
2.3 Steady-State Distribution; Regular Markov Chains

It is sometimes necessary to be able to make long-term forecasts, meaning we want

lim
h→∞

Ph,

so we need to compute lim
h→∞

p
(h)
ij .

Definition 2.13. Let X be a Markov chain. The vector π = [π1, . . . , πn], consisting of the limiting

probabilities

πk = lim
h→∞

Ph(k), k = 1, . . . , n, (2.13)

if it exists, is called a steady-state (stationary, limiting) distribution of X .

When this limit exists, it can be used as a forecast of the distribution of X after many transitions.

In order to find it, let us notice that

PhP = (P0P
h)P = P0P

h+1 = Ph+1.

Taking the limit as h → ∞ on both sides, we get

πP = π. (2.14)

System (2.14) is an n × n singular linear system (multiplication by a constant on each side leads
to infinitely many solutions). However, since π must also be a stochastic matrix, the sum of its
components must equal 1. Thus, we add one more condition,

π1 + π2 + . . . = 1,

called the normalizing equation. If a solution of system (2.14) exists, then this extra condition will
make it unique.

We state the following result, without proof.

Proposition 2.14. The steady-state distribution of a homogeneous Markov chain X , π = [π1, . . . , πn],

if it exists, is unique and is the solution of the (n+ 1)× n linear system πP = π∑
k

πk = 1. (2.15)
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Example 2.15. Let us find the steady-state distribution of the Markov chain in Example 2.10 (Lec-
ture 5). What is the weather forecast in Rainbow City for Christmas Day next year?

Solution. Recall that in Example 2.10 we had a homogeneous Markov chain with two states, (1-
sunny, 2-rainy), the initial situation (on Monday) was 80% chance of rain, i.e.

P0 = [0.2 0.8]

and the transition probability matrix was

P =

[
p11 p12

p21 p22

]
=

[
0.7 0.3

0.4 0.6

]
.

We write system (2.14). We have

[π1 π2]P = [π1 π2]

[
0.7 0.3

0.4 0.6

]
=

[
0.7π1 + 0.4π2

0.3π1 + 0.6π2

]
,

so system (2.14) becomes{
0.7π1 + 0.4π2 = π1

0.3π1 + 0.6π2 = π2

⇐⇒ 0.3π1 − 0.4π2 = 0 ⇐⇒ π2 =
3

4
π1.

We see that two equations in the system reduced to one. This will always happen, i.e., one equation
will follow from the others, and this is because the system πP = π is singular. It remains to use
the normalizing equation, to get {

3π1 − 4π2 = 0

π1 + π2 = 1,

with solution
[π1 π2] = [4/7 3/7].

Interpretation: in the long-run, in the future, 4/7 ≈ 57% of days are sunny and 3/7 ≈ 43% of days
are rainy. Recall that the forecast for Wednesday was 53.8%/46.2% and for Friday, 56.84%/43.16%,
which is already getting close to the steady-state distribution.

Since Christmas Day next year is many steps from now, we use the steady-state distribution
instead. So that would be the forecast for Christmas Day next year, too!
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Remark 2.16.
1. Just as we did in the previous example, when we need to make predictions after a large number of
steps, instead of the lengthy computation of Ph (i.e., P h), it may be easier to try to find the steady-
state distribution, π, directly.
2. If a steady-state distribution exists, then it can be shown that the matrix P (h) = P h also has a
limit, as h → ∞, and the limiting matrix is given by

Π = lim
h→∞

P (h) =


π
...
π

 =


π1 π2 . . . πn

...
... . . .

...
π1 π2 . . . πn

 .

3. Notice that π and Π do not depend on the initial state X0. Actually, in the long run, the probabil-
ities of transitioning from any state to a given state are the same, pik = pjk, ∀i, j, k = 1, n (all the
rows of Π coincide). Then, it is just a matter of “reaching” a certain state (from anywhere), rather
than “transitioning” to it (from another state). That should, indeed, depend only on the pattern of
changes, i.e. only on the transition probability matrix.
4. What is actually the “steady” state of a Markov chain? Suppose the system has reached its steady
state, so that the current distribution of states is

Pt = π.

Then the system makes one more transition, and the distribution becomes

Pt+1 = πP.

But πP = π and thus,
Pt = Pt+1.

We see that in a steady state, transitions do not affect the distribution. A system may go from one
state to another, but the distribution (the pdf) of states does not change. In this sense, it is steady.

Now, a natural question arises: does a steady-state distribution always exist? The answer is no!
Here is a simple example:

Example 2.17. In a game of chess, a knight (ı̂n rom. “calul”) can only move to a field of different
color (white-to-black or black-to-white) at any time. Then the transition probability matrix of the
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color of its field is

P =

[
0 1

1 0

]
.

For this matrix, a simple computation yields

P 2 =

[
0 1

1 0

][
0 1

1 0

]
=

[
1 0

0 1

]
= I,

so,

P 2k = I and

P 2k+1 = P, ∀k ∈ N.

These are the only possible values. Thus,

lim
h→∞

P h

does not exist and neither does
lim
h→∞

Ph.

This is a periodic Markov chain with period 2,

Xt = Xt+2.

Periodic Markov chains do not have a steady-state distribution.

There are other situations when steady-state probabilities cannot be found. So, when does a
steady-state distribution exist? This is an ongoing research problem. We mention (without proof)
one case, which is really easy to check, when such a distribution does exist.

Definition 2.18. A Markov chain is called regular if there exists h ≥ 0, such that

p
(h)
ij > 0, (2.16)

for all i, j = 1, . . . , n.

This is saying that at some step h, P (h) has only non-zero entries. meaning that h-step transitions
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from any state to any state are possible.

Proposition 2.19. Any regular Markov chain has a steady-state distribution.

Remark 2.20. Regularity of Markov chains does not mean that all p(h)ij should be positive, for all

h. The transition probability matrix P , or some of its powers, may have some 0 entries, but there
must exist some power h, for which P (h) has all non-zero entries.

Example 2.21. The Markov chain in Example 2.15 is regular because all transitions are possible for
h = 1 already, and matrix P does not contain any zeros. Indeed, it has a steady-state distribution.

Example 2.22. A Markov chain with transition probability matrix

P =


0 1 0 0

0 0 1 0

0 0 0 1

0.9 0 0 0.1


is also regular. Matrix P contains zeros and so do P 2, P 3, P 4 and P 5. However, the 6-step transition
probability matrix

P (6) =


.009 .090 .900 .001

.001 .009 .090 .900

.810 .001 .009 .180

.162 .810 .001 .027


contains no zeros and shows regularity of this Markov chain.

In fact, computation of all P h up to h = 6 is not even required in this case. Regularity can
also be seen from the transition diagram in Figure 1. We can see that any state j = 1, 2, 3, 4 can
be reached in 6 steps from any state i = 1, 2, 3, 4. Indeed, moving counterclockwise through this
figure, we can reach state 4 from any state i in at most 3 steps. Then, we can reach any state j from
state 4 again in at most 3 additional steps, for the total of at most 6 steps. If we can reach a state
i from a state j in fewer than 6 steps, we just use the remaining steps circling around state 4. For
example, state 2 is reached from state 1 in 6 steps as follows:

1 → 2 → 3 → 4 → 4 → 1 → 2.

Then, indeed all p(6)ij are positive and the chain is regular. This goes to show that we don’t have to
actually compute all p(h)ij . We only need to verify that they are all positive for some h.
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Fig. 1: Transition diagram for the regular Markov chain in Example 2.22

Absorbing states

If there exists a state i with pii = 1, then that Markov chain cannot be regular. There is no exit (no
transition possible) from state i. Such a state is called an absorbing state. For example, state 4 in
Figure 2(a) is absorbing, therefore, the Markov chain is irregular.

Fig. 2: Absorbing states and absorbing zones

There may be several absorbing states or an entire absorbing zone, from which the remaining
states can never be reached. For example, states 3, 4 and 5 in Figure 2(b) form an absorbing zone,
some kind of a “Bermuda triangle”. When this process finds itself in the set {3, 4, 5}, there is no
route from there to the set {1, 2}. As a result, e.g. probability p

(h)
31 is 0 for all h.
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However, notice that both Markov chains do have steady-state distributions. The first process
will eventually reach state 4 and will stay there for good. Therefore, the limiting distribution of Xh

is
π = lim

h→∞
Ph = [0 0 0 1].

The second Markov chain will eventually leave states 1 and 2 for good, thus its limiting (steady-
state) distribution has the form

π = [0 0 π3 π4 π5].

This goes to show that the converse of Proposition 2.19 is not true, there are irregular Markov
chains that have a steady-state distribution.

Remark 2.23. The study of Markov chains gives us an important method of analyzing rather com-
plicated stochastic systems. Once the Markov property of a process is established, it only remains
to find its one-step transition probabilities. Then, the steady-state distribution can be computed,
and thus, we obtain the distribution of the process at any time, after a sufficient number of transi-
tions. This methodology will be our main working tool in the next chapter, when we study queuing
systems and evaluate their performance.

3 Counting Processes

A special case of stochastic processes are the ones where one needs to count the occurrences of
some types of events over time. These are described by counting processes.

Definition 3.1. A counting process X(t), t ≥ 0, is a stochastic process that represents the number

of items counted by the time t.

Counting processes deal with the number of occurrences of something over time, such as cus-
tomers arriving at a supermarket, completed tasks, transmitted messages, detected errors, scored
goals, number of job arrivals to a queue, holding times (in renewal processes), etc.

In general, we refer to the occurrence of each event that is being counted as an “arrival”. As
time passes, one can count additional items. Therefore, sample paths (values) of a counting process
are always non-decreasing, non-negative integers {0, 1, . . .}.

Thus, all counting processes are discrete-state stochastic processes. They can be discrete-time
or continuous-time.

Example 3.2. Figure 3 shows sample paths of two counting processes, X(t) being the number of
transmitted e-mails by the time t and A(t) being the number of transmitted attachments. According
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to the graphs, e-mails were transmitted at times t = 8, 22, 30, 32, 35, 40, 41, 50, 52 and 57 min.
The e-mail counting process X(t) increments by 1 at each of these times. Only 3 of these e-mails
contained attachments. One attachment was sent at time t = 8, five more at t = 35, making the
total of A(35) = 6, and two more attachments at t = 50, making the total of A(50) = 8.

Fig. 3: Counting processes in Example 3.2

Next, we consider the most widely used examples, Binomial (discrete-time) and Poisson (con-
tinuous-time) counting processes.

3.1 Binomial Counting Process

Consider a sequence of Bernoulli trials with probability of success p and count the number of “suc-
cesses”.

Definition 3.3. A Binomial counting process X(n) is the number of successes in n Bernoulli trials,

n = 0, 1, . . . .

Remark 3.4.
1. Obviously, a Binomial process X(n) is a discrete-state, discrete-time stochastic process, “time”
being measured discreetly, by the number of trials, n.
2. The pdf of X(n) is Binomial B(n, p) at any time n (see Figure 4). Recall that

E(X(n)) = np.
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Sh.

Fig. 4: Binomial process sample path (S = success, F = failure)

3. The number of trials between two consecutive successes, Y , is the number of trials needed to get

the next (first) success, so it has a SGeo(p) pdf (see Figure 4). Recall that

E(Y ) =
1

p
, V (Y ) =

q

p2
.

Relation to real time, frames

It is important to make the distinction between real time and the “time” variable n (“time” as in a
stochastic process). Variable n is not measured in time units, it measures the number of trials.

Suppose that Bernoulli trials occur at equal time intervals, say every ∆ seconds (see Figure 4).
That means that n trials occur during time t = n∆. The value of the process at time t has Binomial

pdf with parameters n =
t

∆
and p. Then the expected number of successes during t seconds is

E(X(n)) = E

(
X
( t

∆

))
= np =

t

∆
p = t

p

∆
,

so the expected number of successes per second is

λ =
p

∆
.
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Definition 3.5.

• The quantity λ =
p

∆
is called the arrival rate, i.e. the average number of successes per one

unit of time.

• The quantity ∆ is called a frame, i.e the time interval of each Bernoulli trial.

• The interarrival time is the time between successes.

We can now rephrase:

− p is the probability of arrival (success) during one frame (trial),

− n =
t

∆
is the number of frames during time t,

− X
( t

∆

)
is the number of arrivals by time t.

The concepts of arrival rate and interarrival time deal with modeling arrival of jobs in discrete-
time queuing systems by Binomial counting processes. The key assumption in such models is that
no more than 1 arrival can occur during each ∆-second frame (otherwise, a smaller ∆ should be
considered), so each frame is a Bernoulli trial.

The interarrival period, Y , measured in number of frames, has a SGeo(p) pdf (as mentioned
earlier). Since each frame takes ∆ seconds, the interarrival time is

T = ∆Y,

a rescaled SGeo(p) variable, whose expected value and variance are given by

E(T ) = ∆E(Y ) = ∆
1

p
=

1

λ
,

(3.1)

V (T ) = ∆2V (Y ) = ∆2 q

p2
=

1− p

λ2
.

Example 3.6. Messages arrive at a communications center at the rate of 6 messages per minute.
Assume arrivals of messages are modeled by a Binomial counting process.
a) What frame size should be used to guarantee that the probability of a message arriving during
each frame is 0.1?
b) Using the chosen frames, find the probability of no messages arriving during the next 1 minute.
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c) Compute the probability of more than 35 messages arriving during the next 6 minutes.
d) Find the probability of more than 350 messages arriving during the next hour.
e) What is the average interarrival time and its standard deviation?
f) Compute the probability that the next message does not arrive during the next 20 seconds.

Solution.
a) We have λ = 6 / min. and p = 0.1. Thus,

∆ =
p

λ
=

1

60
min. = 1 sec.

b) So ∆ = 1 sec. In t = 1 minute = 60 seconds, there are n =
t

∆
= 60 frames. The number

of messages arriving during 1 minute (i.e. 60 frames), X(60), has a Binomial distribution with
parameters n = 60 and p = 0.1. So the desired probability is

P
(
X(60) = 0

)
= pdfX(60)(0)

= binopdf(0, 60, 0.1)

= 0.0018.

c) Similarly, in t = 6 minutes = 360 seconds, there are n =
t

∆
= 360 frames. So, the number

of messages arriving during the next 6 minutes, X(360), has Binomial distribution with parameters
n = 360 and p = 0.1. Then the probability of more than 35 messages arriving during the next 6
minutes is

P
(
X(360) > 35

)
= 1− P

(
X(360) ≤ 35

)
= 1− cdfX(360)(35)

= 1− binocdf(35, 360, 0.1)

= 0.5257.

d) Again, in t = 1 hour = 3600 seconds, there are n =
t

∆
= 3600 frames. Thus, the number of

messages arriving during one hour, X(3600), has Binomial distribution with parameters n = 3600
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and p = 0.1. Then the probability of more than 350 messages arriving during the next hour is

P
(
X(3600) > 350

)
= 1− P

(
X(3600) ≤ 350

)
= 1− cdfX(3600)(350)

= 1− binocdf(350, 3600, 0.1)

= 0.6993.

Notice that “more than 35 messages in 6 minutes” is not the same as “more than 350 messages in
60 minutes”!! These are random variables ...

e) By (3.1), we have

E(T ) =
1

λ
=

1

6
minutes = 10 seconds,

Std(T ) =
√

V (T ) =

√
1− p

λ2
=

√
0.0250 minutes ≈ 9.5 seconds.

f) Recall that the interarrival time T = ∆Y , where Y has a SGeo(p) distribution and, hence, Y − 1

has a Geo(p) pdf. The next message does not arrive during the next 20 seconds, if T > 20. So,

P (T > 20) = P (∆Y > 20) = P (Y > 20/∆) = P (Y > 20)

= 1− P (Y ≤ 20) = 1− P (Y − 1 ≤ 19)

= 1− cdfY−1(19) = 1− geocdf(19, 0.1)

= 0.1216.

Alternatively, this is also the probability of 0 arrivals during the next t = 20 seconds, i.e. during

n =
t

∆
= 20 frames. The number of messages arriving during the next 20 seconds, X(20), has a

Binomial distribution with parameters n = 20 and p = 0.1. Thus, the probability that no messages
arrive during the next 20 seconds is

P
(
X(20) = 0

)
= pdfX(20)(0) = binopdf(0, 20, 0.1) = 0.1216.
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Markov property of Binomial counting processes

It is clear that the number of successes in n trials depends only on the number of successes in n− 1

trials (not on previous values n − 2, n − 3, . . . ), so a Binomial process has the Markov property.
Thus, it is a Markov chain.
Let us find the transition probability matrix. At each trial (i.e. during each frame), the number of
successes X(n) either increases by 1 (in case of success), or stays the same (in case of failure).
Then,

pij =


p, j = i+ 1

q = 1− p, j = i

0, otherwise

. (3.2)

Obviously, transition probabilities are constant over time and independent of past values of X(n).
Hence, X(n) is a homogeneous Markov chain with transition probability matrix given by

P =


1− p p 0 . . . 0 . . .

0 1− p p . . . 0 . . .

0 0 1− p . . . 0 . . .
...

...
...

...

 (3.3)

and transition diagram depicted in Figure 5.

Fig. 5: Transition diagram for a Binomial counting process

Notice that it is an irregular Markov chain. Since X(n) is non-decreasing, e.g. p
(h)
10 = 0, for

all h ≥ 0 (once we have a success, the number of successes will never go back to 0). A Binomial
counting process does not have a steady-state distribution.

Another interesting fact: the h-step transition probabilities simply form a Binomial distribution.
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Indeed, p(h)ij is the probability of going from i to j successes in h transitions, i.e.,

p
(h)
ij = P

(
(j − i) successes in h trials

)
=

{
Cj−i

h pj−iqh−j+i, 0 ≤ j − i ≤ h

0, otherwise
.

Simulation of Binomial counting processes

This is straightforward, a sequence of Bernoulli trials, where we count the number of successes.

Algorithm 3.7.
1. Given: NB = sample path length of the Binomial counting process
2. Generate U ∈ U(0, 1), let Y = (U < p), let X(1) = Y .
3. At each time t, let Y = (U < p), let X(t) = X(t− 1) + Y .
4. Return to step 3 until length NB is achieved.
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