
Chapter 3. Stochastic Processes

So far, when discussing random variables, random vectors and their distributions, we described
the situation at a particular moment of time, as if someone had said “Freeze!” and everything stood
still. But the real world is dynamic and many random variables develop and change in time (think
stock prices, air temperatures, interest rates, football scores, CPU usage, the speed of internet con-
nection, popularity of politicians, and so on).

Basically, stochastic processes are random variables that evolve and change in time.

1 Basic Notions

Definition 1.1. A stochastic process is a random variable that also depends on time. It is denoted

by X(t, e) or Xt(e), where t ∈ T is time and e ∈ S is an outcome. The values of X(t, e) are called

states.

If t ∈ T is fixed, then Xt is a random variable, whereas if we fix e ∈ S, Xe is a function of time,
called a realization or sample path or trajectory of the process X(t, e).

Definition 1.2. A stochastic process is called discrete-state if Xt(e) is a discrete random variable,

for all t ∈ T and continuous-state if Xt(e) is a continuous random variable, for all t ∈ T .

Similarly, a stochastic process is said to be discrete-time if the set T is discrete and continuous-time
if the set of times T is a (possibly unbounded) interval in R.

Example 1.3.
1. Available memory, CPU usage, in percents, is a continuous-state, continuous-time process.
2. The CPU usage per hour is continuous-state, discrete-time.
3. In a printer shop, Xn(e), the amount of time required to print the nth job, is a discrete-time,
continuous-state stochastic process, because n = 1, 2, . . . and X ∈ (0,∞).
4. On the other hand, Yn(e), the number of pages of the nth printing job, is discrete-time and
discrete-state. In this case, Y = 1, 2, . . ., which is a discrete set.
5. The actual air temperature Xt(e) at time t is a continuous-time, continuous-state stochastic pro-
cess. Indeed, it changes smoothly and never jumps from one value to another.
6. However, Yt(e), the temperature reported every hour on radio or TV, is a discrete-time pro-
cess. Moreover, since the reported temperature is usually rounded to the nearest degree, it is also a
discrete-state process.
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Throughout the rest of the course, we will omit writing e as an argument of a stochastic process
(as it is customary when writing random variables).

2 Markov Processes and Markov Chains

2.1 Transition Probability Matrix

Definition 2.1. A stochastic process Xt is Markov if for any times t1 < t2 < . . . < tn < t and any

sets A1, A2, . . . , An;A,

P (Xt ∈ A | Xt1 ∈ A1, . . . , Xtn ∈ An) = P (Xt ∈ A | Xtn ∈ An). (2.1)

What this means is that the conditional distribution of Xt given observations of the process at

several moments in the past, is the same as the one given only the latest observation. In other words,
knowing the present, we get no information from the past that can be used to predict the future:

P (future | past, present) = P (future | present).

Then, for the future development of a Markov process, only its present state is important, and it
does not matter how the process arrived to this state.

Some processes satisfy the Markov property, others don’t.

Example 2.2.
1. Let Xt be the total number of internet users registered by some internet service provider by the
time t. If, say, there were 999 users connected by 10 o’clock, then their total number will be or
exceed 1000 during the next hour regardless of when and how those 999 users connected to the
internet in the past. The number of connections in an hour will only depend on the current number.
This process is Markov.
2. Let Yt be the value of some stock or some market index at time t. If we know Y (t), do we also
want to know Y (t− 1) in order to predict Y (t + 1)? One may argue that if Y (t− 1) < Y (t), then
the market is rising, therefore, Y (t+1) is likely (but not certain) to exceed Y (t). On the other hand,
if Y (t− 1) > Y (t), we may conclude that the market is falling and may expect Y (t+1) < Y (t). It
looks like knowing the past in addition to the present did help us to predict the future. In this case,
to make predictions about the future, we need a history (so the past, too, not just the present). Then,
this process is not Markov.

2



Due to a well-developed theory and a number of simple techniques available for Markov pro-
cesses, it is important to know whether a stochastic process is Markov or not.

Remark 2.3. The idea of Markov dependence was proposed and developed by Andrey A. Markov
(1856− 1922) who was a student of P. L. Chebyshev at St. Petersburg University (Russia).

Definition 2.4. A discrete-state, discrete-time Markov stochastic process is called a Markov chain.

To simplify the writing, we use the following notations: Since a Markov chain is a discrete-time
process, we can consider the time set as T = {0, 1, 2, . . . } and the Markov chain as a sequence of
random variables

{X0, X1, . . . },

where Xk describes the situation at time t = k.
It is also a discrete-state process, so we can denote the states by 1, 2, . . . , n. Sometimes we will

start enumeration from state 0, and sometimes we might deal with a Markov chain with infinitely
many (discrete) states, then we will have n = ∞.
Then the random variable Xk has the pdf

Xk

(
1 2 . . . n

Pk(1) Pk(2) . . . Pk(n)

)
, (2.2)

where

Pk(1) = P (Xk = 1),

Pk(2) = P (Xk = 2),

. . . ,

Pk(n) = P (Xk = n).

Since the states (the values of the random variable Xk) are the same for each k, one only needs the
second row to describe the pdf. Then let

Pk = [Pk(1) Pk(2) . . . Pk(n)] (2.3)

denote the vector on the second row of the pdf (2.2). Obviously,

n∑
i=1

Pk(i) = 1.
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So, in short, we can write the pdf of Xk as

Xk

(
1 . . . n

Pk

)
.

The Markov property (2.1) means that in predicting the value of Xt+1, i.e. in which state j it is and
with what probability Pt+1(j), only the value i of Xt matters. So (2.1) can now be written as

P (Xt+1 = j | Xt = i,Xt−1 = l, . . . ) = P (Xt+1 = j | Xt = i), for all t ∈ T . (2.4)

We summarize this information in a matrix.

Definition 2.5.

• The conditional probability

pij(t) = P (Xt+1 = j | Xt = i) (2.5)

is called a transition probability; it is the probability that the Markov chain transitions from

state i to state j, at time t. The matrix

P (t) = [pij(t)]i,j=1,n (2.6)

is called the transition probability matrix at time t.

• Similarly, the conditional probability

p
(h)
ij (t) = P (Xt+h = j | Xt = i) (2.7)

is called an h-step transition probability, i.e. the probability that the Markov chain moves

from state i to state j in h steps, and the matrix

P (h)(t) =
[
p
(h)
ij (t)

]
i,j=1,n

(2.8)

is the h-step transition probability matrix at time t.

Definition 2.6. A Markov chain is homogeneous (or stationary) if all transition probabilities are

4



independent of time,

pij(t) = pij,

P (t) = P = [pij]i,j=1,n ,

p
(h)
ij (t) = p

(h)
ij ,

P (h)(t) = P (h) =
[
p
(h)
ij

]
i,j=1,n

.

Being homogeneous means that transition from i to j has the same probability at any time.

By the Markov property, each next state can be predicted from the previous state only.
So, when working with Markov chains, we will need to know:

• X0, its initial situation, i.e. the distribution of its initial state, P0;

• the mechanism of transitions from one state to another, i.e. the matrix P .

Based on this, we want to find:

• h-step transition probabilities p(h)ij and P (h);

• the distribution of states at time h, Xh, i.e. Ph, which will be our forecast;

• possibly the limit of P (h) and Ph as h → ∞, i.e. a long-term forecast; as we will see, when
making forecasts for many transitions ahead, computations will become rather lengthy, and
thus, it will be more efficient to take the limit.

In order to better understand the ideas and the computations, let us start with a simple example
and then discuss the general formulas.

Example 2.7. In Rainbow City, each day is either sunny or rainy. A sunny day is followed by
another sunny day with probability 0.7, while a rainy day is followed by a sunny day with probability
0.4. Suppose it rains on Monday. Make forecasts for Tuesday.

Solution. This process has two states, 1 = “sunny” and 2 = “rainy”, so it is discrete-state. The
time set {Monday, Tuesday, . . .} is also discrete, so it is discrete-time.
Since the weather forecast for each day depends only on the weather the previous day, it is a Markov
process and, hence, a Markov chain.
Finally, since transition probabilities are the same for any two consecutive times (days), it is also
homogeneous.
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Thus, Xk, the weather situation on day k, is a homogeneous Markov chain with 2 states.
The initial situation (on Monday) is

X0

(
1 2

0 1

)
, P0(1) = 0, P0(2) = 1, P0 = [0 1].

The transition probability matrix is

P =

[
p11 p12

p21 p22

]
=

[
0.7 0.3

0.4 0.6

]
.

This can also be seen in a transition diagram (Figure 1). Arrows represent all possible one-step
transitions, along with the corresponding probabilities.

Fig. 1: Transition diagram for Example 2.7

Now, what is the prognosis for Tuesday (t = 1)? Since it rains on Monday, we only need to
look at the second row in matrix P , the transition probabilities from state 2. Then the forecast for
Tuesday is “sunny” with probability p21 = 0.4 (making a transition from a rainy to a sunny day) and
“rainy” with probability p22 = 0.6. So for X1, we have

X1

(
1 2

0.4 0.6

)
, P1(1) = 0.4, P1(2) = 0.6, P1 = [0.4 0.6].

Now, before we go any further with our forecast, we need a little review. Recall the Total
Probability Rule (Theorem 1.4j, in Lecture 1):

P (E) =
∑
i∈I

P (E|Ai)P (Ai) ,

for any partition {Ai}i∈I .
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The same formula holds for a conditional probability, i.e.

P (E|B) =
∑
i∈I

P (E|Ai)P (Ai|B) , (2.9)

if {Ai}i∈I is a partition of S and P (B) ̸= 0.

Example 2.8. Assuming the same situation as before, make forecasts for Wednesday and Thursday.

Solution. To make forecasts for Wednesday, we need the 2-step transition probability matrix P (2),
making one transition from Monday to Tuesday, X0 to X1, and another one from Tuesday to
Wednesday, X1 to X2. We’ll have to condition on the weather situation on Tuesday and use formula
(2.9). Notice that the events

{
{Tuesday is sunny}, {Tuesday is rainy}

}
form a partition. That is,

{(X1 = 1), (X1 = 2)} form a partition.
So, let us proceed:

p
(2)
21 = P (Wednesday is sunny | Monday is rainy)

= P (X2 = 1|X0 = 2)

= P (X2 = 1|X1 = 1)P (X1 = 1|X0 = 2)

+ P (X2 = 1|X1 = 2)P (X1 = 2|X0 = 2)

= p11 · p21 + p21 · p22
= 0.7 · 0.4 + 0.4 · 0.6 = 0.52.

Obviously,

p
(2)
22 = P (Wednesday is rainy | Monday is rainy)

= 1− P (Wednesday is sunny | Monday is rainy)

= 1− p
(2)
21 = 0.48.

Thus, we have the second row of P (2), which is all we need to know in order to make forecasts for
Wednesday:

X2

(
1 2

0.52 0.48

)
, P2(1) = 0.52, P2(2) = 0.48, P2 = [0.52 0.48].

So, for Wednesday there is 52% chance of sun and 48% chance of rain.
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For the Thursday forecast, we need to compute 3-step transition probabilities p
(3)
ij , because it

takes three transitions to move from Monday to Thursday. We have to use the Total Probability
Rule conditioning on both Tuesday and Wednesday. This corresponds to a sequence of states

2 → i → j → 1.

Luckily, we have already computed the 2-step transition probabilities p(2)21 and p
(2)
22 , describing tran-

sition from Monday to Wednesday. It remains to add one transition to Thursday. Thus,

p
(3)
21 = p

(2)
21 · p11 + p

(2)
22 · p21

= 0.52 · 0.7 + 0.48 · 0.4 = 0.556

and then,

p
(3)
22 = 1− p

(3)
21 = 0.444.

So, for Thursday, we predict a 55.6% chance of sun and a 44.4% chance of rain.

Remark 2.9. Obviously, more remote forecasts require more lengthy computations. For a t-day
ahead forecast, we have to account for all t-step paths on diagram Figure 1. Or, we use the of Total
Probability Rule, conditioning on all the intermediate states X1, X2, . . . , Xt−1. To simplify the task,
we will employ matrices.

Recall multiplication of matrices. For two n × n matrices, A = [aij]i,j=1,n, B = [bij]i,j=1,n, the
product is computed by

[A ·B]ij = [ai1 . . . ain︸ ︷︷ ︸
ith row of A

] ·

 b1j

. . .

bnj


︸ ︷︷ ︸
jth col. of B

=
n∑

k=1

aik · bkj.

Let us notice that

P0 · P = [0 1]

[
0.7 0.3

0.4 0.6

]
= [0.4 0.6] = P1. (2.10)

8



Now, to get back to our task, from all the previous computations, let us notice that

P0 · P (2) = [0 1]

[
. . . . . .

0.52 0.48

]
= [0.52 0.48] = P2. (2.11)

Even though it wasn’t necessary for the Wednesday forecast, let us still compute the first row of
P (2), in order to draw some conclusions. We proceed in a similar way (but write fewer details). We
have

p
(2)
11 = P (X2 = 1|X0 = 1)

= P (X2 = 1|X1 = 1)P (X1 = 1|X0 = 1)

+ P (X2 = 1|X1 = 2)P (X1 = 2|X0 = 1)

= p11 · p11 + p21 · p12
= (0.7)2 + 0.3 · 0.4 = 0.61

and, of course,
p
(2)
12 = 1− p

(2)
11 = 0.39.

So, we notice that

p
(2)
11 = p11 · p11 + p21 · p12

= [p11 p12]

[
p11

p21

]
,

p
(2)
21 = p11 · p21 + p21 · p22

= [p21 p22]

[
p11

p21

]
.

If we had computed the other two probabilities directly, we would have found that

p
(2)
12 = p11 · p12 + p12 · p22

= [p11 p12]

[
p12

p22

]
and

p
(2)
22 = p21 · p12 + p22 · p22

= [p21 p22]

[
p12

p22

]
.
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So, in fact, we see that

P (2) =

[
0.61 0.39

0.52 0.48

]
= P 2,

the second power of P .
Also, from (2.10) and (2.11), we notice that

P0 · P (i) = Pi, i = 1, 2.

Now, we can state the general result.

Proposition 2.10 (Chapman-Kolmogorov). Let {X0, X1, . . . } be a Markov chain. Then the fol-

lowing relations hold:

P (h) = P h (= P · P · . . . · P︸ ︷︷ ︸
h times

), for all h = 1, 2, . . . (2.12)

Pi = P0 · P (i) = P0 · P i, for all i = 0, 1, . . . (2.13)

Proof.

The proof of (2.12) goes by induction.
Obviously, relation (2.12) is true for h = 1. Assume P (h−1) = P h−1.

For a matrix M , we use the notation [M ]ij = M(i, j) and, similarly, for a vector v, (v)i = v(i).
Since the events {(Xh−1 = k)}k=1,n form a partition, using the Total Probability Rule (2.9)

with E = (Xh = j), B = (X0 = i), Ak = (Xh−1 = k), k = 1, n, for [P (h)]ij = p
(h)
ij (the (i, j)-entry

in matrix P (h)), we have

p
(h)
ij = P (Xh = j | X0 = i)

=
n∑

k=1

P (Xh = j | Xh−1 = k)︸ ︷︷ ︸
pkj

·P (Xh−1 = k | X0 = i)︸ ︷︷ ︸
p
(h−1)
ik

=
n∑

k=1

p
(h−1)
ik · pkj =

[
P (h−1) · P

]
ij

ind. hyp.
=

[
P h−1 · P

]
ij
, for all i, j = 1, n,
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so
P (h) = P h.

To prove the second relation (2.13), for each j = 1, n, we have [Pi]j = Pi(j) = P (Xi = j).
Again, using the Total Probability Rule for the partition {(X0 = k)}k=1,n, with E = (Xi = j) and
Ak = (X0 = k)), we get for [Pi]j

P (Xi = j) =
n∑

k=1

P (Xi = j | X0 = k)︸ ︷︷ ︸
p
(i)
kj

·P (X0 = k)︸ ︷︷ ︸
[P0]k

=
n∑

k=1

[P0]k · p
(i)
kj

=
[
P0 · P (i)

]
j
,

so, by the previous relation proved, (2.12), we obtain

Pi = P0 · P i.

Example 2.11. Assume the same situation as before, except for Monday the forecast is 80% chance
of rain. Make forecasts for Wednesday and Friday.

Solution. What is different from the previous situation? The transition probability matrices P and
P (h) = P h are the same. What changes is the initial situation. Now, a sunny Monday (state 1) is
also possible and the pdf of X0 is

X0

(
1 2

0.2 0.8

)
, P0 = [0.2 0.8].

So, for Wednesday (t = 2), we have

P2 = P0 · P (2) = P0 · P 2 = [0.2 0.8]

[
0.61 0.39

0.52 0.48

]
= [0.538 0.462],

that means 53.8% chance of sun and 46.2% chance of rain.

11



For Friday, four days after Monday (so, at t = 4), we have

P4 = P0 · P (4) = P0 · P 4 = [0.2 0.8]

[
0.5749 0.4251

0.5668 0.4332

]
= [0.5684 0.4316],

i.e. 56.84% chance of sun and 43.16% chance of rain.

Remark 2.12. Notice that in matrices P and P (h)(= P h), the sum of all the probabilities on each
row is 1. That is because from each state, a Markov chain makes a transition to one and only one

state, i.e. state destinations are mutually exclusive and exhaustive events, thus forming a partition.
Such matrices are called stochastic. Caution! In general, this property does not hold for column
totals. Some states may be “more favorable” than others, then they are visited more often than
others, thus their column total will be larger. In our weather example, that is the case for the state
“sunny”.

2.2 Simulation of Markov Chains

Many important characteristics of stochastic processes require lengthy complex computations.
Thus, it is preferable to estimate them by means of Monte Carlo methods.

For Markov chains, to predict its future behavior, all that is required is the distribution of X0, i.e.
P0 (the initial situation) and the pattern of change at each step, i.e. the transition probability matrix
P .

Once X0 is generated, it takes some value X0 = i (according to its pdf P0). Then, at the next
step, X1 is a discrete random variable taking the values j, j = 1, . . . , n with probabilities pij from
row i of the matrix P . Its pdf will be

X1

(
1 2 . . . n

pi1 pi2 . . . pin

)
The next steps are simulated similarly.
Since, at each step, the generation of a discrete random variable is needed, we can use the algorithm
that simulates an arbitrary discrete distribution, Algorithm 2.6 in Lecture 3.

Algorithm 2.13.
1. Given:

NM = sample path size (length of Markov chain),
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P0 = [P0(1) . . . P0(n)],
P = [pij]i,j=1,n.

2. Generate X0 from its pdf P0.
3. Transition: if Xt = i, generate Xt+1, with probabilities pij, j = 1, n (i.e. the ith row of P ), using
Algorithm 2.6 (L3).
4. Return to step 3 until a Markov chain of length NM is generated.

13


	Basic Notions
	Markov Processes and Markov Chains
	Transition Probability Matrix
	Simulation of Markov Chains


