
4 M / M / 1 Queuing Systems

We discuss now continuous-time queuing systems with the usual approach: consider a discrete-time
queuing system and let the frame size ∆ → 0.
First, let us explain the notation:
Notation A queuing system is denoted by A / S / k / C / P, where
− A denotes the distribution of interarrival times;
− S denotes the distribution of service times;
− k denotes the number of servers;
− C denotes the capacity;
− P (or K) denotes the size of the source population.
Usually, the default values for the last two are C = P = ∞ and they are dropped from the notation.
When the Exponential distribution is considered for A or S, then it is denoted by M , because it is
memoryless and the resulting process is Markov. You may see other notations, like G for “general”
(any distribution), D for “deterministic” (fixed interarrival time), etc.

Definition 4.1. An M / M / 1 queuing process is a continuous-time Markov queuing process with the

following characteristics:

• one server;

• unlimited capacity;

• Exponential interarrival times with arrival rate λA;

• Exponential service times with service rate λS;

• service times and interarrival times are independent.

Remark 4.2. Let us recall that Exponential interarrival times imply a Poisson process of arrivals
with parameter λA. This is a very popular model for telephone calls and many other types of arriving
jobs.

We study M / M / 1 systems by starting with a B1SQS and letting its frame size ∆ go to zero. We
want to derive the steady-state distribution and other quantities of interest that measure the system’s
performance.
Recall that

pA = λA∆,

pS = λS∆

1

and as ∆ gets small, ∆2 becomes practically negligible. Then the transition probabilities are

p00 = 1− pA = 1− λA∆

p01 = pA = λA∆

pi,i−1 = (1− pA)pS = (1− λA∆)λS∆ ≈ λS∆

pi,i = (1− pA)(1− pS) + pApS ≈ 1− λA∆− λS∆

pi,i+1 = pA(1− pS) ≈ λA∆,

for i = 1, 2, The transition probability matrix becomes

P ≈



1− λA∆ λA∆ 0 . . . 0 . . .

λS∆ 1− λA∆− λS∆ λA∆ . . . 0 . . .

0 λS∆ 1− λA∆− λS∆ . . . 0 . . .

0 0 λS∆ . . . 0 . . .
...

...
... . . .


. (4.1)

Let us find the steady-state distribution from
πP = π
∞∑
i=0

πi = 1,

a system of infinitely many equations with infinitely many unknowns.
The first equation is

[π0 π1 π2 . . .] ·


1− λA∆

λS∆

0
...

 = π0, i.e.

(1− λA∆)π0 + λS∆π1 = π0, i.e.

−λA∆π0 + λS∆π1 = 0, i.e.

λSπ1 = λAπ0.

2

This is called the first balance equation. From here, we get

π1 =
λA

λS

π0 = rπ0. (4.2)

The second equation is

[π0 π1 π2 . . .] ·



λA∆

1− λA∆− λS∆

λS∆

0
...


= π1, i.e.

λA∆π0 + (1− λA∆− λS∆)π1 + λS∆π2 = π1, i.e.

λA∆π0 − λA∆π1 − λS∆π1 + λS∆π2 = 0, i.e. (since λAπ0 = λSπ1)

−λA∆π1 + λS∆π2 = 0, i.e.

λSπ2 = λAπ1.

Thus, we obtained the second balance equation, from which

π2 =
λA

λS

π1 = rπ1 = r2π0. (4.3)

This trend of balance equations will continue exactly the same way, because every next column of
matrix P is just the same as the previous column, only shifted down by 1 position. Thus, the general
balance equation looks like

λSπi = λAπi−1,

or

πi = rπi−1.

Combining it with the previous equations, we have

πi = rπi−1 = r2πi−2 = . . . = riπ0, i = 1, 2, (4.4)

3

Finally, in the normalizing equation
∞∑
i=0

πi = 1, we get

∞∑
i=0

πi =
∞∑
i=0

riπ0 = 1. (4.5)

Now, the Geometric series π0

∞∑
i=0

ri is convergent if its ratio r < 1, in which case the series is equal

to
π0

1− r
. So, assuming the utilization r is less than 1, the last equation becomes

π0

1− r
= 1, i.e.

π0 = 1− r.

Then the steady-state distribution of this queuing process is

πi = ri(1− r), i = 0, 1, . . . (4.6)

So the pdf of X(t) (the total number of jobs in the system at time t) is

X(t)

(
i

(1− r)ri

)
i=0,1,...

, (4.7)

a Geo(p) distribution with parameter p = 1− r. Then, we know

E(X) =
q

p
=

r

1− r
,

V (X) =
q

p2
=

r

(1− r)2
. (4.8)

Evaluation of the system’s performance

Now we can analyze the main parameters and distributions that characterize the queuing system,
directly from the distribution (4.7).

4

Utilization

We know r =
λA

λS

. Now we also have r = 1− π0. What does that mean?

π0 = P (X = 0) = P (there are no jobs in the system) = P (the system is idle),

so

r = P (X > 0) = 1− π0 = 1− P (the system is idle) = P (the system is busy). (4.9)

So, we can say that r is the proportion of time when the system is put to work or utilized, hence the
name utilization.

Obviously, the system is functional only if r < 1 (we used this for the convergence of the
Geometric series). If r ≥ 1, the system gets overloaded. Arrivals are too frequent compared to
the service rate and the system cannot manage the incoming flow of jobs. The number of jobs will
accumulate (unless it has a limited capacity) until the system will no longer function.

Waiting time

When a job arrives, it finds the system with X jobs in it. The new job waits in a queue, while those
X jobs are being serviced. Thus, its waiting time is the sum of service times of X jobs

W = S1 + S2 + . . .+ SX .

Recall that service times are Exponential and this distribution has the memoryless property (i.e.
P (S > x + y | S > x) = P (S > y)). So, even if the first job has already started service, its
remaining service time still has Exp(λS) distribution, regardless of how long it has already been
served or when its service time began. Then, the expected waiting time is

E(W) = E(S1 + S2 + . . .+ SX) =
X∑
i=1

E(Si)

= E(S ·X) = E(S)E(X) (4.10)

= µS · r

1− r
=

r

λS(1− r)
.

Remark 4.3.
1. At the step E(S ·X) = E(S)E(X), we actually used the fact that service times are independent

5

of the number of jobs in the system at that time.
2. The random variable W , the waiting time, is a rare example of a variable whose distribution is
neither discrete nor continuous. Notice that it has a probability distribution (mass) function at 0,
because

P (W = 0) = P (the system is idle) = 1− r

is the probability that the server is idle and available and there is no waiting time for a new job. On
the other hand, for all x > 0, it has a probability density function. Given any positive number of jobs
X = n, the waiting time is the sum of n independent Exp(λS) times, which is a Gamma(n, 1/λS)

random variable, so continuous. Such a distribution is called mixed.

Response time

Response time is the time a job spends in the system, from its arrival to its departure. It consists of
waiting time (if any) and service time. So, the expected response time is then

E(R) = E(W) + E(S)

= µS · r

1− r
+ µS = µS

(r

1− r
+ 1
)

(4.11)

=
µS

1− r
=

1

λS(1− r)
.

Queue

The length of the queue is the number of waiting jobs

Xw = X −Xs.

As we have discussed in Example 3.2. (Lecture 8), the number of jobs being serviced, Xs, at
any time is either 0 or 1 (because there is only one server), so it has a Bernoulli distribution with
parameter

P (the system/server is busy) = r

and, hence,
E(Xs) = 0 · (1− r) + 1 · r = r.

6

Then, the expected queue length is

E(Xw) = E(X)− E(Xs)

=
r

1− r
− r = r

(1

1− r
− 1
)

(4.12)

=
r2

1− r
.

So, to summarize:

Main performance characteristics of an M / M / 1 queuing system

- Expected number of jobs in the system

E(X) =
r

1− r
,

- Expected queue length

E(Xw) =
r2

1− r
,

- Expected number of jobs being serviced

E(Xs) = r,

- Expected response time
E(R) =

µS

1− r
=

1

λS(1− r)
,

- Expected waiting time
E(W) =

µSr

1− r
=

r

λS(1− r)
,

- Expected service time
E(S) = µS,

- Utilization

r = P (X > 0) = 1− π0 = P (system is busy),

1− r = P (X = 0) = π0 = P (system is idle).

7

Remark 4.4. Little’s Law applies to M / M / 1 queuing systems and their components, the queue
and the server. Assuming the system is functional (r < 1), all jobs go through the entire system,
and thus, each component is subject to the same arrival rate λA. Notice that, indeed, we have

λAE(R) = λA · 1

λS(1− r)
=

r

1− r
= E(X)

λAE(W) = λA · r

λS(1− r)
=

r2

1− r
= E(Xw)

λAE(S) = λA · µS =
λA

λS

= r = E(Xs).

Example 4.5. Messages arrive to a communication center at random times according to a Poisson
process, with an average of 5 messages per minute. They are transmitted through a single channel
in the order they were received. On average, it takes 10 seconds to transmit a message. Compute
the main performance characteristics for this center.

Solution. Recall that a Poisson process of arrivals implies Exponential interarrival times (and the
other way around). Since messages are transmitted (i.e. jobs are being serviced) in the order they
arrive, we also have Exponential service times. Thus, conditions of an M / M / 1 queuing system are
satisfied.
We have

λA = 5 / minute,

µS = 10 seconds =
1

6
minutes,

λS = 6 / minute,

r =
5

6
= 0.833 < 1.

This is also the proportion of time, 83.3%, when the channel is busy and the probability of a non-
zero waiting time. Then, we have:
Average number of messages stored in the system at any time

E(X) =
r

1− r
= 5.

8

Out of these, average number of messages waiting to be transmitted

E(Xw) =
r2

1− r
=

25

6
≈ 4.17.

Average number of messages being transmitted

E(Xs) = r =
5

6
≈ 0.83.

When a message arrives to the center, its average waiting time until transmission is

E(W) =
µSr

1− r
=

r

λS(1− r)
=

5

6
minutes = 50 seconds.

The total time from arrival until the end of transmission has an average of

E(R) =
µS

1− r
=

1

λS(1− r)
= 1 minute = 60 seconds.

Notice that the utilization was less than 1, but not by much. Let us try a little bit of forecasting
for this system and see what happens when the arrival rate is slightly increased, keeping the service
rate the same.

Example 4.6. Suppose that next year the customer base of this transmission center is projected to
increase by 10%, and thus, its incoming traffic rate, λA, increases by 10%, also. How will this affect
the center’s performance?

Solution. So, with that increase, we now have

λA = 5 + 0.1 · 5 = 5.5 =
11

2
/ minute,

r =
11

2
· 1
6

=
11

12
< 1.

9

The new system’s performance parameters are

E(X) =
r

1− r
= 11 (compared to 5 before),

E(Xw) =
r2

1− r
= 10.08 (compared to 4.17 before),

E(Xs) = r = 0.92 (compared to 0.83 before),

E(W) =
µS

1− r
= 110 seconds (compared to 50 before),

E(R) =
µS

1− r
= 120 seconds (compared to 60 before).

Notice that the response time, the waiting time, the average number of stored messages (and
hence, the average required amount of memory) more than doubled when the number of customers
increased by a mere 10%. The utilization r is still less than 1, but dangerously close to 1, when the
system gets overloaded. For high values of r, various parameters of the system increase rapidly.

We could forecast the two-year future of the system, assuming a 10% increase of a customer
base each year. It appears that during the second year the utilization will exceed 1, making the
system unable to function. What solutions are there? Either increase the service rate (by using
better equipment, higher internet speed, etc) or add more channels (servers) to help handle all the
arriving messages, so have a multiserver queuing system. The new system will then have more than
one channel-server, and it will be able to process more arriving jobs

5 Multiserver Queuing Systems

We now consider queuing systems with several servers. We assume that each server can perform
the same range of services; however, in general, some servers may be faster than others. Thus, the
service times for different servers may potentially have different distributions.

When a job arrives, it either finds all servers busy serving jobs, or it finds one or several available
servers. In the first case, the job will wait in a queue for its turn, whereas in the second case, it will be
routed to one of the idle servers. A mechanism assigning jobs to available servers may be random,
or it may be based on some rule.

The number of servers may be finite or infinite. A system with infinitely many servers can
afford an unlimited number of concurrent users (e.g. any number of people can watch a TV channel
simultaneously), so there is no queue, no waiting time.

As before (the single server case), we start with a discrete-time k-server queuing process (de-

10

scribed in terms of Bernoulli trials), verify that the number of jobs in the system at time t is a
Markov process, find its transition probability matrix, then get a continuous-time process by letting
the frame size ∆ → 0, compute its steady-state distribution π and finally use it to evaluate the
system’s long-term performance characteristics.

We treat a few common and analytically simple cases in detail. Sure enough, advanced theory
goes further, but it is beyond the scope of this course. However, as mentioned previously, more
complex and non-Markov queuing systems can be analyzed by Monte Carlo methods.

Remark 5.1. The utilization r no longer has to be less than 1. A system with k servers can handle
k times the traffic of a single-server system; therefore, it will function with any r < k.

5.1 Bernoulli k-Server Queuing Process

Definition 5.2. A Bernoulli k-server queuing process (BkSQP) is a discrete-time queuing process

with the following characteristics:

• k servers;

• unlimited capacity;

• arrivals occur according to a Binomial process with probability of a new arrival during each

frame pA;

• during each frame, each busy server completes its job with probability pS , independently of

the other servers and independently of the process of arrivals.

So, all interarrival times and all service times are independent Shifted Geometric random vari-
ables (multiplied by the frame length ∆) with parameters pA and pS , respectively. Therefore, since
Shifted Geometric variables have a memoryless property, again this process is Markov. The novelty
is that now several jobs may finish during the same frame.

Suppose that Xs = n jobs are currently getting service. During the next frame, each of them
may finish and depart, independently of the other jobs. Then the number of departures, Xd, is the
number of successes in n independent Bernoulli trials (with “success” meaning that a job’s service
is finished), and thus, has Bino(n, pS) distribution. Let us recall the pdf

Xd

(
l

C l
np

l
S(1− pS)

n−l

)
l=0,n

.

This will help us compute the transition probability matrix.

11

Transition probability matrix

Suppose there are i jobs in the k-server system. Then, the number of busy servers, n, is the smaller
of the number of jobs i and the total number of servers k,

n = min{i, k}.

Indeed,
− for i ≤ k, the number of servers is sufficient for the current jobs, all jobs are getting service, and
the number of departures Xd during the next frame is Bino(i, pS);
− for i > k, there are more jobs than servers. Then all k servers are busy, and the number of
departures Xd during the next frame is Bino(k, pS).

Again, at most 1 job can arrive during each frame and that happens with probability pA. Let us
compute the transition probabilities

pij = P
(
X(t+∆) = j | X(t) = i

)
.

We have

p00 = P
(
0 arrivals

)
= 1− pA,

p01 = P
(
1 arrival

)
= pA,

pi,i+1 = P
(
1 arrival ∩ 0 departures

)
= pA(1− pS)

n,

pi,i+j = 0, ∀j > 1,

pi,i = P
(
(1 arrival ∩ 1 departure) ∪ (0 arrivals ∩ 0 departures)

)
= pA C1

n pS(1− pS)
n−1 + (1− pA)(1− pS)

n,

pi,i−1 = P
(
(1 arrival ∩ 2 departures) ∪ (0 arrivals ∩ 1 departure)

)
= pA C2

n p2S(1− pS)
n−2 + (1− pA) C

1
n pS(1− pS)

n−1,

pi,i−2 = P
(
(1 arrival ∩ 3 departures) ∪ (0 arrivals ∩ 2 departures)

)
= pA C3

n p3S(1− pS)
n−3 + (1− pA) C

2
n p2S(1− pS)

n−2,

. . .

pi,i−n = P
(
0 arrivals ∩ n departures

)
= (1− pA)p

n
S,

pi,i−j = 0, ∀j > n.

A transition diagram for a 2-server system is shown in Figure 1. The number of concurrent jobs can

12

make transitions from i to i− 2, i− 1, i and i+ 1.

Fig. 1: Transition diagram for a B2SQS

For systems with a limited capacity C < ∞, the last probability changes

pC,C = P
(
(1 arrival ∩ 1 departure) ∪ (0 arrivals ∩ 0 departures)

∪ (1 arrival ∩ 0 departures)
)

= pA C1
n pS(1− pS)

n−1 + (1− pA)(1− pS)
n + pA(1− pS)

n

= npApS(1− pS)
n−1 + (1− pS)

n.

Example 5.3. There are two customer service representatives on duty answering customers’ calls.
When both of them are busy, two more customers may be “on hold”, but other callers will receive
a busy signal. Customers call at the rate of 1 call every 5 minutes and the average service takes 8
minutes. Assuming a B2SQS with limited capacity and 1-minute frames, find
a) the steady-state distribution of the number of concurrent jobs in the system;
b) the proportion of callers who get a busy signal;
c) the percentage of time each representative is busy, if each of them takes 50% of all calls.

Solution.
a) We have k = 2 servers, capacity C = 4 and parameters

λA = 1/5 / minute = 0.2/ minute,

λS = 1/8 / minute = 0.125/ minute,

∆ = 1 minute.

13

So,

pA = λA∆ = 0.2, 1− pA = 0.8,

pS = λS∆ = 0.125, 1− pS = 0.875.

There are 5 states, {0, 1, 2, 3, 4}. The transition probability matrix is

P =


0.8000 0.2000 0 0 0

0.1000 0.7250 0.1750 0 0

0.0125 0.1781 0.6562 0.1531 0

0 0.0125 0.1781 0.6562 0.1531

0 0 0.0125 0.1781 0.8094

 .

The steady-state distribution is

π = [π0 π1 π2 π3 π4] = [0.1527 0.2753 0.2407 0.1837 0.1476].

b) Callers hear a busy signal when the system is full, i.e. X = C = 4. So that probability is

P (X = C) = π4 = 0.1476.

c) Each representative is busy when there are 2, 3 or 4 jobs in the system, plus a half of the time
when there is 1 job (because there is a 50% chance that the other representative handles this job).
This totals

π2 + π3 + π4 + 0.5π1 = 0.709 or 70.9% of the time.

14

	M/M/1 Queuing Systems
	Multiserver Queuing Systems
	Bernoulli k-Server Queuing Process

