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@ General principles

o Inverse Transform Method

e Acceptance-Rejection Method

e Composition Method

o Translation and Other Simple Transforms

@ Continuous Distributions

o Inverse Transform by Numerical Solution
e Specific Continuous Distribution

@ Discrete Distribution

o Look-up Tables

o Alias Method

e Empirical Distribution

e Specific Discrete Distributions

@ Multivariate Distribution
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Topics Il

o General Methods
e Special Distributions

@ Stochastic Processes

e Point Processes
e Time-Series Models and Gaussian Processes
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Introduction

@ The basic problem is to generate a random variable X, whose
distribution is completely known and nonuniform

@ RV generators use as starting point random numbers distributed
U0, 1] - so we need a good RN generator

@ Assume RN generates a sequence {Uy, Us, ...} IID
@ For a given distribution there exists more than one method

@ Assumption: a uniform RNG is available, and a call RN(0, 1)
produce a uniform r.n., independent of all variates generated by
previous calls
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© Exactness — a generator is exact if the distribution of variates has the
exact form desired; the opposite approximative generator

@ Mathematical validity — does it give what it is supposed to?

© Speed — initial setup time + variable generation time the relative
contribution of these factors depends on application

@ Space — computer memory requirements of the generator; short
algorithms, but some of them make use of extensive tables, important
when if different tables need to be held simultaneously in memory

@ Simplicity, both algorithmic and implementational

@ Parametric stability — is it uniformly fast for all input parameters (e.g.
will it take longer to generate PP as rate increases?)
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Inverse Transform Method (Continuous Case)

X, F cdf of X, f pdf of X
Let U:= RN(0,1)
return X := F (V)
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Example - Exponential distribution

X ~ Exp(a)
| 1—exp (§) , x>0
F(X) o { 0, otherwise (1)
Solving u = F(x) for x yields
x=F1(u) = —aln(1—u) (2)

Generate u rv U[0, 1], then apply (2) to obtain X having cdf (1).

Example

Consider the case a =1 (see Figure 2). The cdf for x > 0 is
F(x) =1—exp(—x). Two random variates has been generated using (2).
The first r.n. generated is u; = 0.7505and the corresponding x is

x1 = —In(1—0.7505) = 1.3883. Similarly, the random number
up = 0.1449 generates the exponential variate xo = — In(1 — 0.1449) =
0.156 54.

Radu Trimbitas (Faculty of Math and CS-UB Random Variate Generation 1st Semester 2010-2011 7/75



08 -
u=0.780500 -

u,=0.144900
01 ! -
| |
|
0 | 1 1 | | i | 1
o s 2 25 3 35 4

%,=0.156537 x,=1.388296

Figure: Inverse transform for exponential distribution
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Inverse Transform Method (Discrete Case) |

@ Suppose X has the distribution <;’) The cdf is

F(x)=P(X<x)= ) pi

iix; <x

@ We "define” the inverse by
F~Y(u) = min{x: u < F(x)}

@ The method still works despite the discontinuities of F (see Figure 3)
U:=RN(0,1); i:=1;
while (F(x;)) < U){i:=i+1}
return X = x;

@ Because the method uses a linear search, it can be ineficient if n is
large. More efficient methods are required.
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Inverse Transform Method (Discrete Case) Il

e If a table of x; values with the corresponding F(x;) values are stored,
the method is called table look-up method. The method compares U
with each F(x,-), returning, as X, the first x; encountered for which

F(x;) > U.
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Inverse Transform Method (Discrete Case)

. - —

Figure: Inverse transform method - Bin(4,0.25)
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Example - Binomial Distribution

X ~ Bin(4,0.25). The possible values of X are x; =/, i =0,...,4, and
the values of F are given in Table 1. Suppose U = 0.6122 is a given
random number. Looking along the rows of F(x;) values, we see that
F(xp) = 0.3164 < U = 0.6122 < F(x1) = 0.7383. Thus x; is the first x;
such that U < F(x;); therefore X = 1. (see Figure 3).

i 0 1 2 3 4
pi 0.3164 0.4219 0.2109 0.0469 0.0039
F(x;) 0.3164 0.7383 0.9492 0.9961 1.0000

Table: Distribution of Bin(4,0.25)
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Inverse Transform Method - Correctness

Constructive proof:

If U ~ U[0, 1], then the random variable X = F~(U) has the distribution
function F, where F~ is the inverse function of F defined as

F~(p) =inf{x: F(x) >p}, 0<p<lL

Proof.

First, we have F~(F(x)) < x for x € R and F(F~(u)) > u for
0<u<1 Thus

P(X <x)=P(F (U) <x)=P(U<F(x)) = F(x).

Ol

V.
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Acceptance-Rejection Method

@ X has density f(x) with bounded support
e If F is hard (or impossible) to invert, too messy ... what to do?

@ Generate Y from a more manageable distribution and accept as
coming from f with a certain probability
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Acceptance-Rejection Intuition

Density f(x) is really ugly ... Say, Orange!

M’ is a “Nice” Majorizing function..., Say Uniform
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Acceptance-Rejection Intuition

Throw darts at rectangle under M until hit £

M’(x)

Mijssed again !I
* |

|
|
|
|
fy
|
|
|

Accept X! - done

Prob{Accept X} is proportional to height of f(X) - called trial ratio
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Acceptance-Rejection Correctness

The basic idea comes from the observation that if f is the target density,
we have

Thus, f can be thought as the marginal density of the joint distribution

(X, U) ~ Unif{(x,u) : 0 < u<f(x)},

where U is called an auxiliary variable.

Let X ~ f(x) and let g(y) be a density function that satisfies
f(x) < Mg(x) for some constant M > 1. To generate a random variable
X ~ f(x): (1) Generate Y ~ g(y) and U ~ Unif|0, 1] independently; (2)
IfU<f(Y)/Mg(Y) set X = Y, otherwise return to step (1).
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Acceptance-Rejection Proof

The generated random variable X has distribution

P(X <x)=P(Y <x|U<F(Y)/Mg(Y))
CP(Y <x, U< F(Y)/Mg(Y))
P(U<f< )/ Mg(Y))

f fo IMED) 1 gy g
f fo IMEDT 1 gy g

= / y)dy,

which is the desired distribution. ]

y)dy
y)dy

(
(
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Example - Gamma distribution

We want to generate y(b, 1), for b > 1 (see [Fishman, 1996]). The pdf is
f(x) = xP~Lexp(x) /T(b), x > 0.
The majorizing function is e(x) = Kexp(—x/b)/b. If

b® exp(1 — b)

K= "7

then e(x) > f(x) for x > 0. The method is convenient for b not too
large. Figure 4 illustrates the generation.
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Example - Gamma distribution
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Composition Method |

@ Can be used when m can be expressed as a convex combination of
other distributions F;, where we hope to be able to sample from F;
more easily than from F directly.

F(x) = ipiF;(X) and f(x) = ipifi(X)

@ p; is the probability of generating from F;
@ Algorithm

© Generate positive random integer J such that
P{J=j} =pj, for j=1,2,...

@ Return X with distribution function F;
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Composition Method Il

@ Think of Step 1 as generating J with mass function py

PX <x) = Y PIX <xlJ=)PU=]) = F(x)p = F(x).

1 j=1

e

J

The double exponential (or Laplace) distribution has density
f(x) = Le=X|, x € R (Figure 5), We can express the density as

f(X) = 0.5exl(_oo’0) =F 0.5€_XI(0’00),

Ia indicator of A. f convex combination of fi(x) = €*/_ o) and

h(x) = e *l0,00)- We can generate X with density f by composition.
First generate Uy, U ~ U[0,1]. If Uy < 0.5, return X = In Uy, else return
X = —1InU:.

v
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Composition Method Il

04r =
02k .

Figure: Double-exponential density
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Convolution

Suppose Y;, i=1,....,nlIDrvand X =Y1+ Yo+ ---4+Y,
Algorithm Y;, i=1,...,nlID rv with cdf G

© Generate
Q@ Retumn X =Y+ Yo+---4+ Y,

The distribution of X is the m-fold convolution of G

In probability theory, the probability distribution of the sum of two or
more independent random variables is the convolution of their
individual distributions

[ee]

(Frg)(t) = [ frglt—)dr

—o0
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Convolution- Examples

Q@ Y,i=1...,nlDx*(1,1); X=Y1+ Ya+ -+ Y, is distributed

x*(n,1)
@ The m-Erlang rv with mean f is the sum of m IID exponential rvs
with common mean /m. Thus we generate first Y7, ..., Y, IID

Exp(B/m), then return X = Y1 + Yo+ -+ + Y,
Q If X; has a I'(a;, A) distribution for i = 1,2, ..., n, i.r.v., then

iX,' ~T <ia;,)\)
i=1 i=1
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Translation and Other Simple Transforms

@ Often a random variable can be obtained by some elementary
transformation of another

@ lognormal variable is an exponential of a normal variable
@ x2(1) is a standard normal variable squared

@ More elementary, location-scale models — if X is a crv with pdf f then
Y =aX+b,a>0,beclR, then Y has the density

gly)=a'f <y . b)
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Continuous Distributions
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Inverse Transform by Numerical Solution

@ Solve the equation F(X) = U, or equivalently
¢(X) := F(X) — U =0, numerically for X
@ Methods: bisection, false position, secant, Newton

@ Problem: find starting values
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a:=-—1;
while F(a) > U do
a:=2xa;
b:=1;
while F(b) < U do
b:=2x%b;
while b —a > § do
X:=(a+b)/2;
if F(x) < u then
a:=X;
else
b:=X;
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For unimodal densities with known mode, X, the following alternative is
quicker
Ym = F(Xm); U:=RN(0,1);
X:=Xn Y=Yy h:=Y—U,
while |h| > § do
X :=X—h/f(X);
h:=F(X)—-U,
return X

e Convergence is guaranted for unimodal densities because F(x) is
convex for x € (—o0, X;;;) and concave for x € (X, )

@ The tolerance criterion guaranteed that guarantees that F(X) is close
to U (within §), but it does not guarantee that X is close to the
exact solution of F(X) = U
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Uniform U(a,b), a<b

o pdf
1
_ b—a’ X € (a, b)
F(x) { 0, otherwise
o cdf
0, x<a
F(x) = Z:Z,a<x<b
1, x>b

@ generator: inverse transform method

U:= RN(0,1);
return X :=a+ (b—a)U

1st Semester 2010-2011
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Exponential Exp(a), a>0

o pdf
1 X
F(x) = gexp (—5>, x>0
0, otherwise
o cdf X
F(x): 1—exp(—5), x>0
0, otherwise

@ generator: inverse transform method

U := RN(0,1);
return X := —aln (1 —U);
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Weibull Weib(a,b), a,b>0

o pdf
f(x) . { ba_bxb_lexp [— (g)b] , x>0
0, otherwise
o cdf ,
f(x):{l—exp{—(:)], x>0
0, otherwise

@ generator: inverse transform method

U := RN(0, 1);
return X :=a[—In (1 — U)]"/?
o Notes:
@ Some references replace 1 — U by U since 1 — U ~ U(O, 1); this is not
recommended

@ for b =1 exponential distribution
Q X ~ Weib(a, b) => Xb ~ Exp(ab);
E ~ Exp(aP) = EYb ~ Weib(a, b)
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Extreme Value EXTREME(mu,sigma)

F(x) = exp [—exp <—X_”>}, x €R

@ generator: inverse transform method

U:= RN(0,1);
return X := —cln[—In(U)] +u
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Gamma Gam(a,b), a,b>0 |

o pdf

f(x): %exp (—5), x>0

0, otherwise

cdf - improper integral

@ generator: no single method satisfactory for all values of a.
Generators cover different ranges of a

Generator 1 (Ahrens&Dieter) acceptance-rejection, requires a € (0,1)
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Gamma Gam(a,b), a,b>0 I

Setup: B:=(e+a)/e;

while(true){
U:=RN(0,1); W :=BU;
if (W <1){

Y = W3 v = RN(0,1);
if (V <eY)return X = bY;}
else {

Y:=—In((B—W)/a); V:=RN(0,1);
if (V < YP~1) return X := bY'}

@ Generator 2: (Cheng) acceptance-rejection; requires a > 1
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Gamma Gam(a,b), a,b>0 I

Setup: a:= (2a—1)7Y2, B:=a—Ind; y:=a+a"6:=1+In45;

while (true){
Ui := RN(0,1); U, := RN(0,1);

% [
Z = U12U2; W:=B+9V-Y,;

if ( W+36—-45Z>0)
return X := bY;

else{
if (W >InZ) return X := bY; }
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Gamma Gam(a,b), a,b>0 IV

@ Generator 3 (Fishman) acceptance-rejection; requires a > 1 and it is
simple and efficient for values of a < 5.

while (true) {
U1 = RN(O, 1); U2 = RN(O, 1); V1 = —1In Ul; V2 = —1In U2;
if (Vo> (a—1)(Vi—InVp—1)) return X := bVs;
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Erlang ERL(m,k), m>0, k natural

e pdf — same as GAM(k, m/ k)

@ cdf — improper integral

@ generator 1. If X ~ ERL(m, k), it is the sum of k i.r.v. Exp(m/k)
Ui := RN(0,1); Uy := RN(0,1); ...; Ux:= RN(0,1);
return X := —(m/k)In((1 = U1) (1 — Ua)...(1— Ux))

@ generator 2. generates GAM(k, m/ k)

o generator 1 efficient for k < 10. For larger values of k, generator 2 is
faster and not affected by error caused by multiplication of quantities
< 1L
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Normal |

o pdf
1 =’
f(X)—(T 27Texp[ T‘Q ,XER

o cdf improper integral

@ generator 1. Box-Muller

Uy := RN(0,1); U, := RN(0,1);
return X1 := v/ —2In Uy cos U, and X5 := /—21In Uy sin Us

o If X1, Xo ~ N(0,1), then
D? = X2+ X3 ~ x*(2) = Exp(2) = D = v/—-2In U

@ Xy =Dcosw, X2=Dsinw, w=2rUs;

@ generator 2. Polar Method

1st Semester 2010-2011
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Normal Il

while(true){
Ui := RN(0,1); U, := RN(0,1);
Vii=2U;—1; V2:=2U,—1; W:=V2+ V3
if (W <1){
Y = [(=2In W) /W]?;
return Xy ;= pu+ocViY and Xy :=u+oV1Y
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Beta BETA(p,q) |

o pdf

B(p,q)
0, otherwise

xP~1(1 — x)9-1
f(X) _ { (1 ) , X E (0, 1)

@ cdf — improper integral

@ generator 1. If G ~ GAM(p, a), G, ~ GAM(q, a), independent,
then X = G1/(G1 + Gp) ~ BETA(p, q)

o generator 2. (Cheng) acceptance-rejection, for p,q > 1

setf{lp: w:=p+gq p:=+(0—2)/(2pg—a); y:=p+p
do
Ui := RN(0,1); U := RN(0,1);
V:=BIn(Ui/(1—Uy)); W:=pe;
}while (aIna/ (g+ W)+ 7V —Ind <In(UiUs))
return X := W/ (¢ + W);
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Beta BETA(p,q) Il

e generator 3. (Johnk) acceptance-rejection for p, g < 1

do {
U:=RN(0,1); V:= RN(0,1);

Y = Utr; Z:= VY,
} while(Y + 2 > 1)
return X :=Y/(Y + 2)
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Discrete Distributions
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Look-up Tables |

General methods work for discrete distributions, but with
modifications

look-up table method and alias method

Suppose distribution has the form
p,':P(X:X,'), P,':Zp_j:P(XSX,'),I':].,...,n
j=1

If the table is large, look-up procedure is slow, to find / we need i
steps
Acceleration: binary search, hasing, etc.

When the number of points is infinite we need an appropriate cutoff,

for example
P,>1-6=1-10°

¢ must be selected carefully
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Look-up Tables Il

@ Look-up by binary search
U:=RN(0,1); A:=0;B:=n;

while (A < B—1){
i:=trunc((A+ B)/2);
if (U>Pj) A=

else B=1;

}

return X := X;

@ An alternative is to make a table of starting points aproximately every
(n/m)th entry, in the same way that the letters of the alphabet form
convenient starting points for search in a dictionary
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Look-up Tables IlI

@ Look-up by indexed search -setup
i:=0;
for (j:=0to m—1){
while (P; < j/m){i:=i+1}
Qj =1,
}

@ search
U:= RN(0,1); j:= trunc(mU); i:= Qj;
while (U > P;) i:=i+1,
return X := X
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Alias Method |

@ X has therange S, ={0,1,...,n}
e From the given p(i)'s we compute two arrays of length n+ 1

© cutoff values F;, i = 0,1, ..., n
@ aliases L; € S, for i =0,1,..., n

@ Setup for the alias method Walker (1977)
Q Setl; =i, F; =0, bi:pi—l/(n+l), fori=0,1,...,n
@ Fori=0,1,...,n do the following steps

@ Let c = min{bg, b1, ..., bn} and k be the index of this minimal b;.
(Ties can be broken arbitrarily)

@ Let d = max{by, b1, ..., bn} and m be the index of this maximal b;.
(Ties can be broken arbitrarily)

© If Y7o |bj| <, stop the algorithm.

QO Letly=m, Fk=1+c(n+1), by =0, and by, = c+d.

@ Setup for the alias method Kronmal and Peterson (1979)
Q Set F;=(n+1)p(i) fori=0,1,...,n
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Alias Method I

@ Definethesets G ={i: Ff>1}and S={i: F; <1}
© Do the following steps until S becomes empty:

@ Remove an element k from G and remove an element m from S
@ Set L, = k and replace F by Fy — 1+ Fp,
@ If Fx <1, put k into S; otherwise, put k back into G

@ The cuttof and the aliases are not unique

@ The alias method

@ Generate | ~ DU(0, n) and U ~ (0,1) independent of /
Q If U< Fjreturn X =1, else return X = L.
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Alias Method - Example |

@ Consider the RV; the range is S3

0o 1 2 3
X'<0.1 0.4 0.2 0.3>

@ The first setup algorithm leads to
i 0 1 2 3
p(i) 01 04 02 03
F; 04 0.0 0.8 0.0
L; 1 1 3 3
o If step 1 of the algorithm produces I = 2, the probability is F, = 0.8;
we would keep X = | = 2, and with probability 1 — F, = 0.2 we
would return X = L, = 3 instead.
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Alias Method - Example Il

@ Since 2 is not the alias of anything, the algorithm returns X = 2 if
and only if / =2 instep 1 and U < 0.8 in step 2

P(X=2)=P(l=2AU<08)=
= P(I =2)P(U<0.8)=025-0.8=0.2

@ X = 3 is returned when
e if | =2, since F3 =0, wereturn X = L3 =3
e if | =2, we return X = Ly = 3 with probability 1 — F, = 0.2.
PX=3)=P(I=3)+P(l=2NU>F)
=0.25+).25-0.2=10.3
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Alias Method - Infinite Case

@ In this case can be combine with composition method

e If X € N, we find an n such that g = Y. p(i) is close to 1, and
P(X € S,) is hight.

@ Since
p(i)

l1-gq

o) =a | P2 0)] + - ) [ £ - 15,0)

q

we obtain the following algorithm

@ Generate U ~ U(0,1). If U < g go to step2, otherwise go to step 3;

@ Use the alias method to return X on S, with probability mass function
p(i)/qfori=0,1,...,n.

@ Use any other method to return X on {n+1,n+2,...} with
probability mass function p(i)/(1—q) fori=n+1,n+2,...
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Empirical Distribution

@ X1,X2,...,X, is a sample of size n. Assume that each value has the
same probability of occuring

@ We generate variates from this distribution using

U:= RN(0,1); i:= trunc(nU) + 1;
return X = x;
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Sampling without replacement ; Permutations

@ The next algorithm samples m < n items from the random sample
X1, X2, ..., X, of size n., without replacement

for (j =1 to m){
U:=RN(0,1); i:=trunc[(n—j+1) U]+
a:=aj; aj:=a;; aj:=a;}

return aj, az, ..., am

@ The routine swaps each entry with one drawn from the remaining list;
at the end of the call the entries of the first m positions (i.e.
ai, a,...,am) contains the elements sampled without replacement

@ For m = n we generate random permutations of the initial sample
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Bernoulli BER(p)

opmf< 0 1)
g=1—p p

@ generator elementary look-up table

U= RN(0,1);
if (U < p) then return X =1 else return X =0
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Discrete uniform DU(i,j)

@ i,j € N; pmf

1 P .
_ m, X€{I,I-|-1,...,j}
P(x) { 0, otherwise

@ generator: inverse transform method

U := RN(0,1);

return X =i+ [(j—i+1) U]
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Binomial BIN(n,p)

eneNN,pe(0,1)
e pmf

0, otherwise

e Generator: special property X ~ BIN(n, p) is the sum of n
independent BER(p). The generation time increases linearly with n.
For large n (>20) use general methods.

X :=0;
for (i =1 to n){

B:= BER(p); X :=X+B;}
return X
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Geometric GEOM(p)

e pe(0,1)
e pmf

_ [ pl=p)*, xeN
plx) = { 0, otherwise

@ generator: the cdf is invertible

Setup: a:=1/In(1—p);
U:= RN(0,1);
return X = trunc(aln U);
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Negative binomial NEGBIN(n,p)

eneNN,pe(0,1)
e pmf

p(x) = <n+i_l>P"(1—P)X. x €N

0, otherwise

@ generator: X is the sum of n independent GEOM(p) variables
X:=0;
for (i=1to n){
Y := GEOM(p); X :=X+Y;}
return X

@ Time increase linearly witm n. One of the general method will be
preferable for large n (>10 say).
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Hypergeometric HYP(a,b)
@ a,be IN*
()2
X/ A\h—X x=0,1,...,n

o pmf
=y (e o

0, otherwise
@ generator: inverse transform method [Fishman, 1996]

Setup : & :=po = [bl(a+b—n)!]/[(b—n)! (a+ b)!];
A=ua; B:i=ua; X :=0;

U:= RN(0,1);
while(U > A){
=X+4+1;, B:=

Bla—X)(n—=X)/[(X+1)(b—n+X+1)]; A:=A+B;
¥

return X
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Poisson |

o POIS(A), A >0

e pmf
AXe A
p) =4 v XEN
0, otherwise

@ Generator 1: The direct method is to count the number of events in
an appropriate time period as indicated above:

Setup : a:= e
p:=1, X =-1,
while(p > a){
U:=RN(0,1); p:=pU; X:=X+1;}
return X

@ Generator 2:
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Poisson |l

Setup : a:= m/A/3; b:=a/A; ¢:=0.767—-3.36/A; d:=
Inc—Inb—A;
do{

do{

U:=RN(0,1); Y:=[a—In((1—-U)/U)]/b;

twhile(Y <1/2)

X :=trunc(Y +1/2); V:= RN(0,1);
ywhile(a + bY + In [V/ (1+ ea—by)2] >d+XInA—InX!)
return X

o Generator 3: For large A, A71/2 (X — A) tends to the standard
normal. For large A(>20) we have the following:

Setup : a:= Al/2;

Z:= N(0,1);
X 1= max|0, trunc (0.5+ A + aZ)]
return X
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General Methods

@ Not as well developed as univariate methods.
@ Key requirement: to ensure an appropriate correlation structure
among the components of the multivariate vector.
o Conditional sampling: X = (X1, X2,..., X,)T random vector with
joint distribution F(xi, ..., Xp).
o Suppose distribution of X; given that X;j = x;, for i =1,2,...,j—1,is
known for each j.
e X can be built one component at a time, with each component
obtained by sampling from an univariate distribution

Generate x; from the distribution Fi(x)
Generate x» from the distribution F>(x| X1 = x1)

Generate xj,
from the distribution F,,(X|X1 =x1,Xo =x0,...,Xp_1 = X,,_1)
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Multivariate Normal

@ X ~ MVN(u,X), u nx1vector, ¥ n x n positive definite matrix

F(x) = (2 |Z)) "2 exp [—; (x—pu)"x 1 (x—y)] x €R,i=1,..

o Generator: compute first the Choleski decomposition of &, ¥ = LLT
then generate Z = (Zy,...,2Z,)7, X =LZ +u, Z; ~ N(0,1)

for (i=1to n) Z := N(0,1);

for (i=1ton){

Xii= pi;

for (j =1to i) Xi:= X+ LjZ
}

return X = (X1,..., Xp)
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Uniform Distribution on the n-Dimensional Sphere

e Components of MVN(O0, /) are treated as equally likely directions in
Rn
e Generator:
S5:=0;
for (i=1to n){
Zi:=N(0,1); S:=S5+ 7%
}

S:=+S
for (i:==1ton) X;:=Z;/S;
return X = (Xy, ..., Xn)
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Order Statistics |

@ Sample X1, Xo, ..., X, arranged in ascending order
Xa) = Xy =+ = X

@ Generation and reordering, time O(nlog n)

e If X generated by X = F~1(U), the sample can be generated in order
from the order statistics of the uniform sample

Ua) < Up) < < Uy

@ Based on

(4] U(,,) has an invertible distribution
© Uq1). Uy, ..., Uy are the order statistics of a sample of size i drawn
from the distribution U(0, U(j,1)).
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Order Statistics Il

U:=RN(0,1); U, = U™,
for (i = n—1 downto 1){
U= RN(0,1);

} Ugy = Uigsn) UM

Alternative way:
Ey := EXP(1); S := Ey;
for (i=2to n+1){
E = EXP(1); S; == S;_1+E;;
}

for (i =1to n) U = Si/Sn+1
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Point Processes

@ Point process = a sequence of points tg = 0, t1, ... in time

@ the time intervals x; = t; — tj_1 are usually random

@ t; are arrival times of customers, x; are interarrival times;

@ t; moments at breakdowns, x; lifetimes
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Poisson Processes

e x; independent EXP(1/A) variables=> (t;) Poisson process with
rate A

@ to generate next time point t; assuming that t;_; has already been
generated
U:=RN(0,1);
return tj :=ti_1 — A 1InU
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Nonstationary Poisson Processes

@ The rate A = A(t) varies with time.

@ Suppose the cummulative rate

is invertible with inverse A71(.)
@ assume that previous moment s;_; has been already generated; next
moment t; given by
U:=RN(0,1); sj:=si-1—1InU;
return t; = A7 1(s;)
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Nonstationary Poisson Processes - Thinning

@ Analog to acceptance-rejection method
@ Ay = maxs A(t)
ti=tj_1;

do{
U:=RN(0,1); t:=t—Ay InU; V =RN(0,1);

twhile (V > A(t)/Am)
return t; =t
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Markov Processes

@ Discrete-time Markov chain: t = 0,1, 2, ..., states set
Xe{1,2,...,n}

@ Given X; = i, the next state Xj,1 is selected according to
P(Xey1 = j|Xe = i) = py, j=1...,n

o Continuous-time Markov chain: assume system has just entered
state / at time tx. Then the next change of state occurs at
tkr1 = tx + EXP(1/A;). The state entered is j with probability pjj,
j=12,....n
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Time-Series Models and Gaussian Processes

@ Gaussian process = stochastic process X(t) all of whose joint
distribution are multivariate normal (i.e. Xi,, Xe,, ..., Xy, is
multivariate normal for any given set of times t1, to, ..., t;)

@ A moving average process X; is defined by
Xt:Zt+ﬁ].Zt71+“.+ﬁth7ql t:1,2,3,...,

where Z's are independent N(0,02) normal variates and the f's are
user-prescribed coefficients. The X's can be generated directly from

this definition.
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Autoregressive Processes

o defined by
Xt:oc]_th]__’_“‘—'—(prtfp_f—Zt, t:1|213|"‘1

where Z's are independent N(0,1) r.v.and a's are user-prescribed
coefficients

@ The X's can be generated from definition; the initial values Xp, X_1,
..., X1—p need to be obtained

(Xo, X_1, ..., X1_p) ~ MVN(0, %),

where X satisfies

Y =AZAT +B (3)
with
K1 Ko Kp—1 Kp o2 0 0
1 0 0 0 0 0 0
A= 0 1 0 0 |, B —
0 0 .-. 0O

0 A 0
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