
Chapter 2. Computer Simulations

and Monte Carlo Methods

1 Monte Carlo Methods and Random Number Generators

Monte Carlo (MC) methods are methods of approximation (estimation) based on computer simu-
lations involving random numbers. And yes!, the name does come from the famous Monte Carlo
casino in Monaco (probability distributions involved in gambling are often complicated, but they
can be estimated via simulations).

The main purpose of simulations is estimating quantities whose direct computation is compli-
cated, expensive, time consuming, dangerous, or plainly impossible (think space shuttle launch,
spread of a virus or disease, performance of a medical device or procedure, etc.). MC methods are
mostly used for computation of probabilities, expected values and other distribution characteristics,
but they can also be used to estimate lengths, areas, volumes, integrals, irrational numbers (like
π, e,

√
2), etc.

Fig. 1: Monte Carlo Casino

Recall that the probability can be defined as a long-run proportion (relative frequency). With
the help of random number generators, computers can actually simulate a “long run”. The longer

1



the run is simulated, the more accurate the results obtained.
Some examples include:

• Forecasting. We already know from Statistics that given a distribution model, it is often
very difficult to make reasonably remote predictions. Often a one-day development depends
on the results obtained during all the previous days. Then prediction for tomorrow may be
straightforward, whereas computation of a one-month forecast is already problematic.

On the other hand, simulation of such a process can be easily performed day by day (or even
minute by minute). Based on present results, we simulate the next day and then the next and
so on. For a time n, we estimate Xn from the (already known) variables X1, X2, . . . , Xn−1.
Controlling the length of this do-loop, we can obtain forecasts for the next days, weeks,
months or years. Such simulations can be used to predict weather, profit, stock prices, costs,
etc. Simulation of future failures reflects reliability of devices and systems. Simulation of
future stock and commodity prices plays a crucial role in finance, as it allows evaluations of
options and other financial deals.

• Signal transmission (percolation). Consider a network of nodes (a graph), some nodes con-
nected, others not. A signal is sent from a certain node. Once a node k receives a signal, it
sends it along each of its output lines with some probability pk. After a certain period of time,
one wishes to estimate the proportion of nodes that received a signal, the probability for a
certain node to receive it, etc.

That would mean generating Bernoulli variables with parameters pk. Line k transmits if the
corresponding generated variable Xk = 1. In the end, we simply count the number of nodes
that got the signal, or verify whether the given node received it.

This general percolation model describes the way many phenomena may spread in real life.
The role of a signal may be played by a computer virus spreading from one computer to
another, or by rumors spreading among people, or by fire spreading through a forest, or by a
disease spreading between residents.

• Markov chain Monte Carlo. This is a modern technique of generating random variables
from rather complex, often intractable distributions, as long as conditional distributions have
a reasonably simple form. In semiconductor industry, for example, the joint distribution of
good and defective chips on a produced wafer (which is a thin slice of semiconductor) has a
rather complicated correlation structure. As a result, it can only be written explicitly for rather
simplified artificial models. On the other hand, the quality of each chip is predictable based

2



on the quality of the surrounding, neighboring chips. Given its neighborhood, conditional
probability for a chip to fail can be written, and thus, its quality can be simulated by generating
a corresponding Bernoulli random variable with Xi = 1 indicating a failure.

According to the Markov chain Monte Carlo (MCMC) methodology, a long sequence of
random variables is generated from conditional distributions. A wisely designed MCMC will
then produce random variables that have the desired unconditional distribution, no matter how
complex it is.

• Queuing systems (server facilities). A queuing system is described by a number of random
variables. It involves spontaneous arrivals of jobs, their random waiting time, assignment
to servers, their random service and departure time; some jobs may exit prematurely, others
may not enter the system if it appears full or busy, also, intensity of the incoming traffic and
the number of servers on duty may change during the day. One wants to be able to evaluate
a queuing system’s vital performance characteristics, such as a job’s average waiting time,
average length of a queue, the proportion of customers who had to wait, the proportion of
“unsatisfied customers” (that exit prematurely or cannot enter), the proportion of jobs spend-
ing more than a certain time in the system, the expected usage of each server, the average
number of available (idle) servers at the time when a job arrives, and so on.

In all these examples, we saw how different types of phenomena can be computer-simulated.
However, one simulation is not enough for estimating probabilities and expectations. After we
understand how to program the given phenomenon once, we can embed it in a do-loop and repeat
similar simulations a large number of times, generating a long run. Since the simulated variables
are random, we will generally obtain a number of different realizations, from which we calculate
probabilities and expectations as long-run frequencies and averages.

Implementation of MC methods reduces to generation of random variables from given distribu-
tions. All mathematical and statistical software packages (Matlab, Maple, Mathematica, SAS, R,
Splus, SPSS, Minitab, Excel, etc.) have built-in procedures for generating random variables from
the most common (discrete or continuous) distributions. As it turns out, the main job is that of gen-
erating random numbers from a Uniform distribution, in fact, from a Standard Uniform distribution.
These can then be used to generate random numbers from any given distribution.

However, generating truly random Uniformly distributed numbers is not an easy task and is
an ongoing research area in Modern Statistics and Stochastic Analysis. How do we know that the
numbers obtained are “truly random” and do not have any undesired patterns? For example, quality

3



random number generation is so important in coding and password creation that people design
special tests to verify the “randomness” of generated numbers.

More often, pseudo-random (deterministic) numbers are generated, i.e. a long list of numbers.
The user specifies a random number seed that points to the location from which the list will be read.
Often each seed is generated within the system, to improve the quality of random numbers.

2 Discrete Methods

These are methods for generating some simple discrete variables, most being specific to certain
distributions, by using their interpretation and relationship with other variables, rather than their
definition (pdf or cdf).

From here on, we denote by U ∈ U(0, 1) a Standard Uniform variable. Let us recall the pdf and
cdf (equation (5.10) in Chapter 1, Lecture 2):

fU(x) =

{
1, x ∈ [0, 1]

0, x /∈ [0, 1]
, FU(x) = P (U ≤ x) =


0, x ≤ 0

x, 0 < x ≤ 1

1, x ≥ 1 .

(2.1)

Bernoulli Distribution Bern(p), p ∈ (0, 1)

Recall that a Bernoulli distribution models the occurrence (or nonoccurrence) of an event (success),
with a given probability p.

Let U be a Standard Uniform variable. That means its value is in (0, 1), just like the value of p.
Then define

X =

{
1, U < p

0, U ≥ p
, (2.2)

i.e. define “success” as (U < p) (and, obviously, “failure” as (U ≥ p)). Let us check that this is
indeed a Bernoulli variable with parameter p. We have

P (X = 1) = P (U < p) = FU(p) = p,

by (2.1), since p ∈ (0, 1). So X has the desired distribution.

Algorithm 2.1.
Read p ∈ (0, 1)

4



U = rand;
X = (U < p);

Now we can use this simple way of simulating success/failure with a given probability, for all
the variables that are defined in terms of that.

Binomial Distribution B(n, p), n ∈ N, p ∈ (0, 1)

Recall (Remark 5.2 in Chapter 1, Lecture 2) that a Binomial B(n, p) variable is the sum of n

independent Bern(p) variables.

Algorithm 2.2.
Read n ∈ N, p ∈ (0, 1)

U = rand(n, 1);
X = sum(U < p);

Geometric Distribution Geo(p), p ∈ (0, 1)

A Geometric variable counts the number of failures that occurred before the 1st success. We can
simulate that.

Algorithm 2.3.
Read p ∈ (0, 1)

X = 0; % initial number of failures
while rand ≥ p % while there are failures
X = X + 1; % count number of failures

end % stop at the first success

Remark 2.4. Obviously, the same algorithm can be used to simulate a Y ∈ SGeo(p) variable, as
well. Y is the number of trials needed to get the 1st success, so simply let Y = X + 1 in Algorithm
2.3.

Negative Binomial (Pascal) Distribution NB(n, p), n ∈ N, p ∈ (0, 1)

Again, we use the same Remark 5.2 (in Chapter 1, Lecture 2), which states that a NB(n, p) variable
is the sum of n independent Geo(p) random variables.

Algorithm 2.5.
Read n ∈ N, p ∈ (0, 1)

5



X = zeros(1, n);
for i = 1 : n % generate n independent Geo(p) variables

while rand ≥ p % while there are failures
X(i) = X(i) + 1; % count number of failures

end % stop at the first success
end
Y = sum(X); % the sum is a NBin(n, p) variable

Arbitrary Discrete Distribution

Let X be an arbitrary discrete random variable with pdf

X

(
x0 x1 . . .

p0 p1 . . .

)
,
∑

pi = 1. (2.3)

We generalize the idea that was used to generate a Bern(p) variable. There, we basically divided
the interval [0, 1] into the disjoint subintervals [0, p) and [p, p + (1 − p)]. We can do the same for
any number of subintervals, as seen in Figure 2.

Fig. 2: Generating arbitrary discrete distributions

Algorithm 2.6.

• Read xi, pi, i = 1, 2, . . .

6



• Divide the interval [0, 1] into subintervals

A0 = [0, p0)

A1 = [p0, p0 + p1)

A2 = [p0 + p1, p0 + p1 + p2)

· · ·

Ai = [p0 + · · ·+ pi−1, p0 + · · ·+ pi)

· · ·

Then length(Ai) = pi, for a finite or countably infinite number of intervals.

• Get U ∈ U(0, 1).

• If U ∈ Ai, then let X = xi.

Then, we have

P (X = xi) = P (U ∈ Ai) = P
(
p0 + · · ·+ pi−1 ≤ U < p0 + · · ·+ pi−1 + pi

)
= FU(p0 + · · ·+ pi−1 + pi)− FU(p0 + · · ·+ pi−1)

= (p0 + · · ·+ pi−1 + pi)− (p0 + · · ·+ pi−1)

= pi,

so X has indeed pdf (2.3).

Example 2.7. Let us use Algorithm 2.6 to generate a variable with pdf

X

(
0 1 2 . . .

p0 p1 p2 . . .

)
,
∑
i∈N

pi = 1.

Recall that for a discrete random variable, the cdf is computed as F (x) = P (X ≤ x) =
∑
xi≤x

pi,

so in this case,
F (k) =

∑
i≤k

pi = p0 + p1 + · · ·+ pk, k = 0, 1, . . . ,

so to check if U ∈ Ak, we check that F (k − 1) ≤ U < F (k).

Algorithm
Read p0, p1, . . .

7



Get U ∈ U(0, 1)

i = 0; % initial value of X
F = p0; % initial value of cdf F (0)

while U ≥ F % check if U ∈ Ai

i = i+ 1;
F = F + pi; % new value of cdf, F (i+ 1)

end % the while loop ends when U < F (i)

X = i;
We can use this to generate a Poiss(λ) variable, with pdf

X

 i

λi

i!
e−λ


i=0,1,...

=

 0 1 2 . . .

e−λ λe−λ λ2

2
e−λ . . .

 , λ > 0.

Algorithm 2.8.
Read λ > 0

U = rand;

i = 0;
F = exp(−λ);
while U >= F

i = i+ 1;
F = F + exp(−λ) ∗ λˆi/factorial(i);

end
X = i;

3 Inverse Transform Method

This is a method used when we want to generate a random variable whose cdf F does not have a
very complicated form. It is based on the following result:

Theorem 3.1. Let X be a continuous random variable with cdf F : R → R. Then U = F (X) ∈
U(0, 1).

Proof. So, F is the cdf of X , i.e. F (x) = P (X ≤ x), for all x ∈ R.
We will show that U has the U(0, 1) pdf, by starting with its cdf and then taking its derivative.
First off, let us notice that, being a cdf (i.e. a probability), F (x) ∈ [0, 1], for all x ∈ R and, thus, all

8



the values of U are in [0, 1].
Secondly, X being a continuous random variable, there exists an interval [a, b] ⊆ R such that :
• F : [a, b] → [0, 1] is strictly increasing (therefore one-to-one),
• F (x) = 0,∀x < a and
• F (x) = 1,∀x > b.
Hence, its inverse F−1 : [0, 1] → [a, b] exists.
Now, let us consider the cdf, FU . Let x ∈ R.

If x < 0, then FU(x) = P (U ≤ x) = P (impossible event) = 0.
Hence, fU(x) = F ′

U(x) = 0.
If x > 1, then FU(x) = P (U ≤ x) = P (sure event) = 1 and thus, fU(x) = F ′

U(x) = 0.
For x ∈ [0, 1], we have

FU(x) = P (U ≤ x) = P (F (X) ≤ x) = P
(
X ≤ F−1(x)

)
= F

(
F−1(x)

)
= x.

Then fU(x) = F ′
U(x) = 1 and U ∈ U(0, 1).

As a consequence, to generate a continuous random variable with given cdf F , we generate a
variable U ∈ U(0, 1) and let

X = F−1(U). (3.1)

Indeed, then the cdf of X is

FX(x) = P (X ≤ x) = P
(
F−1(U) ≤ x

)
= P (U ≤ F (x)) = FU(F (x)) = F (x),

for all x ∈ R, the last assertion following from (2.1) and the fact that F (x) ∈ [0, 1]. Thus X has the
desired cdf F .

Example 3.2. Use the ITM to generate a random variable X with pdf

f(x) =
1

2
(x+ 1), x ∈ [−1, 1]. (3.2)

Then use the value U = 0.16 to generate a value for X .

Solution. First, we find the cdf F (x) =

x∫
−∞

f(t)dt.

If x < −1, obviously F (x) = 0 (the integrand is 0).

9



If x ∈ [−1, 1], we have

F (x) =
1

2

x∫
−1

(t+ 1)dt =
1

2

(
1

2
t2 + t

) ∣∣∣∣∣
x

−1

=
1

2

(
1

2
x2 + x+

1

2

)
=

1

4
(x+ 1)2.

If x > 1, then F (x) =
1

2

1∫
−1

(t+ 1)dt =

∫
R

f(t)dt = 1.

So,

F (x) =


0, x < −1

1

4
(x+ 1)2, −1 ≤ x ≤ 1

1, x > 1

.

The graph of the cdf F is shown in Figure 3. One can see that F : [−1, 1] → [0, 1] is one-to-one
and surjective, so the inverse F−1 : [0, 1] → [−1, 1] exists. We find it by solving F (x) = y for x,
i.e. x = F−1(y).

Fig. 3: Function F in Example 3.2

10



We have

1

4
(x+ 1)2 = y,

(x+ 1)2 = 4y,

x+ 1 =
√

4y,

x = 2
√
y − 1,

so, F−1(y) = 2
√
y − 1, for y ∈ [0, 1].

Then we generate X from U by

X = F−1(U) = 2
√
U − 1.

For the value U = 0.16, we get X = 2 · 0.4− 1 = −0.2.

Example 3.3. Use the ITM to generate X ∈ Exp(λ), λ > 0.

Solution. For X ∈ Exp(λ), the pdf and cdf are given by

f(x) = λe−λx, x ≥ 0 and F (x) = 1− e−λx, x ≥ 0,

respectively (see equation (5.14), Chapter 1, Lecture 2).
So, we find the inverse of the cdf

F (X) = U,

1− e−λX = U,

e−λX = 1− U,

−λX = ln (1− U),

X1 = −1

λ
ln (1− U). (3.3)

Now, algebraically, we cannot simplify this expression, but we can notice the following:

U ∈ U(0, 1) ⇐⇒ 1− U ∈ U(0, 1).

11



Indeed, we see that for x ∈ [0, 1],

F1−U(x) = P (1− U ≤ x) = P (U ≥ 1− x) = 1− P (U < 1− x)

= 1− FU(1− x)
(2.1)
= 1− (1− x) = x = FU(x).

Then, by taking the derivative, f1−U(x) = fU(x), so we can replace U by 1− U in (3.3) and get

X2 = −1

λ
ln (U). (3.4)

Notice that since U, 1−U ∈ (0, 1), we have that both ln (U), ln (1− U) < 0 and, thus, X1, X2 > 0,
as they should be.

Discrete Inverse Transform Method

We can see that the previous algorithm seems to have one major fault, namely, that it is not applicable
to discrete random variables, since in this case, the cdf F is neither injective, nor surjective and,
thus, not invertible. This problem can be overcome, by adjusting the algorithm the following way.
In equation (3.1), we will take

X = F−1(U) = min{x | F (x) ≥ U}. (3.5)

This is known as the generalized inverse function.

Fig. 4: Generalized inverse

12



So, in Figure 4, we have

X1 = F−1(U1) = min{x | F (x) ≥ U1} = x1, here F (x1) = U1,

X2 = F−1(U2) = min{x | F (x) ≥ U2} = x2, here F (x2) > U2.

Example 3.4. Let us revisit Geometric and Shifted Geometric variables and generate them using
the DITM.

Solution. To keep computations simple, we generate a SGeo(p) variable first and then adjust it
accordingly to get a Geo(p) variable.
For X ∈ SGeo(p), p ∈ (0, 1), recall the cdf (Chapter 1, Lecture 2):

F (x) = 1− qx = 1− (1− p)x, x ∈ N.

We use (3.5) to find X:

1− (1− p)x ≥ U,

(1− p)x ≤ 1− U,

x ln (1− p) ≤ ln (1− U),

x ≥ ln (1− U)

ln (1− p)
, since ln (1− p) < 0.

The smallest integer value satisfying this is the ceiling function value. Also, as before, 1−U can be
replaced by U . Thus, a variable X ∈ SGeo(p) is generated by

X =

⌈
ln (U)

ln (1− p)

⌉
. (3.6)

For a X ∈ Geo(p) variable, with cdf F (x) = 1− (1− p)x+1, the same computations lead to

X =

⌈
ln (U)

ln (1− p)
− 1

⌉
. (3.7)

Remark 3.5. Notice how similar formula (3.6) is to (3.4), which gives the simulation of an Exp(λ)

variable. If λ = − ln (1− p), then the generated SGeo(p) variable is just the ceiling of the Exp(λ)

13



one. In other words, the ceiling of an Exponential variable has Shifted Geometric distribution. This
just shows, again, the strong analogy between the two distributions.

14


	Monte Carlo Methods and Random Number Generators
	Discrete Methods
	 Inverse Transform Method

