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The Poisson Process I

The Poisson process having rate λ > 0 is a collection fN(t) : t � 0g
of random variables, where N(t) is the number of events that occur
in the time interval [0, t], which ful�ll the following conditions:

(a) N(0) = 0
(b) The number of events occuring in disjoint time intervals are

independent.
(c) The distribution of the number of events that occur in a given interval

depends only on the length of the interval and not on its location.
(d) limh!0

P (N (h)=1)
h = λ.

(e) limh!0
P (N (h)�2)

h = 0.

Condition (b), the independent increment assumption, states that
N(t)) is independent of N(t + s)�N(t).
Condition (c), the stationary increment assumption, states that the
probability distribution of N(t + s)�N(t) is the same for all values
of t.
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The Poisson Process II

Conditions (d) and (e) states that in a small interval of length h, the
probability of one event occuring is approximately λh, whereas the
probabilty of two or more is approximately 0.

Theorem
Number of events occuring in an interval of length t is a Poisson r.v. with
mean λt.

Proof.
We break the interval [0, t] into n nonoverlapping subintervals of length
t/n. Consider the number of these intervals that contain an event.
Conditions (b) and (c) imply each interval contains an event with the
same probability λt/n =) N(t) is a binomial r.v with parameters n and
p � λt/n. When n! ∞, binomial converges to Poisson with mean λt.
(e) implies P(2 or more events)! 0, so N(t) is a Poisson r.v with mean
λt.
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The Poisson Process II

X1 -the time of �rst event; . . . Xn the elapsed time time between the
(n� 1)st and the nth event
fXn : n = 1, 2, . . . g the sequence of interarrival times
Theorem
The interarrival times X1, X2, . . . are i.i.d. exponential variables with
parameters λ.

Proof.

P(X1 > t) = P(N(t) = 0) = e�λt ((X1 > t) occurs if no events of the
Poisson process occur in [0, t]) X1 is Exp(λ).

P(X2 > tjX1 = s) = P(0 events in(s, s + t]jX1 = s))
= P(0 events in(s, s + t]) = e�λt

analogously for X3,X4, . . . ,Xn =) Xn is Exp(λ).
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Applications

A Poisson process, named after the French mathematician
Siméon-Denis Poisson (1781�1840), is a stochastic process in which
events occur continuously and independently of one another (the
word event used here is not an instance of the concept of event
frequently used in probability theory). Examples that are
well-modeled as Poisson processes include the radioactive decay of
atoms, telephone calls arriving at a switchboard, page view requests
to a website, and rainfall.
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Gamma distribution I

X has a gamma distribution with parameters a > 0 and λ if its pdf is

f (x ja,λ) =

8<:
λaxa�1e�λx

Γ(a)
, x � 0

0, otherwise

where Γ(a) =
R ∞
0 x

a�1e�xdx is the Euler�s gamma function

alternative parametrization λ = 1
θ (e.g. as in MATLAB)

f (x ja,λ) =

8<:
xa�1e�

x
θ

θaΓ(a)
, x � 0

0, otherwise
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Gamma distribution II

mean, variance

E (X ) =
a
λ
= aθ

V (X ) =
a

λ2
= aθ2

particular cases:

a = 1 exponential,
a = ν/2, λ = 1/2 chi-square with ν degres of freedom,
a 2 N� Erlang

Summation: If Xi has a Γ(ai ,λ) distribution for i = 1, 2, ..., n, i.r.v.,
then

n

∑
i=1
Xi � Γ

 
n

∑
i=1
ai ,λ

!
The gamma distribution exhibits in�nite divisibility.
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Gamma distribution III

In particular, if Xi is Exp(λ) the sum is Erlang of n and λ

Erlang distribution could arise in the following context: consider k
servers in series to complete the service of a customer; an additional
customer cannot enter the �rst station until the customer in process
has negotiated all the stations; each station has an exponential
service time with parameter λ.
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Applications

1 Plot gamma pdfs and cdfs for a = 1, 2, 4 and λ = 1.
2 Four-week summer rainfall totals in a section of the midwest United
States have approximately a gamma distribution with a = 1.6 and
θ = 2.0. Find the probability to have an amount of rainfall between 3
and 57. What is the median of the rainfall?

3 Annual incomes for heads of household in a section of a city have
approximately a gamma distribution with a = 1000 and θ = 20. Find
the mean and the variance of these incomes. Would you expect to
�nd many incomes in excess of $40,000 in this section of the city?

4 The gamma distribution is also used to model errors in multi-level
Poisson regression models, because the combination of the Poisson
distribution and a gamma distribution is a negative binomial
distribution.
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The Nonhomogeneous (Nonstationary) Poisson Process I

N(t) the number of events that occur by time t, fN(t), t � 0g is a
nonhomogeneous (nonstationary) Poisson process with intensity
function λ(t), t � 0 if
(a) N(0) = 0
(b) The number of events occuring in disjoint time intervals are

independent.
(c) limh!0

P (N (h)=1)
h = λ.

(d) limh!0
P (N (h)�2)

h = λ.

the mean value function is de�ned by

m(t) =
Z t

0
λ(s)ds, t � 0.

Proposition. N(t + s)�N(t) is a Poisson r.v. with mean
m(t + s)�m(t).
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The Nonhomogeneous (Nonstationary) Poisson Process II

λ(t) - intensity at time t; it indicates how likely it is that an event
will occur around the time t. If λ(t) � λ (constant) we obtain an
usual Poisson process

Proposition. Suppose that the events are occuring according to a
Poisson proces with rate λ, and suppose that, independently of
anything that came before, an event that occurs at time t is counted
with probbility p(t). Then the process of counted events constitutes
an nonhomogeneous Poisson process with intensity function
λ(t) = λp(t).

Proof. Conditions (a), (b), (c) holds for all (not just the counted)
events. Check (c)

P(1 event in [t, t + h])

= P(1 event and counted) + P(2 or more events, 1 counted)

� λhp(t).
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Conditional Expectation I

X ,Y d.r.v., E [X jY = y ], the conditional expectation of X , given
that Y = y , is de�ned by

E [X jY = y ] = ∑
x
xP (X = x jY = y)

=
∑x xP (X = x ,Y = y)

P(Y = y)

X ,Y c.r.v., E [X jY = y ] is de�ned by

E [X jY = y ] =
R

R
xf (x , y)dxR

R
f (x , y)dx

like an ordinary expectation, but the distribution is conditional

Proposition.
E [E [X jY ]] = E (X ) (1)
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Conditional Expectation II

If Y discrete (1) states

E (X ) = ∑
y
E [X jY = y ]P (Y = y)

If Y continuous with density g , (1) states

E (X ) =
Z

R
E [X jY = y ] g(y)dy
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Conditional Expectation III

Proof for discrete case

∑
y
E [X jY = y ]P (Y = y) = ∑

y
∑
x
xP (X = x jY = y)P(Y = y)

= ∑
y

∑
x
xP (X = x ,Y = y)

= ∑
y
x∑
x
P (X = x ,Y = y)

= ∑
y
xP (X = x)

= E (X )
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Conditional Variance

Conditional variance of X , given the value of Y

V (X jY ) = E
h
(X � E [X jY ])2 jY

i
We have

V (X jY ) = E
�
X 2jY

�
� (E [X jY ])2

Take expectation

E (V (X jY )) = E
�
E
�
X 2jY

��
� E

�
(E [X jY ])2

�
(2)

= E [X 2]� E
�
(E [X jY ])2

�
(3)

Using (1)

V (E [X jY ]) = E
�
(E [X jY ])2

�
� E (X )2 (4)

(3)+(4) yields

V (X ) = E [V (X jY )] + V (E [X jY ])
Radu Trîmbiţaş (UBB) Poisson Processes 1st Semester 2010-2011 15 / 15


	Poisson Processes
	The Poisson Process and Gamma Random Variable
	Gamma distribution
	The Nonhomogeneous (Nonstationary) Poisson Process

	Conditional Expectation and Conditional Variance
	Conditional Expectation
	Conditional Variance


