
4 Random Vectors

Everything that holds for random variables (one-dimensional case) can be easily generalized to any
dimension, i.e. to random vectors. We restrict our discussion to two-dimensional random vectors
(X, Y ) : S → R2.

Let (S,K, P ) be a probability space. A random vector is a function (X, Y ) : S → R2 satisfying
the condition

(X ≤ x, Y ≤ y) = {e ∈ S | X(e) ≤ x, Y (e) ≤ y} ∈ K,

for all (x, y) ∈ R2.

• if the set of values that it takes, (X, Y )(S), is at most countable in R2, then (X, Y ) is a
discrete random vector,

• if (X, Y )(S) is a continuous subset of R2, then (X, Y ) is a continuous random vector.

• the function F : R2 → R defined by

F (x, y) = P (X ≤ x, Y ≤ y)

is called the joint cumulative distribution function (joint cdf) of the vector (X, Y ).

The properties of the cdf of a random variable translate very naturally for a random vector, as
well: Let (X, Y ) be a random vector with joint cdf F : R2 → R and let FX , FY : R → R be the
cdf’s of X and Y , respectively. Then following properties hold:

• If ak < bk, k = 1, 2, then

P (a1 < X ≤ b1, a2 < Y ≤ b2) = F (b1, b2) − F (b1, a2)

− F (a1, b2) + F (a1, a2).

• lim
x,y→∞

F (x, y) = 1,

lim
y→−∞

F (x, y) = lim
x→−∞

F (x, y) = 0, ∀x, y ∈ R,
lim
y→∞

F (x, y) = FX(x), ∀x ∈ R,
lim
x→∞

F (x, y) = FY (y), ∀y ∈ R.

1



4.1 Discrete Random Vectors

Let (X, Y ) : S → R2 be a two-dimensional discrete random vector. The joint probability distri-
bution (function) of (X, Y ) is a two-dimensional array of the form

X \ Y y1 . . . yj . . .

x1

...
...

xi · · · pij · · · pi
...

...

qj

(4.1)

where (xi, yj) ∈ R2, (i, j) ∈ I × J are the values that (X, Y ) takes and pij = P (X = xi, Y = yj).
An important property is that∑

j∈J

pij = pi,
∑
i∈I

pij = qj and
∑
i∈I

∑
j∈J

pij =
∑
j∈J

∑
i∈I

pij = 1,

where pi = P (X = xi), i ∈ I and qj = P (Y = yj), j ∈ J. The probabilities pi and qj are called
marginal pdf’s.

For discrete random vectors, the computational formula for the cdf is

F (x, y) =
∑
xi≤x

∑
yj≤y

pij, x, y ∈ R.

Operations with discrete random variables

Let X and Y be two discrete random variables with pdf’s

X

(
xi

pi

)
i∈I

and Y

(
yj

qj

)
j∈J

.

Sum. The sum of X and Y is the random variable with pdf given by

X + Y

(
xi + yj

pij

)
(i,j)∈I×J

. (4.2)
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Product. The product of X and Y is the random variable with pdf given by

X · Y

(
xiyj

pij

)
(i,j)∈I×J

. (4.3)

Scalar Multiple. The random variable αX , α ∈ R, with pdf given by

αX

(
αxi

pi

)
i∈I

. (4.4)

Quotient. The quotient of X and Y is the random variable with pdf given by

X/Y

(
xi/yj

pij

)
(i,j)∈I×J

, (4.5)

provided that yj ̸= 0, for all j ∈ J.

In general, if h : R → R is a function, then we can define the random variable h(X), with pdf given
by

h(X)

(
h(xi)

pi

)
i∈I

. (4.6)

Variables X and Y are said to be independent if

pij = P (X = xi, Y = yj) = P (X = xi)P (Y = yj) = piqj, (4.7)

for all (i, j) ∈ I × J.

If X and Y are independent, then in (4.2), (4.3) and (4.5), pij = piqj, for all (i, j) ∈ I × J.

4.2 Continuous Random Vectors

Let (X, Y ) be a continuous random vector with joint cdf F : R2 → R. Then F is absolutely

continuous, i.e. there exists a real function f : R2 → R, such that

F (x, y) =

x∫
−∞

y∫
−∞

f(u, v) du dv, (4.8)

for all x, y ∈ R. The function f is called the joint probability density function (joint pdf) of
(X, Y ).
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The usual properties of continuous pdf’s (and their relationship with cdf’s) hold for the two-
dimensional case, as well: Let (X, Y ) be a continuous random vector with joint cdf F and joint
density function f . Let FX , FY : R → R be the cdf’s of X and Y and fX , fY : R → R be the pdf’s
of X and Y , respectively. Then the following properties hold:

•
∂2F (x, y)

∂x∂y
= f(x, y), for all (x, y) ∈ R2.

•
∫∫
R2

f(x, y) dxdy = 1.

• for any domain D ⊆ R2, P
(
(X, Y ) ∈ D

)
=

∫∫
D

f(x, y) dxdy.

• fX(x) =

∫
R

f(x, y) dy, ∀x ∈ R and fY (y) =

∫
R

f(x, y) dx, ∀y ∈ R.

When obtained from the vector (X, Y ), the pdf’s fX and fY are called marginal densities.
The continuous random variables X and Y are said to be independent if

f(X,Y )(x, y) = fX(x)fY (y), (4.9)

for all (x, y) ∈ R2.

5 Common Distributions

5.1 Common Discrete Distributions

Bernoulli Distribution Bern(p)

A random variable X has a Bernoulli distribution with parameter p ∈ (0, 1) (q = 1− p), if its pdf is

X

(
0 1

q p

)
. (5.1)

Then

E(X) = p,

V (X) = pq.
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A Bernoulli r.v. models the occurrence or nonoccurrence of an event.

Discrete Uniform Distribution U(m)

A random variable X has a Discrete Uniform distribution ( unid ) with parameter m ∈ N, if its pdf
is

X

 k
1

m


k=1,m

, (5.2)

with mean and variance

E(X) =
m+ 1

2
,

V (X) =
m2 − 1

12
.

The random variable that denotes the face number shown on a die when it is rolled, has a Discrete
Uniform distribution U(6).

Binomial Distribution B(n, p)

A random variable X has a Binomial distribution ( bino ) with parameters n ∈ N and p ∈ (0, 1)

(q = 1− p), if its pdf is

X

(
k

Ck
np

kqn−k

)
k=0,n

, (5.3)

with

E(X) = np,

V (X) = npq.

This distribution corresponds to the Binomial model. Given n Bernoulli trials with probability of
success p, let X denote the number of successes. Then X ∈ B(n, p). Also, notice that the Bernoulli
distribution is a particular case of the Binomial one, for n = 1, Bern(p) = B(1, p).
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Geometric Distribution Geo(p)

A random variable X has a Geometric distribution ( geo ) with parameter p ∈ (0, 1) (q = 1− p), if
its pdf is given by

X

(
k

pqk

)
k=0,1,...

. (5.4)

Its cdf, expectation and variance are given by

F (x) = 1− qx+1, x = 0, 1, . . .

E(X) =
q

p
,

V (X) =
q

p2
.

If X denotes the number of failures that occurred before the occurrence of the 1st success in a
Geometric model, then X ∈ Geo(p).

Remark 5.1. In a Geometric model setup, one might count the number of trials needed to get the
1st success. Of course, if X is the number of failures and Y the number of trials, then we simply
have Y = X + 1 (the number of failures plus the one success). The variable Y is said to have a
Shifted Geometric distribution with parameter p ∈ (0, 1) (Y ∈ SGeo(p)). Its pdf is

X

(
k

pqk−1

)
k=1,2,...

(5.5)

and the rest of its characteristics are given by

F (x) = 1− qx, x = 0, 1, . . .

E(X) =
1

p
,

V (X) =
q

p2
.

In some books, this is considered to be a Geometric variable (not in Matlab, though).
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Negative Binomial (Pascal) Distribution NB(n, p)

A random variable X has a Negative Binomial (Pascal) ( nbin ) distribution with parameters n ∈ N
and p ∈ (0, 1) (q = 1− p), if its pdf is

X

(
k

Ck
n+k−1p

nqk

)
k=0,1,...

. (5.6)

Then

E(X) =
nq

p
,

V (X) =
nq

p2
.

This distribution corresponds to the Negative Binomial model. If X denotes the number of failures
that occurred before the occurrence of the nth success in a Negative Binomial model, then X ∈
NB(n, p). It is a generalization of the Geometric distribution, Geo(p) = NB(1, p).

Poisson Distribution P(λ)

A random variable X has a Poisson distribution ( poiss ) with parameter λ > 0, if its pdf is

X

 k

λk

k!
e−λ


k=0,1,...

(5.7)

with

E(X) = V (X) = λ.

Poisson’s distribution is related to the concept of “rare events”, or Poissonian events. Essen-
tially, it means that two such events are extremely unlikely to occur simultaneously or within a very
short period of time. Arrivals of jobs, telephone calls, e-mail messages, traffic accidents, network
blackouts, virus attacks, errors in software, floods, earthquakes are examples of rare events.

A Poisson variable X counts the number of rare events occurring during a fixed time interval.
The parameter λ represents the average number of occurrences of the event in that time interval.
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Remark 5.2.
1. The sum of n independent Bern(p) random variables is a B(n, p) variable.
2. The sum of n independent Geo(p) random variables is a NB(n, p) variable.

5.2 Common Continuous Distributions

Uniform Distribution U(a, b)

A random variable X has a Uniform distribution ( unif )with parameters a, b ∈ R, a < b, if its pdf
is

f(x) =


1

b− a
, if x ∈ [a, b]

0, if x /∈ [a, b].
(5.8)

Then its cdf is

F (x) =

x∫
−∞

f(t)dt =


0, if x ≤ a

x− a

b− a
, if a < x ≤ b

1, if x ≥ b

(5.9)

and its numerical characteristics are

E(X) =
a+ b

2
,

V (X) =
(b− a)2

12
.

The Uniform distribution is used when a variable can take any value in a given interval, equally
probable. For example, locations of syntax errors in a program, birthdays throughout a year, arrival
times of customers, etc.

A special case is that of a Standard Uniform Distribution, where a = 0 and b = 1. The pdf
and cdf are given by

fU(x) =

{
1, x ∈ [0, 1]

0, x /∈ [0, 1]
, FU(x) =


0, x ≤ 0

x, 0 < x ≤ 1

1, x ≥ 1 .

(5.10)

Standard Uniform variables play an important role in stochastic modeling; in fact, any random
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(a) Density Function (pdf) (b) Cumulative Distribution Function (cdf)

Fig. 1: Uniform Distribution

variable, with any thinkable distribution (discrete or continuous) can be generated from Standard
Uniform variables.

Normal Distribution N(µ, σ)

A random variable X has a Normal distribution ( norm ) with parameters µ ∈ R and σ > 0, if its
pdf is

f(x) =
1

σ
√
2π

e
−
(x− µ)2

2σ2 , x ∈ R. (5.11)

The cdf of a Normal variable is then given by

F (x) =
1

σ
√
2π

x∫
−∞

e
−
(t− µ)2

2σ2 dt =
1√
2π

x−µ
σ∫

−∞

e
−
t2

2 dt (5.12)

9



and its mean and variance are

E(X) = µ,

V (X) = σ2.

There is an important particular case of a Normal distribution, namely N(0, 1), called the Standard
(or Reduced) Normal Distribution. A variable having a Standard Normal distribution is usually
denoted by Z. The density and cdf of Z are given by

fZ(x) =
1√
2π

e
−
x2

2 , x ∈ R and FZ(x) = Φ(x) =
1√
2π

x∫
−∞

e
−
t2

2 dt. (5.13)

The function FZ given in (5.13) is known as Laplace’s function and its values can be found in
tables or can be computed by any mathematical software. One can notice that there is a relationship
between the cdf of any Normal N(µ, σ) variable X and that of a Standard Normal variable Z,
namely,

FX(x) = FZ

(
x− µ

σ

)
.

Exponential Distribution Exp(λ)

A random variable X has an Exponential distribution ( exp ) with parameter λ > 0, if its pdf and
cdf are given by

f(x) =

{
λe−λx, if x ≥ 0

0, if x < 0
and F (x) =

{
1− e−λx, x ≥ 0

0, x < 0
, (5.14)

respectively. Its mean and variance are given by

E(X) =
1

λ
,

V (X) =
1

λ2
.

Remark 5.3.
1. The Exponential distribution is often used to model time: lifetime, waiting time, halftime, inter-
arrival time, failure time, time between rare events, etc. The parameter λ represents the frequency
of rare events, measured in time−1.
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2. A word of caution here: The parameter µ in Matlab (where the Exponential pdf is defined as
1

µ
e−

1
µ
x, x ≥ 0) is actually µ = 1/λ. It all comes from the different interpretation of the “frequency”.

For instance, if the frequency is “2 per hour”, then λ = 2/hr, but this is equivalent to “one every
half an hour”, so µ = 1/2 hours. The parameter µ is measured in time units.
3. The Exponential distribution is a special case of a more general distribution, namely the
Gamma(a, b), a, b > 0, distribution ( gam ). The Gamma distribution models the total time of a
multistage scheme, e.g. total compilation time, total downloading time, etc.
4. If α ∈ N, then the sum of α independent Exp(λ) variables has a Gamma(α, 1/λ) distribution.
5. In a Poisson process, where X is the number of rare events occurring in time t, X ∈ P(λt), the
time between rare events and the time of the occurrence of the first rare event have Exp(λ) distri-
bution, while T , the time of the occurrence of the αth rare event has Gamma(α, 1/λ) distribution.

Gamma-Poisson formula

Let T ∈ Gamma(α, 1/λ) with α ∈ N and λ > 0. Then T represents the time of the occurrence of
the αth rare event. Then, the event (T > t) means that the αth event occurs after the moment t. That
means that before the time t, fewer than α rare events occur. So, if X is the number of rare events
that occur before time t, then the two events

(T > t) = (X < α)

are equivalent (equal). Now, X has a P(λt) distribution. So, we have:

P (T > t) = P (X < α) and

P (T ≤ t) = P (X ≥ α). (5.15)

Remark 5.4. This formula is useful in applications where this setup can be used (seeing a Gamma
variable as a sum of times between rare events, if α ∈ N), as it avoids lengthy computations of
Gamma probabilities. However, one should be careful, T is a continuous random variable, for
which P (T > t) = P (T ≥ t), whereas X is a discrete one, so on the right-hand sides of (5.15) the
inequality signs cannot be changed.

Remark 5.5. The Exponential distributions has the so-called “memoryless property”. Suppose that
an Exponential variable T represents waiting time. Memoryless property means that the fact of hav-
ing waited for t minutes gets “forgotten” and it does not affect the future waiting time. Regardless
of the event (T > t), when the total waiting time exceeds t, the remaining waiting time still has
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Exponential distribution with the same parameter. Mathematically,

P (T > t+ x|T > t) = P (T > x), t, x > 0. (5.16)

The Exponential distribution is the only continuous variable with this property. Among discrete
ones, the Shifted Geometric distribution also has this property. In fact, there is a close relationship
between the two families of variables. In a sense, the Exponential distribution is a continuous
analogue of the Shifted Geometric one, one measures time (continuously) until the next rare event,
the other measures time (discretely) as the number of trials until the next success.
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