi is the probability of generating from Fi

Algorithm

1 Generate positive random integer J such that

P{J = j} = pj , for j = 1, 2, . . .

2 Return X with distribution function Fj

Radu Tr̂ımbiţaş (Faculty of Math and CS-UBB) Random Variate Generation 1st Semester 2010-2011 21 / 75

Composition Method II

Think of Step 1 as generating J with mass function pJ

P(X ≤ x) =
∞

∑
j=1

P(X ≤ x |J = j)P(J = j) =
∞

∑
j=1

Fj (x)pj = F (x).

Example

The double exponential (or Laplace) distribution has density
f (x) = 1

2 e−|x |, x ∈ R (Figure 5), We can express the density as

f (x) = 0.5ex I(−∞,0) + 0.5e−x I(0,∞),

IA indicator of A. f convex combination of f1(x) = ex I(−∞,0) and
f2(x) = e−x I(0,∞). We can generate X with density f by composition.
First generate U1, U2 ∼ U [0, 1]. If U1 ≤ 0.5, return X = ln U2, else return
X = − ln U2.

Radu Tr̂ımbiţaş (Faculty of Math and CS-UBB) Random Variate Generation 1st Semester 2010-2011 22 / 75

Composition Method III

Figure: Double-exponential density

Radu Tr̂ımbiţaş (Faculty of Math and CS-UBB) Random Variate Generation 1st Semester 2010-2011 23 / 75

Convolution

Suppose Yi , i = 1, . . . , n IID rv and X = Y1 + Y2 + · · ·+ Yn

Algorithm Yi , i = 1, . . . , n IID rv with cdf G

1 Generate
2 Return X = Y1 + Y2 + · · ·+ Yn

The distribution of X is the m-fold convolution of G

In probability theory, the probability distribution of the sum of two or
more independent random variables is the convolution of their
individual distributions

(f ∗ g)(t) =
∫ ∞

−∞
f (τ)g(t − τ)dτ

Radu Tr̂ımbiţaş (Faculty of Math and CS-UBB) Random Variate Generation 1st Semester 2010-2011 24 / 75

Convolution- Examples

Examples

1 Yi , i = 1, . . . , n IID χ2(1, 1); X = Y1 + Y2 + · · ·+ Yn is distributed
χ2(n, 1)

2 The m-Erlang rv with mean β is the sum of m IID exponential rvs
with common mean β/m. Thus we generate first Y1, . . . , Ym IID
Exp(β/m), then return X = Y1 + Y2 + · · ·+ Yn

3 If Xi has a Γ(ai , λ) distribution for i = 1, 2, ..., n, i.r.v., then

n

∑
i=1

Xi ∼ Γ

(
n

∑
i=1

ai , λ

)

Radu Tr̂ımbiţaş (Faculty of Math and CS-UBB) Random Variate Generation 1st Semester 2010-2011 25 / 75

Translation and Other Simple Transforms

Often a random variable can be obtained by some elementary
transformation of another

lognormal variable is an exponential of a normal variable

χ2(1) is a standard normal variable squared

More elementary, location-scale models – if X is a crv with pdf f then
Y = aX + b, a > 0, b ∈ R, then Y has the density

g(y) = a−1f

(
y − b

a

)

Radu Tr̂ımbiţaş (Faculty of Math and CS-UBB) Random Variate Generation 1st Semester 2010-2011 26 / 75

Continuous Distributions

Radu Tr̂ımbiţaş (Faculty of Math and CS-UBB) Random Variate Generation 1st Semester 2010-2011 27 / 75

Inverse Transform by Numerical Solution

Solve the equation F (X) = U, or equivalently
ϕ(X) := F (X)− U = 0, numerically for X

Methods: bisection, false position, secant, Newton

Problem: find starting values

Radu Tr̂ımbiţaş (Faculty of Math and CS-UBB) Random Variate Generation 1st Semester 2010-2011 28 / 75

Bisection

a := −1;
while F (a) > U do

a := 2 ∗ a;
b := 1;
while F (b) < U do

b := 2 ∗ b;
while b− a > δ do

X := (a + b)/2;
if F (x) ≤ u then

a := X ;
else

b := X ;

Radu Tr̂ımbiţaş (Faculty of Math and CS-UBB) Random Variate Generation 1st Semester 2010-2011 29 / 75

Newton

For unimodal densities with known mode, Xm the following alternative is
quicker

Ym := F (Xm); U := RN(0, 1);
X := Xm; Y := Ym; h := Y − U;
while |h| > δ do

X := X − h/f (X);
h := F (X)− U;

return X

Convergence is guaranted for unimodal densities because F (x) is
convex for x ∈ (−∞, Xm) and concave for x ∈ (Xm, ∞)

The tolerance criterion guaranteed that guarantees that F (X) is close
to U (within δ), but it does not guarantee that X is close to the
exact solution of F (X) = U

Radu Tr̂ımbiţaş (Faculty of Math and CS-UBB) Random Variate Generation 1st Semester 2010-2011 30 / 75

Uniform U(a,b), a<b

pdf

f (x) =

{
1

b−a , x ∈ (a, b)
0, otherwise

cdf

F (x) =


0, x ≤ a

x − a

b− a
, a < x < b

1, x ≥ b

generator: inverse transform method

U := RN(0, 1);
return X := a + (b− a)U

Radu Tr̂ımbiţaş (Faculty of Math and CS-UBB) Random Variate Generation 1st Semester 2010-2011 31 / 75

Exponential Exp(a), a>0

pdf

f (x) =

{ 1

a
exp

(
−x

a

)
, x > 0

0, otherwise

cdf

F (x) =

{
1− exp

(
−x

a

)
, x > 0

0, otherwise

generator: inverse transform method

U := RN(0, 1);
return X := −a ln (1− U) ;

Radu Tr̂ımbiţaş (Faculty of Math and CS-UBB) Random Variate Generation 1st Semester 2010-2011 32 / 75

Weibull Weib(a,b), a,b>0

pdf

f (x) =

{
ba−bxb−1 exp

[
−
(
x
a

)b]
, x > 0

0, otherwise

cdf

f (x) =

{
1− exp

[
−
(
x
a

)b]
, x > 0

0, otherwise

generator: inverse transform method

U := RN(0, 1);

return X := a [− ln (1− U)]1/b

Notes:
1 Some references replace 1− U by U since 1− U ∼ U(0, 1); this is not

recommended
2 for b = 1 exponential distribution
3 X ∼ Weib(a, b) =⇒ X b ∼ Exp(ab);

E ∼ Exp(ab) =⇒ E 1/b ∼ Weib(a, b)

Radu Tr̂ımbiţaş (Faculty of Math and CS-UBB) Random Variate Generation 1st Semester 2010-2011 33 / 75

Extreme Value EXTREME(mu,sigma)

pdf

f (x) = σ−1 exp

(
−x − µ

σ

)
exp

[
− exp

(
−x − µ

σ

)]
, x ∈ R

cdf

F (x) = exp

[
− exp

(
−x − µ

σ

)]
, x ∈ R

generator: inverse transform method

U := RN(0, 1);
return X := −σ ln [− ln(U)] + µ

Radu Tr̂ımbiţaş (Faculty of Math and CS-UBB) Random Variate Generation 1st Semester 2010-2011 34 / 75

Gamma Gam(a,b), a,b>0 I

pdf

f (x) =

 (x/b)a−1

bΓ(a)
exp

(
−x

b

)
, x > 0

0, otherwise

cdf - improper integral

generator: no single method satisfactory for all values of a.
Generators cover different ranges of a

Generator 1 (Ahrens&Dieter) acceptance-rejection, requires a ∈ (0, 1)

Radu Tr̂ımbiţaş (Faculty of Math and CS-UBB) Random Variate Generation 1st Semester 2010-2011 35 / 75

Gamma Gam(a,b), a,b>0 II

Setup : β := (e + a)/e;

while(true){
U := RN(0, 1); W := βU;
if (W < 1){

Y := W 1/a; V = RN(0, 1);

if (V ≤ e−Y) return X = bY ; }
else {

Y := − ln ((β−W) /a) ; V := RN(0, 1);
if (V ≤ Y b−1) return X := bY }

}

Generator 2: (Cheng) acceptance-rejection; requires a > 1

Radu Tr̂ımbiţaş (Faculty of Math and CS-UBB) Random Variate Generation 1st Semester 2010-2011 36 / 75

Gamma Gam(a,b), a,b>0 III

Setup : α := (2a− 1)−1/2; β := a− ln 4; γ := a + α−1; δ := 1 + ln 4.5;

while (true){
U1 := RN(0, 1); U2 := RN(0, 1);

V := α ln (U1/(1− U1)) ; Y := aeV ;
Z := U2

1 U2; W := β + γV − Y ;

if (W + δ− 4.5Z ≥ 0)
return X := bY ;

else{
if (W ≥ ln Z) return X := bY ; }

}

Radu Tr̂ımbiţaş (Faculty of Math and CS-UBB) Random Variate Generation 1st Semester 2010-2011 37 / 75

Gamma Gam(a,b), a,b>0 IV

Generator 3 (Fishman) acceptance-rejection; requires a > 1 and it is
simple and efficient for values of a < 5.

while (true) {
U1 := RN(0, 1); U2 := RN(0, 1); V1 := − ln U1; V2 := − ln U2;
if (V2 > (a− 1) (V1 − ln V1 − 1)) return X := bV1;

}

Radu Tr̂ımbiţaş (Faculty of Math and CS-UBB) Random Variate Generation 1st Semester 2010-2011 38 / 75

Erlang ERL(m,k), m>0, k natural

pdf – same as GAM(k , m/k)

cdf – improper integral

generator 1. If X ∼ ERL(m, k), it is the sum of k i.r.v. Exp(m/k)

U1 := RN(0, 1); U2 := RN(0, 1); . . . ; Uk := RN(0, 1);
return X := −(m/k) ln ((1− U1) (1− U2) . . . (1− Uk))

generator 2. generates GAM(k, m/k)

generator 1 efficient for k < 10. For larger values of k , generator 2 is
faster and not affected by error caused by multiplication of quantities
< 1.

Radu Tr̂ımbiţaş (Faculty of Math and CS-UBB) Random Variate Generation 1st Semester 2010-2011 39 / 75

Normal I

pdf

f (x) =
1

σ
√

2π
exp

[
− (x − µ)2

2σ2

]
, x ∈ R

cdf improper integral

generator 1. Box-Muller

U1 := RN(0, 1); U2 := RN(0, 1);
return X1 :=

√
−2 ln U1 cos U2 and X2 :=

√
−2 ln U1 sin U2

If X1, X2 ∼ N(0, 1), then
D2 = X 2

1 + X 2
2 ∼ χ2(2) ≡ Exp(2) =⇒ D =

√
−2 ln U

X1 = D cos ω, X 2 = D sin ω, ω = 2πU2;

generator 2. Polar Method

Radu Tr̂ımbiţaş (Faculty of Math and CS-UBB) Random Variate Generation 1st Semester 2010-2011 40 / 75

Normal II

while(true){
U1 := RN(0, 1); U2 := RN(0, 1);
V1 := 2U1 − 1; V 2 := 2U2 − 1; W := V 2

1 + V 2
2 ;

if (W < 1){
Y := [(−2 ln W) /W]1/2 ;
return X1 := µ + σV1Y and X1 := µ + σV1Y

}
}

Radu Tr̂ımbiţaş (Faculty of Math and CS-UBB) Random Variate Generation 1st Semester 2010-2011 41 / 75

Beta BETA(p,q) I

pdf

f (x) =


xp−1(1− x)q−1

B(p, q)
, x ∈ (0, 1)

0, otherwise

cdf – improper integral

generator 1. If G1 ∼ GAM(p, a), G2 ∼ GAM(q, a), independent,
then X = G1/(G1 + G2) ∼ BETA(p, q)

generator 2. (Cheng) acceptance-rejection, for p, q > 1

setup : α := p + q; β :=
√
(α− 2) / (2pq − α); γ := p + β−1;

do{
U1 := RN(0, 1); U2 := RN(0, 1);
V := β ln (U1/ (1− U1)) ; W := peV ;

}while
(
α ln [α/ (q + W)] + γV − ln 4 < ln

(
U2

1 U2

))
return X := W / (q + W) ;

Radu Tr̂ımbiţaş (Faculty of Math and CS-UBB) Random Variate Generation 1st Semester 2010-2011 42 / 75

Beta BETA(p,q) II

generator 3. (Jöhnk) acceptance-rejection for p, q < 1

do {
U := RN(0, 1); V := RN(0, 1);

Y := U1/p; Z := V 1/q;
} while(Y + Z > 1)
return X := Y /(Y + Z)

Radu Tr̂ımbiţaş (Faculty of Math and CS-UBB) Random Variate Generation 1st Semester 2010-2011 43 / 75

Discrete Distributions

Radu Tr̂ımbiţaş (Faculty of Math and CS-UBB) Random Variate Generation 1st Semester 2010-2011 44 / 75

Look-up Tables I

General methods work for discrete distributions, but with
modifications

look-up table method and alias method

Suppose distribution has the form

pi = P(X = Xi), Pi =
i

∑
j=1

pj = P(X ≤ xi), i = 1, . . . , n

If the table is large, look-up procedure is slow, to find i we need i
steps

Acceleration: binary search, hasing, etc.

When the number of points is infinite we need an appropriate cutoff,
for example

Pn > 1− δ = 1− 10c

c must be selected carefully
Radu Tr̂ımbiţaş (Faculty of Math and CS-UBB) Random Variate Generation 1st Semester 2010-2011 45 / 75

Look-up Tables II

Look-up by binary search

U := RN(0, 1); A := 0; B := n;

while (A < B − 1){

i := trunc((A + B)/2);

if (U > Pi) A := i

else B = i ;
}
return X := Xi

An alternative is to make a table of starting points aproximately every
(n/m)th entry, in the same way that the letters of the alphabet form
convenient starting points for search in a dictionary

Radu Tr̂ımbiţaş (Faculty of Math and CS-UBB) Random Variate Generation 1st Semester 2010-2011 46 / 75

Look-up Tables III

Look-up by indexed search -setup

i := 0;
for (j := 0 to m− 1){

while (Pi < j/m){i := i + 1}
Qj := i ;
}

search

U := RN(0, 1); j := trunc(mU); i := Qj ;
while (U ≥ Pi) i := i + 1;
return X := Xi

Radu Tr̂ımbiţaş (Faculty of Math and CS-UBB) Random Variate Generation 1st Semester 2010-2011 47 / 75

Alias Method I

X has the range Sn = {0, 1, . . . , n}
From the given p(i)’s we compute two arrays of length n + 1

1 cutoff values Fi , i = 0, 1, . . . , n
2 aliases Li ∈ Sn for i = 0, 1, . . . , n

Setup for the alias method Walker (1977)

1 Set Li = i , Fi = 0, bi = pi − 1/(n + 1), for i = 0, 1, . . . , n
2 For i = 0, 1, . . . , n do the following steps

1 Let c = min{b0, b1, . . . , bn} and k be the index of this minimal bj .
(Ties can be broken arbitrarily)

2 Let d = max{b0, b1, . . . , bn} and m be the index of this maximal bj .
(Ties can be broken arbitrarily)

3 If ∑n
j=0 |bj | < ε, stop the algorithm.

4 Let Lk = m, Fk = 1+ c(n+ 1), bk = 0, and bm = c + d .

Setup for the alias method Kronmal and Peterson (1979)

1 Set Fi = (n + 1)p(i) for i = 0, 1, . . . , n

Radu Tr̂ımbiţaş (Faculty of Math and CS-UBB) Random Variate Generation 1st Semester 2010-2011 48 / 75

Alias Method II

2 Define the sets G = {i : Fi ≥ 1} and S = {i : Fi < 1}
3 Do the following steps until S becomes empty:

1 Remove an element k from G and remove an element m from S

2 Set Lm = k and replace Fk by Fk − 1+ Fm
3 If Fk < 1, put k into S ; otherwise, put k back into G

The cuttof and the aliases are not unique

The alias method

1 Generate I ∼ DU(0, n) and U ∼ (0, 1) independent of I
2 If U ≤ Fi return X = I , else return X = LI .

Radu Tr̂ımbiţaş (Faculty of Math and CS-UBB) Random Variate Generation 1st Semester 2010-2011 49 / 75

Alias Method - Example I

Consider the RV; the range is S3

X :
(

0 1 2 3
0.1 0.4 0.2 0.3

)
The first setup algorithm leads to

i 0 1 2 3

p(i) 0.1 0.4 0.2 0.3
Fi 0.4 0.0 0.8 0.0
Li 1 1 3 3

If step 1 of the algorithm produces I = 2, the probability is F2 = 0.8;
we would keep X = I = 2, and with probability 1− F2 = 0.2 we
would return X = L2 = 3 instead.

Radu Tr̂ımbiţaş (Faculty of Math and CS-UBB) Random Variate Generation 1st Semester 2010-2011 50 / 75

Alias Method - Example II

Since 2 is not the alias of anything, the algorithm returns X = 2 if
and only if I = 2 in step 1 and U ≤ 0.8 in step 2

P(X = 2) = P(I = 2∧U ≤ 0.8) =

= P(I = 2)P(U ≤ 0.8) = 0.25 · 0.8 = 0.2

X = 3 is returned when

if I = 2, since F3 = 0, we return X = L3 = 3
if I = 2, we return X = L2 = 3 with probability 1− F2 = 0.2.

P(X = 3) = P(I = 3) + P(I = 2∧ U > F2)

= 0.25+).25 · 0.2 = 0.3

Radu Tr̂ımbiţaş (Faculty of Math and CS-UBB) Random Variate Generation 1st Semester 2010-2011 51 / 75

Alias Method - Infinite Case

In this case can be combine with composition method

If X ∈N, we find an n such that q = ∑n
i=0 p(i) is close to 1, and

P(X ∈ Sn) is hight.

Since

p(i) = q

[
p(i)

q
ISn(i)

]
+ (1− q)

[
p(i)

1− q
(1− ISn(i))

]
we obtain the following algorithm

1 Generate U ∼ U(0, 1). If U ≤ q go to step2, otherwise go to step 3;
2 Use the alias method to return X on Sn with probability mass function

p(i)/q for i = 0, 1, . . . , n.
3 Use any other method to return X on {n + 1, n + 2, . . . } with

probability mass function p(i)/(1− q) for i = n + 1, n + 2, . . .

Radu Tr̂ımbiţaş (Faculty of Math and CS-UBB) Random Variate Generation 1st Semester 2010-2011 52 / 75

Empirical Distribution

x1, x2, . . . , xn is a sample of size n. Assume that each value has the
same probability of occuring

P(X = xi) =
1

n
i = 1, 2, . . . , n

We generate variates from this distribution using

U := RN(0, 1); i := trunc(nU) + 1;
return X = xi

Radu Tr̂ımbiţaş (Faculty of Math and CS-UBB) Random Variate Generation 1st Semester 2010-2011 53 / 75

Sampling without replacement ; Permutations

The next algorithm samples m ≤ n items from the random sample
x1, x2, . . . , xn of size n., without replacement

for (j = 1 to m){
U := RN(0, 1); i := trunc [(n− j + 1)U] + j
a := aj ; aj := ai ; ai := a; }

return a1, a2, . . . , am

The routine swaps each entry with one drawn from the remaining list;
at the end of the call the entries of the first m positions (i.e.
a1, a2, . . . , am) contains the elements sampled without replacement

For m = n we generate random permutations of the initial sample

Radu Tr̂ımbiţaş (Faculty of Math and CS-UBB) Random Variate Generation 1st Semester 2010-2011 54 / 75

Bernoulli BER(p)

pmf

(
0 1

q = 1− p p

)
generator elementary look-up table

U := RN(0, 1);
if (U ≤ p) then return X = 1 else return X = 0

Radu Tr̂ımbiţaş (Faculty of Math and CS-UBB) Random Variate Generation 1st Semester 2010-2011 55 / 75

Discrete uniform DU(i,j)

i , j ∈N; pmf

p(x) =

{ 1
j−i+1 , x ∈ {i , i + 1, . . . , j}

0, otherwise

generator: inverse transform method

U := RN(0, 1);

return X = i + b(j − i + 1)Uc

Radu Tr̂ımbiţaş (Faculty of Math and CS-UBB) Random Variate Generation 1st Semester 2010-2011 56 / 75

Binomial BIN(n,p)

n ∈N, p ∈ (0, 1)

pmf

p(x) =


(

n

x

)
pxqn−x x = 0, 1, . . . , n

0, otherwise

Generator: special property X ∼ BIN(n, p) is the sum of n
independent BER(p). The generation time increases linearly with n.
For large n (>20) use general methods.

X := 0;
for (i = 1 to n){

B := BER(p); X := X + B; }
return X

Radu Tr̂ımbiţaş (Faculty of Math and CS-UBB) Random Variate Generation 1st Semester 2010-2011 57 / 75

Geometric GEOM(p)

p ∈ (0, 1)

pmf

p(x) =

{
p(1− p)x , x ∈N

0, otherwise

generator: the cdf is invertible

Setup : a := 1/ ln(1− p);
U := RN(0, 1);
return X = trunc(a ln U);

Radu Tr̂ımbiţaş (Faculty of Math and CS-UBB) Random Variate Generation 1st Semester 2010-2011 58 / 75

Negative binomial NEGBIN(n,p)

n ∈N, p ∈ (0, 1)

pmf

p(x) =


(

n + x − 1

x

)
pn(1− p)x , x ∈N

0, otherwise

generator: X is the sum of n independent GEOM(p) variables

X := 0;
for (i = 1 to n){

Y := GEOM(p); X := X + Y ; }
return X

Time increase linearly witm n. One of the general method will be
preferable for large n (>10 say).

Radu Tr̂ımbiţaş (Faculty of Math and CS-UBB) Random Variate Generation 1st Semester 2010-2011 59 / 75

Hypergeometric HYP(a,b)

a, b ∈N∗

pmf

p(x) =



(
a

x

)(
b

n− x

)
(

a + b

n

) , x = 0, 1, . . . , n

0, otherwise

generator: inverse transform method [Fishman, 1996]

Setup : α := p0 = [b!(a + b− n)!] / [(b− n)! (a + b)!] ;
A := α; B := α; X := 0;
U := RN(0, 1);
while(U > A){

X := X + 1; B :=
B(a− X)(n− X)/ [(X + 1) (b− n + X + 1)] ; A := A + B;
}
return X

Radu Tr̂ımbiţaş (Faculty of Math and CS-UBB) Random Variate Generation 1st Semester 2010-2011 60 / 75

Poisson I

POIS(λ), λ > 0

pmf

p(x) =

 λxe−λ

x !
, x ∈N

0, otherwise

Generator 1: The direct method is to count the number of events in
an appropriate time period as indicated above:

Setup : a := e−λ;
p := 1; X = −1;
while(p > a){

U := RN(0, 1); p := pU; X := X + 1; }
return X

Generator 2:

Radu Tr̂ımbiţaş (Faculty of Math and CS-UBB) Random Variate Generation 1st Semester 2010-2011 61 / 75

Poisson II

Setup : a := π
√

λ/3; b := a/λ; c := 0.767− 3.36/λ; d :=
ln c − ln b− λ;
do{

do{
U := RN(0, 1); Y := [a− ln ((1− U) /U)] /b;

}while(Y ≤ 1/2)
X := trunc(Y + 1/2); V := RN(0, 1);

}while(a + bY + ln
[

V /
(
1 + ea−bY

)2
]
> d + X ln λ− ln X !)

return X

Generator 3: For large λ, λ−1/2 (X − λ) tends to the standard
normal. For large λ(>20) we have the following:

Setup : a := λ1/2;
Z := N(0, 1);
X := max [0, trunc (0.5 + λ + aZ)]
return X

Radu Tr̂ımbiţaş (Faculty of Math and CS-UBB) Random Variate Generation 1st Semester 2010-2011 62 / 75

General Methods

Not as well developed as univariate methods.
Key requirement: to ensure an appropriate correlation structure
among the components of the multivariate vector.
Conditional sampling: X = (X1, X2, . . . , Xn)T random vector with
joint distribution F (x1, . . . , xn).

Suppose distribution of Xj given that Xi = xi , for i = 1, 2, . . . , j − 1, is
known for each j .
X can be built one component at a time, with each component
obtained by sampling from an univariate distribution

Generate x1 from the distribution F1(x)

Generate x2 from the distribution F2(x |X1 = x1)

...
Generate xn
from the distribution Fn(x |X1 = x1, X2 = x2, . . . , Xn−1 = xn−1)

Radu Tr̂ımbiţaş (Faculty of Math and CS-UBB) Random Variate Generation 1st Semester 2010-2011 63 / 75

Multivariate Normal

X ∼ MVN(µ, Σ), µ n× 1 vector, Σ n× n positive definite matrix

f (x) = (2π |Σ|)−n/2 exp

[
−1

2
(x − µ)T Σ−1 (x − µ)

]
, xi ∈ R, i = 1, . . . , n

Generator: compute first the Choleski decomposition of Σ, Σ = LLT

then generate Z = (Z1, . . . , Zn)T , X = LZ+ µ, Zi ∼ N(0, 1)

for (i = 1 to n) Zi := N(0, 1);

for (i = 1 to n) {
Xi := µi ;
for (j = 1 to i) Xi := Xi + LijZj

}
return X = (X1, . . . , Xn)

Radu Tr̂ımbiţaş (Faculty of Math and CS-UBB) Random Variate Generation 1st Semester 2010-2011 64 / 75

Uniform Distribution on the n-Dimensional Sphere

Components of MVN(0, I) are treated as equally likely directions in
Rn

Generator:

S := 0;
for (i = 1 to n){

Zi := N(0, 1); S := S + Z 2
i ;

}
S :=

√
S

for (i := 1 to n) Xi := Zi/S ;
return X = (X1, . . . , Xn)

Radu Tr̂ımbiţaş (Faculty of Math and CS-UBB) Random Variate Generation 1st Semester 2010-2011 65 / 75

Order Statistics I

Sample X1, X2, . . . , Xn arranged in ascending order

X(1) ≤ X(2) ≤ · · · ≤ X(n)

Generation and reordering, time O(n log n)

If X generated by X = F−1(U), the sample can be generated in order
from the order statistics of the uniform sample

U(1) ≤ U(2) ≤ · · · ≤ U(n)

Based on

1 U(n) has an invertible distribution
2 U(1), U(2), . . . , U(i) are the order statistics of a sample of size i drawn

from the distribution U(0, U(i+1)).

Radu Tr̂ımbiţaş (Faculty of Math and CS-UBB) Random Variate Generation 1st Semester 2010-2011 66 / 75

Order Statistics II

U := RN(0, 1); U(n) = U1/n;
for (i = n− 1 downto 1){

U := RN(0, 1);

U(i) := U(i+1)U
1/i ;

}
Alternative way:
E1 := EXP(1); S1 := E1;
for (i = 2 to n + 1){

Ei := EXP(1); Si := Si−1 + Ei ;
}
for (i = 1 to n) U(i) := Si/Sn+1

Radu Tr̂ımbiţaş (Faculty of Math and CS-UBB) Random Variate Generation 1st Semester 2010-2011 67 / 75

Point Processes

Point process = a sequence of points t0 = 0, t1, . . . in time

the time intervals xi = ti − ti−1 are usually random

Examples

1 ti are arrival times of customers, xi are interarrival times;

2 ti moments at breakdowns, xi lifetimes

Radu Tr̂ımbiţaş (Faculty of Math and CS-UBB) Random Variate Generation 1st Semester 2010-2011 68 / 75

Poisson Processes

xi independent EXP(1/λ) variables=⇒ (ti) Poisson process with
rate λ

to generate next time point ti assuming that ti−1 has already been
generated

U := RN(0, 1);
return ti := ti−1 − λ−1 ln U

Radu Tr̂ımbiţaş (Faculty of Math and CS-UBB) Random Variate Generation 1st Semester 2010-2011 69 / 75

Nonstationary Poisson Processes

The rate λ = λ(t) varies with time.

Suppose the cummulative rate

Λ(t) =
∫ t

0
λ(u)d u

is invertible with inverse Λ−1(.)

assume that previous moment si−1 has been already generated; next
moment ti given by

U := RN(0, 1); si := si−1 − ln U;
return ti = Λ−1(si)

Radu Tr̂ımbiţaş (Faculty of Math and CS-UBB) Random Variate Generation 1st Semester 2010-2011 70 / 75

Nonstationary Poisson Processes - Thinning

Analog to acceptance-rejection method

λM = maxt λ(t)

t := ti−1;
do{

U := RN(0, 1); t := t − λ−1
M ln U; V = RN(0, 1);

}while (V > λ(t)/λM)
return ti = t

Radu Tr̂ımbiţaş (Faculty of Math and CS-UBB) Random Variate Generation 1st Semester 2010-2011 71 / 75

Markov Processes

Discrete-time Markov chain: t = 0, 1, 2, . . . , states set
X ∈ {1, 2, . . . , n}
Given Xt = i , the next state Xi+1 is selected according to

P(Xt+1 = j |Xt = i) = pij , j = 1, . . . , n

Continuous-time Markov chain: assume system has just entered
state i at time tk . Then the next change of state occurs at
tk+1 = tk + EXP(1/λi). The state entered is j with probability pij ,
j = 1, 2, . . . , n

Radu Tr̂ımbiţaş (Faculty of Math and CS-UBB) Random Variate Generation 1st Semester 2010-2011 72 / 75

Time-Series Models and Gaussian Processes

Gaussian process = stochastic process X (t) all of whose joint
distribution are multivariate normal (i.e. Xt1 , Xt2 , . . . , Xtr is
multivariate normal for any given set of times t1, t2, . . . , tr)

A moving average process Xt is defined by

Xt = Zt + β1Zt−1 + · · ·+ βqZt−q, t = 1, 2, 3, . . . ,

where Z ′s are independent N(0, σ2) normal variates and the β′s are
user-prescribed coefficients. The X ’s can be generated directly from
this definition.

Radu Tr̂ımbiţaş (Faculty of Math and CS-UBB) Random Variate Generation 1st Semester 2010-2011 73 / 75

Autoregressive Processes

defined by

Xt = α1Xt−1 + · · ·+ αpXt−p + Zt , t = 1, 2, 3, . . . ,

where Z ’s are independent N(0, 1) r.v.and α’s are user-prescribed
coefficients
The X ’s can be generated from definition; the initial values X0, X−1,
. . . , X1−p need to be obtained

(X0, X−1, . . . , X1−p) ∼ MVN(0, Σ),

where Σ satisfies
Σ = AΣAT + B (3)

with

A =


α1 α2 . . . αp−1 αp

1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

 , B =


σ2 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0


find Σ from (3) and then generate (X0, X−1, . . . , X1−p) using
MVN(0, Σ).

Radu Tr̂ımbiţaş (Faculty of Math and CS-UBB) Random Variate Generation 1st Semester 2010-2011 74 / 75

References

Luc Devroye, Non-uniform Random Variate Generation, Springer, 1986

Averill M. Law, Simulation Modeling and Analysis, McGraw-Hill, 2007

J. Banks, J. S. Carson II, B. L. Nelson, D. M. Nicol, Discrete-Event
System Simulation, Prentice Hall, 2005

J. Banks (ed), Handbook of Simulation, Wiley, 1998, Chapter 5

G. S. Fishman, Monte Carlo. Concepts, Algorithms and Applications,
Springer, 1996

Kromal & Peterson, Statistical Computing 33.4, pp.214-218

Radu Tr̂ımbiţaş (Faculty of Math and CS-UBB) Random Variate Generation 1st Semester 2010-2011 75 / 75

	Introduction
	General Principles
	Inverse Transform Method
	Acceptance-Rejection Method
	Composition Method
	Convolution
	Translation and Other Simple Transforms

	Continuous Distributions
	Inverse Transform by Numerical Solution
	Specific Continuous Distribution

	Discrete Distribution
	Look-up Tables
	Alias Method
	Empirical Distribution
	Specific Discrete Distributions

	Multivariate Distribution
	General Methods
	Special Distribution

	Stochastic Processes
	Point Processes
	Time-Series Models and Gaussian Processes

	References

