
3.2 Poisson Counting Process

Now we want to consider a continuous-time counting process. The time variable t runs continu-
ously through an interval, and thus, X(t) changes at infinitely many moments. We can obtain a
continuous-time process as a limit of some discrete-time process whose frame size (time between
trials) ∆ approaches 0 (thus allowing more frames during any fixed period of time). We will let

∆ → 0, as n → ∞,

while keeping the arrival rate λ = const.
Think of movies, i.e. of video camera exposures. Although all motions on the screen seem con-

tinuous, we realize that an infinite amount of information could not be stored by any video device.
Instead, what we see is a discrete sequence of exposures that run so fast that each motion seems con-
tinuous and smooth. Early-age video cameras shot exposures rather slowly; the interval ∆ between
successive shots was pretty long (∼ 0.2 − 0.5 sec). As a result, the quality of recorded video was
rather low. Movies were “too discrete”. Modern camcorders can shoot more than 200 exposures per
second attaining ∆ ≤ 0.005. With such a small ∆, the resulting movie seems perfectly continuous.
A shorter frame ∆ results in a “more continuous” process (see Figure 1).

Fig. 1: Reducing the frame size ∆

So, let us take the limiting case of a Binomial counting process as ∆ → 0.
Consider a Binomial counting process that counts arrivals occurring at a rate of λ / time unit.

X(t) denotes the number of arrivals occurring during time t.
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− The arrival rate λ remains constant. Arrivals occur at the same rate, regardless of our choice
of frame ∆.

− The number of frames during time t, n =
t

∆
→ ∞, as ∆ → 0.

− The probability of an arrival during each frame, p = λ ·∆ → 0, as ∆ → 0.

− X(t), the number of arrivals during time t has a B(n, p) distribution with expectation

E
(
X(t)

)
= np =

t

∆
p =

p

∆
t = λt.

The pdf of X(t) is

X(t)

(
k

Ck
np

k(1− p)n−k

)
k=0,n

.

So, as n → ∞, the values will be k = 0, 1, . . . , all the way to ∞. What about the corresponding
probability P (X = k) = Ck

np
k(1− p)n−k? Let us see what this becomes.

P (X = k) =
n(n− 1) . . . (n− k + 1)

k!
pk(1− p)n−k

=
n(n− 1) . . . (n− k + 1)

k!

(
λt

n

)k (
1− λt

n

)n−k

=
(λt)k

k!
· n(n− 1) . . . (n− k + 1)

nk

(
1− λt

n

)−k (
1− λt

n

)n

n→∞−→ (λt)k

k!
· 1 · 1 · e−λt.

So, the limiting pdf is

X(t)

 k

(λt)k

k!
e−λt


k=0,1,...

, (3.1)

which means X(t) has a Poisson P(λt) distribution. This is a Poisson counting process.

Let us analyze what happens to the other characteristics.
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Recall that the interarrival time T = ∆Y , where Y has SGeo(p) pdf. For its cdf, we have

FT (t) = P (T ≤ t) = P (∆Y ≤ n∆)

= P (Y ≤ n) = FY (n)

= 1− (1− p)n = 1−
(
1− λt

n

)n

n→∞−→ 1− e−λt.

Hence,
fT (t) = F ′

T (t) = λe−λt, t > 0, (3.2)

so T has an Exp(λ) pdf. Then its expectation and variance are given by

E(T ) =
1

λ
, V (T ) =

1

λ2
. (3.3)

Furthermore, the time Tk of the k-th arrival is the sum of k independent Exp(λ) interarrival
times, so has Gamma(k, 1/λ) distribution, with

E(Tk) = k
1

λ
, V (Tk) = k

1

λ2
. (3.4)

Remark 3.1. From here, we immediately find the already-known Gamma-Poisson formula: if we
want the k-th arrival to be before or at time t, then that means the number of arrivals by time t (X ,
having a Poisson P(λt) distribution) should be at least k.

P (Tk ≤ t) = P (X ≥ k), or, equivalently,

P (Tk > t) = P (X < k). (3.5)

A sample path of some Poisson process is shown in Figure 2.

Example 3.2. The number of hits to a certain web site follows a Poisson process with the intensity
parameter λ = 7 hits per minute. On the average, how much time is needed to get 10, 000 hits?
What is the probability that this will happen within 24 hours?

3



Fig. 2: Poisson process sample path

Solution. The time of the 10, 000-th hit Tk has Gamma(k, 1/λ) distribution with parameters k =

10, 000 and λ = 7 min−1. Then, the expected time of the k-th hit is

µ = E(Tk) = k · 1
λ

= 1, 428.6 minutes = 23.8 hours.

Also, the standard deviation is

σ = Std(Tk) =
√
V (Tk) =

√
k · 1

λ
= 14.3 minutes.

The probability that the 10, 000-th hit will happen within 24 hours is

P (Tk < 24 · 60) = P (Tk < 1440) = gamcdf(1440, 10000, 1/7) = 0.7885.

Alternatively, with the Gamma-Poisson formula, (3.5),

P (Tk < 1440) = P (Tk ≤ 1440) = P (X ≥ k)

= 1− P (X < k) = 1− P (X ≤ k − 1)

= 1− poisscdf(9999, 7 · 1440) = 0.7885,

where X has a Poisson P(7 · 1440) distribution.
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Rare events

It can be shown that for a Poisson counting process, the following hold

a) P
(
X(t+∆)−X(t) = 1

)
= λ∆+ o(∆),

b) P
(
X(t+∆)−X(t) > 1

)
= o(∆), as ∆ → 0. (3.6)

The term o(∆) denotes a negligible term, a quantity converging to 0 faster than ∆, i.e.
o(∆)

∆
→ 0,

as ∆ → 0.
For a Binomial counting process, the probability in part a) is the probability of 1 arrival during

1 frame and it equals p = λ∆, whereas the probability of more than 1 arrival is 0 (part b)).
For a Poisson process, these probabilities may be different, but only by “a little”. The differences

X(t+∆)−X(t) are called increments. For a Poisson process, an increment is the number of arrivals
during the time interval (t, t+∆].

Relations (3.6) formally describe the concept of rare events. These events occur at random
times and the probability of a new event occurring during a short interval of time is proportional
to the length of that interval. Probability of more than 1 event during that time is much smaller,
compared to the length of the interval. For such sequences of events, a Poisson process is a suitable
stochastic model. Examples of rare events include telephone calls, message arrivals, virus attacks,
errors in codes, traffic accidents, natural disasters, network blackouts, and so on. Relations (3.6) can
also be considered as the definition of a Poisson process.

Example 3.3. Let us revisit the example from last time and model the arrivals of messages with a
Poisson counting process, keeping the same arrival rate of 6 messages per minute.
a) Find the probability of no messages arriving during the next 1 minute.
b) Compute the probability of more than 35 messages arriving during the next 6 minutes.
c) Find the probability of more than 350 messages arriving during the next hour.
d) What is the average interarrival time and its standard deviation?
e) Compute the probability that the next message does not arrive during the next 20 seconds.

Solution.
a) We have t = 1 minute and λ = 6 / minute. The number of messages arriving during 1 minute,
X(1), has a Poisson distribution with parameter λt = 6. So the desired probability is

P
(
X(1) = 0

)
= pdfX(1)(0) = poisspdf(0, 6) = 0.0025.
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b) Similarly, the number of messages arriving in t = 6 minutes, X(6), has a Poisson distribution
with parameter λt = 36. Then the probability of more than 35 messages arriving during that time is

P
(
X(6) > 35

)
= 1− P

(
X(6) ≤ 35

)
= 1− cdfX(6)(35)

= 1− poisscdf(35, 36)

= 0.5222.

c) Again, in t = 1 hour = 60 minutes, the number of arriving messages, X(60), has Poisson
distribution with parameter λt = 360. So, the probability of more than 350 messages arriving
during the next hour is

P
(
X(60) > 350

)
= 1− P

(
X(60) ≤ 350

)
= 1− cdfX(60)(350)

= 1− poisscdf(350, 360)

= 0.6894.

Notice that again, as in the case of a Binomial process, “more than 35 messages in 6 minutes” is not
the same as “more than 350 messages in 60 minutes”.

d) The interarrival time, T , now has an Exp(λ) = Exp(6) distribution, so

E(T ) =
1

λ
=

1

6
minutes = 10 seconds,

Std(T ) =
√

V (T ) =

√
1

λ2
=

1

6
minutes = 10 seconds.

Notice that the average interarrival time has not changed. This is to be expected, since jobs
(messages) arrive at the same rate, λ, regardless of whether their arrivals are modeled by a Binomial
or a Poisson process.
However, the standard deviation is slightly increased (it was 9.5 seconds before). That is because
a Binomial process has a restriction on the number of arrivals during each frame, thus reducing
variability.

e) Either we work with seconds (so λ =
1

10
/ second) and compute the probability P (T > 20),

where T has an Exp(1/10) distribution), or in minutes (λ = 6 / minute, 20 seconds = 1/3 minutes)
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and compute the probability P (T > 1/3), where T has an Exp(6) distribution. Either way, we have

P (T > 20) = 1− P (T ≤ 20) = 1− cdfT (20) = 1− expcdf(20, 10) = 0.1353,

P (T > 1/3) = 1− P (T ≤ 1/3) = 1− cdfT (1/3) = 1− expcdf(1/3, 1/6) = 0.1353.

Again, this is the same as 0 arrivals in 20 seconds, where the number of arriving messages,
X(20), has a Poisson distribution with parameter λt = 2 (or 0 arrivals in 1/3 minutes, where the
number of arriving messages, X(1/3), has a Poisson distribution with parameter λt = 2).

P
(
X(20) = 0

)
= pdfX(20)(0) = poisspdf(0, 2) = 0.1353.

Simulation of a Poisson counting process

Simulation of continuous-time processes has a clear problem. The time t runs continuously through
the time interval, taking infinitely many values in this range. However, we cannot store an infinite
number of random variables in the memory of our computer! For most practical purposes, it suffices
to generate a discrete-time process with a rather short frame ∆ (discretization).

But, Poisson processes can be generated without discretization. Indeed, although they are
continuous-time, the value of X(t) can change only a finite number of times during each inter-
val. The process changes every time a new “rare event” or arrival occurs, which happens a Poisson
P(λt) number of times during an interval of length t. Then, it suffices to generate these moments
of arrival. As we know, the first arrival time has Exp(λ) distribution, and each interarrival time

is Exp(λ) distributed, too. So, we generate them using the ITM (−1

λ
lnU ) and then, generate a

segment of a Poisson process during a time interval [0,M ] by counting the number of such times in
that interval.

Algorithm 3.4.
1. Given:

Tmax time period,
λ arrival rate.

2. Initial arrival time:
T = −1/λ · lnU ; growing array containing arrival times,
last = T ; last (most recent) arrival time,
3. Count number of arrivals until time Tmax:
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while last ≤ Tmax

last = last− 1/λ · lnU ; new arrival time
T = [T, last]; array of arrival times extended

end
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Chapter 4. Queuing Systems

1 Basic Notions; Main Components

Definition 1.1. A queuing system is a facility consisting of one or several servers designed to

perform certain tasks or process certain jobs, and a queue of jobs waiting to be processed.

A queuing system is called stationary if its distribution characteristics do not change over time.

Jobs arrive at the queuing system at some arrival rate, wait for an available server, get processed
by this server, and leave.

Example 1.2. Examples of queuing systems are:

− a computer executing tasks sent by its users;

− a printer processing jobs sent to it from different computers;

− cars at a toll booth, gas station, or auto service facility;

− an internet service provider whose customers connect to the internet, browse, and disconnect;

− people waiting in line at a cafeteria, or a bank;

− a medical office serving patients;

− airplanes waiting to take off or land, at an airport;

− a TV or radio channel viewed (listened to) by many people at various times;

− a customer service with one or several representatives on duty answering calls from their
customers;

− people connecting to Facebook, Instagram, TikTok and so on.

We are now equipped to analyze a broad range of queuing systems that play a crucial role in
Computer Science and other fields.
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Main components of a queuing system

Fig. 3: Main components of a queuing system

The main stages of a queuing system are depicted in Figure 3.

Arrival

Jobs arrive to a queuing system at random times. The number of arrivals that occurred by the time
t is a counting process A(t). In stationary queuing systems, arrivals occur at arrival rate

λA =
E
(
A(t)

)
t

, ∀ t > 0, (1.1)

i.e. the expected number of arrivals per time unit.
Then, the expected time between arrivals, the mean interarrival time is

µA =
1

λA

. (1.2)

Remark 1.3. Usually, arrived jobs are processed in the order of their arrivals, on a “first come-first
serve” basis. When a new job arrives, it may find the system in different states.
− If one server is available, it will take the new job.
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− If several servers are available, the job may be randomly sent to one of them, or the server may
be assigned according to some rules. For example, the fastest server or the least loaded server may
be assigned to process the new job.
− If all servers are busy, the new job will join the queue, wait until a previously arrived job is
completed (accumulating waiting time) and get routed to the next available server.

Other constraints may take place. For example, a queue may have a buffer that limits the number
of waiting jobs (like a parking garage or a restaurant). Such a queuing system is a system with lim-
ited capacity. The total number of jobs in it at any time is bounded by some constant C (capacity).
If the capacity is full, a new job cannot enter the system until another job departs.

Also, jobs may leave the queue prematurely, say, after an excessively long waiting time (think
people waiting for a table at a busy restaurant).

Servers may also open and close during the day as people need breaks or servers need mainte-
nance.

Complex queuing systems with many extra conditions may be difficult to study analytically;
however, Monte Carlo methods can be employed, to find (estimate) characteristics that evaluate the
performance of most queuing systems.

Service

Once a server becomes available, it starts processing the next assigned job. Service times are usually
random, they depend on the amount of work required by each task and on the efficiency of the server
(slow or rapid computer, some people may work faster than others, etc).

The average service time is denoted by µS and it may vary from one server to another. The
service rate is defined as the average number of jobs processed by a continuously working server
during one unit of time, i.e.

λS =
1

µS

. (1.3)

Departure

When the service is completed, the job leaves the system.
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To summarize, the following parameters and random variables describe the performance of a
queuing system.

λA = arrival rate

λS = service rate

µA = 1/λA = mean interarrival time (1.4)

µS = 1/λS = mean service time

r = λA/λS = µS/µA = utilization (arrival-to-service ratio)

Random variables:

Xs(t) = number of jobs receiving service at time t

Xw(t) = number of jobs waiting in a queue at time t

X(t) = Xs(t) +Xw(t) = total number of jobs in the system at time t

Sk = service time for the kth job (1.5)

Wk = waiting time for the kth job

Rk = Sk +Wk = response time for the kth job, i.e.

total time a job spends in the system, from arrival to departure

A queuing system is stationary if the pdf’s of Sk,Wk and Rk are independent of k, in which
case, we omit the index k in notation.

Utilization r is an important parameter. It shows whether or not a system can function under the
current (or higher) rate of arrivals, and whether the system is over- or underloaded.

The main goal in studying queuing systems will be finding the distribution of X(t), the total
number of jobs in the system. Then other characteristics can be assessed from that and a compre-
hensive performance evaluation of a queuing system can be made.
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