4 Random Vectors

Everything that holds for random *variables* (one-dimensional case) can be easily generalized to any dimension, i.e. to random *vectors*. We restrict our discussion to two-dimensional random vectors $(X, Y) : S \to \mathbb{R}^2$.

Let (S, K, P) be a probability space. A **random vector** is a function $(X, Y) : S \to \mathbb{R}^2$ satisfying the condition

$$
(X \le x, Y \le y) = \{e \in S \mid X(e) \le x, Y(e) \le y\} \in \mathcal{K},
$$

for all $(x, y) \in \mathbb{R}^2$.

- if the set of values that it takes, $(X, Y)(S)$, is at most countable in \mathbb{R}^2 , then (X, Y) is a discrete random vector,
- if $(X, Y)(S)$ is a continuous subset of \mathbb{R}^2 , then (X, Y) is a **continuous random vector**.
- the function $F : \mathbb{R}^2 \to \mathbb{R}$ defined by

$$
F(x, y) = P(X \le x, Y \le y)
$$

is called the **joint cumulative distribution function** (**joint cdf**) of the vector (X, Y) .

The properties of the cdf of a random variable translate very naturally for a random vector, as well: Let (X, Y) be a random vector with joint cdf $F : \mathbb{R}^2 \to \mathbb{R}$ and let $F_X, F_Y : \mathbb{R} \to \mathbb{R}$ be the cdf's of X and Y , respectively. Then following properties hold:

• If $a_k < b_k$, $k = \overline{1, 2}$, then

$$
P(a_1 < X \le b_1, a_2 < Y \le b_2) = F(b_1, b_2) - F(b_1, a_2) - F(a_1, b_2) + F(a_1, a_2).
$$

•
$$
\lim_{x,y \to \infty} F(x, y) = 1,
$$

\n $\lim_{y \to -\infty} F(x, y) = \lim_{x \to -\infty} F(x, y) = 0, \forall x, y \in \mathbb{R},$
\n $\lim_{y \to \infty} F(x, y) = F_X(x), \forall x \in \mathbb{R},$
\n $\lim_{x \to \infty} F(x, y) = F_Y(y), \forall y \in \mathbb{R}.$

4.1 Discrete Random Vectors

Let $(X, Y) : S \to \mathbb{R}^2$ be a two-dimensional discrete random vector. The **joint probability distribution (function)** of (X, Y) is a two-dimensional array of the form

where $(x_i, y_j) \in \mathbb{R}^2$, $(i, j) \in I \times J$ are the values that (X, Y) takes and $p_{ij} = P(X = x_i, Y = y_j)$.

An important property is that

$$
\sum_{j \in J} p_{ij} = p_i, \ \sum_{i \in I} p_{ij} = q_j \ \text{ and } \ \sum_{i \in I} \sum_{j \in J} p_{ij} = \sum_{j \in J} \sum_{i \in I} p_{ij} = 1,
$$

where $p_i = P(X = x_i)$, $i \in I$ and $q_j = P(Y = y_j)$, $j \in J$. The probabilities p_i and q_j are called marginal pdf's.

For discrete random vectors, the computational formula for the cdf is

$$
F(x,y) = \sum_{x_i \le x} \sum_{y_j \le y} p_{ij}, \ x, y \in \mathbb{R}.
$$

Operations with discrete random variables

Let X and Y be two discrete random variables with pdf's

$$
X\left(\begin{array}{c}x_i\\p_i\end{array}\right)_{i\in I}\quad\text{and}\quad Y\left(\begin{array}{c}y_j\\q_j\end{array}\right)_{j\in J}.
$$

Sum. The sum of X and Y is the random variable with pdf given by

$$
X + Y \left(\begin{array}{c} x_i + y_j \\ p_{ij} \end{array} \right)_{(i,j) \in I \times J}.
$$
\n(4.2)

Product. The product of X and Y is the random variable with pdf given by

$$
X \cdot Y \left(\begin{array}{c} x_i y_j \\ p_{ij} \end{array} \right)_{(i,j) \in I \times J}.
$$
 (4.3)

Scalar Multiple. The random variable αX , $\alpha \in \mathbb{R}$, with pdf given by

$$
\alpha X \left(\begin{array}{c} \alpha x_i \\ p_i \end{array} \right)_{i \in I} . \tag{4.4}
$$

Quotient. The quotient of X and Y is the random variable with pdf given by

$$
X/Y\left(\begin{array}{c} x_i/y_j \\ p_{ij} \end{array}\right)_{(i,j)\in I\times J},\tag{4.5}
$$

provided that $y_j \neq 0$, for all $j \in J$.

In general, if $h : \mathbb{R} \to \mathbb{R}$ is a function, then we can define the random variable $h(X)$, with pdf given by

$$
h(X) \left(\begin{array}{c} h(x_i) \\ p_i \end{array} \right)_{i \in I} . \tag{4.6}
$$

Variables X and Y are said to be **independent** if

$$
p_{ij} = P(X = x_i, Y = y_j) = P(X = x_i) P(Y = y_j) = p_i q_j,
$$
\n(4.7)

for all $(i, j) \in I \times J$.

If X and Y are independent, then in [\(4.2\)](#page-1-0), [\(4.3\)](#page-2-0) and [\(4.5\)](#page-2-1), $p_{ij} = p_i q_j$, for all $(i, j) \in I \times J$.

4.2 Continuous Random Vectors

Let (X, Y) be a continuous random vector with joint cdf $F : \mathbb{R}^2 \to \mathbb{R}$. Then F is *absolutely continuous*, i.e. there exists a real function $f : \mathbb{R}^2 \to \mathbb{R}$, such that

$$
F(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u,v) \, du \, dv,
$$
\n(4.8)

for all $x, y \in \mathbb{R}$. The function f is called the **joint probability density function (joint pdf)** of (X, Y) .

The usual properties of continuous pdf's (and their relationship with cdf's) hold for the twodimensional case, as well: Let (X, Y) be a continuous random vector with joint cdf F and joint density function f. Let $F_X, F_Y : \mathbb{R} \to \mathbb{R}$ be the cdf's of X and Y and $f_X, f_Y : \mathbb{R} \to \mathbb{R}$ be the pdf's of X and Y , respectively. Then the following properties hold:

•
$$
\frac{\partial^2 F(x, y)}{\partial x \partial y} = f(x, y), \text{ for all } (x, y) \in \mathbb{R}^2.
$$

•
$$
\iint_{\mathbb{R}^2} f(x, y) dx dy = 1.
$$

• for any domain $D \subseteq \mathbb{R}^2$, $P((X, Y) \in D) = \iint$ \boldsymbol{D} $f(x, y) dx dy$.

•
$$
f_X(x) = \int_{\mathbb{R}} f(x, y) dy, \forall x \in \mathbb{R}
$$
 and $f_Y(y) = \int_{\mathbb{R}} f(x, y) dx, \forall y \in \mathbb{R}$.

When obtained from the vector (X, Y) , the pdf's f_X and f_Y are called *marginal* densities. The continuous random variables X and Y are said to be **independent** if

$$
f_{(X,Y)}(x,y) = f_X(x) f_Y(y), \tag{4.9}
$$

for all $(x, y) \in \mathbb{R}^2$.

5 Common Distributions

5.1 Common Discrete Distributions

Bernoulli Distribution $Bern(p)$

A random variable X has a Bernoulli distribution with parameter $p \in (0, 1)$ $(q = 1 - p)$, if its pdf is

$$
X\left(\begin{array}{cc} 0 & 1\\ q & p \end{array}\right). \tag{5.1}
$$

Then

$$
E(X) = p,
$$

$$
V(X) = pq.
$$

A Bernoulli r.v. models the occurrence or nonoccurrence of an event.

Discrete Uniform Distribution $U(m)$

A random variable X has a Discrete Uniform distribution (unid) with parameter $m \in \mathbb{N}$, if its pdf is

$$
X\left(\begin{array}{c}k\\1\\m\end{array}\right)_{k=\overline{1,m}},\tag{5.2}
$$

with mean and variance

$$
E(X) = \frac{m+1}{2},
$$

$$
V(X) = \frac{m^2 - 1}{12}.
$$

The random variable that denotes the face number shown on a die when it is rolled, has a Discrete Uniform distribution $U(6)$.

Binomial Distribution $B(n, p)$

A random variable X has a Binomial distribution (\emptyset bino) with parameters $n \in \mathbb{N}$ and $p \in (0,1)$ $(q = 1 - p)$, if its pdf is

$$
X\left(\begin{array}{c}k\\C_n^k p^k q^{n-k}\end{array}\right)_{k=\overline{0,n}},\tag{5.3}
$$

with

$$
E(X) = np,
$$

$$
V(X) = npq.
$$

This distribution corresponds to the Binomial model. Given n Bernoulli trials with probability of success p, let X denote the number of successes. Then $X \in B(n, p)$. Also, notice that the Bernoulli distribution is a particular case of the Binomial one, for $n = 1$, $Bern(p) = B(1, p)$.

Geometric Distribution $Geo(p)$

A random variable X has a Geometric distribution (geo) with parameter $p \in (0, 1)$ ($q = 1 - p$), if its pdf is given by

$$
X\left(\begin{array}{c}k\\pq^k\end{array}\right)_{k=0,1,\dots}.
$$
\n(5.4)

Its cdf, expectation and variance are given by

$$
F(x) = 1 - q^{x+1}, x = 0, 1, ...
$$

\n
$$
E(X) = \frac{q}{p},
$$

\n
$$
V(X) = \frac{q}{p^2}.
$$

If X denotes the number of failures that occurred before the occurrence of the $1st$ success in a Geometric model, then $X \in Geo(p)$.

Remark 5.1. In a Geometric model setup, one might count the number of *trials* needed to get the $1st$ success. Of course, if X is the number of failures and Y the number of trials, then we simply have $Y = X + 1$ (the number of failures plus the one success). The variable Y is said to have a Shifted Geometric distribution with parameter $p \in (0, 1)$ ($Y \in SGeo(p)$). Its pdf is

$$
X\left(\begin{array}{c}k\\pq^{k-1}\end{array}\right)_{k=1,2,\dots}
$$
\n(5.5)

and the rest of its characteristics are given by

$$
F(x) = 1 - q^{x}, x = 0, 1, ...
$$

\n
$$
E(X) = \frac{1}{p},
$$

\n
$$
V(X) = \frac{q}{p^{2}}.
$$

In some books, *this* is considered to be a Geometric variable (not in Matlab, though).

Negative Binomial (Pascal) Distribution $NB(n, p)$

A random variable X has a Negative Binomial (Pascal) ($|\text{nbin}|$) distribution with parameters $n \in \mathbb{N}$ and $p \in (0,1)$ $(q = 1 - p)$, if its pdf is

$$
X\left(\begin{array}{c}k\\C_{n+k-1}^{k}p^{n}q^{k}\end{array}\right)_{k=0,1,\ldots}.
$$
\n(5.6)

Then

$$
E(X) = \frac{nq}{p},
$$

$$
V(X) = \frac{nq}{p^2}.
$$

This distribution corresponds to the Negative Binomial model. If X denotes the number of failures that occurred before the occurrence of the nth success in a Negative Binomial model, then $X \in$ $NB(n, p)$. It is a generalization of the Geometric distribution, $Geo(p) = NB(1, p)$.

Poisson Distribution $\mathcal{P}(\lambda)$

A random variable X has a Poisson distribution (poiss) with parameter $\lambda > 0$, if its pdf is

$$
X\left(\frac{k}{\lambda^k}e^{-\lambda}\right)_{k=0,1,\dots}
$$
\n(5.7)

with

$$
E(X) = V(X) = \lambda.
$$

Poisson's distribution is related to the concept of "rare events", or Poissonian events. Essentially, it means that two such events are *extremely unlikely* to occur simultaneously or within a very short period of time. Arrivals of jobs, telephone calls, e-mail messages, traffic accidents, network blackouts, virus attacks, errors in software, floods, earthquakes are examples of rare events.

A Poisson variable X counts the number of rare events occurring during a fixed time interval. The parameter λ represents the average number of occurrences of the event in that time interval.

Remark 5.2.

- 1. The sum of n independent $Bern(p)$ random variables is a $B(n, p)$ variable.
- 2. The sum of n independent $Geo(p)$ random variables is a $NB(n, p)$ variable.

5.2 Common Continuous Distributions

Uniform Distribution $U(a, b)$

A random variable X has a Uniform distribution (unif)with parameters $a, b \in \mathbb{R}$, $a < b$, if its pdf is

$$
f(x) = \begin{cases} \frac{1}{b-a}, & \text{if } x \in [a,b] \\ 0, & \text{if } x \notin [a,b]. \end{cases}
$$
 (5.8)

Then its cdf is

$$
F(x) = \int_{-\infty}^{x} f(t)dt = \begin{cases} 0, & \text{if } x \le a \\ \frac{x-a}{b-a}, & \text{if } a < x \le b \\ 1, & \text{if } x \ge b \end{cases}
$$
 (5.9)

and its numerical characteristics are

$$
E(X) = \frac{a+b}{2},
$$

$$
V(X) = \frac{(b-a)^2}{12}.
$$

The Uniform distribution is used when a variable can take *any* value in a given interval, equally probable. For example, locations of syntax errors in a program, birthdays throughout a year, arrival times of customers, etc.

A special case is that of a **Standard Uniform Distribution**, where $a = 0$ and $b = 1$. The pdf and cdf are given by

$$
f_U(x) = \begin{cases} 1, & x \in [0,1] \\ 0, & x \notin [0,1] \end{cases}, \quad F_U(x) = \begin{cases} 0, & x \le 0 \\ x, & 0 < x \le 1 \\ 1, & x \ge 1. \end{cases}
$$
(5.10)

Standard Uniform variables play an important role in stochastic modeling; in fact, *any* random

(a) Density Function (pdf) (b) Cumulative Distribution Function (cdf)

Fig. 1: Uniform Distribution

variable, with any thinkable distribution (discrete or continuous) can be generated from Standard Uniform variables.

Normal Distribution $N(\mu, \sigma)$

A random variable X has a Normal distribution (\overline{norm}) with parameters $\mu \in \mathbb{R}$ and $\sigma > 0$, if its pdf is

$$
f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \ \ x \in \mathbb{R}.
$$
 (5.11)

The cdf of a Normal variable is then given by

$$
F(x) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{(t-\mu)^2}{2\sigma^2}} dt = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\frac{x-\mu}{\sigma}} e^{-\frac{t^2}{2}} dt
$$
(5.12)

and its mean and variance are

$$
E(X) = \mu,
$$

$$
V(X) = \sigma^2.
$$

There is an important particular case of a Normal distribution, namely $N(0, 1)$, called the **Standard** (or Reduced) Normal Distribution. A variable having a Standard Normal distribution is usually denoted by Z . The density and cdf of Z are given by

$$
f_Z(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}, \quad x \in \mathbb{R} \quad \text{and} \quad F_Z(x) = \Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-\frac{t^2}{2}} dt. \tag{5.13}
$$

The function F_Z given in [\(5.13\)](#page-9-0) is known as *Laplace's function* and its values can be found in tables or can be computed by any mathematical software. One can notice that there is a relationship between the cdf of any Normal $N(\mu, \sigma)$ variable X and that of a Standard Normal variable Z, namely,

$$
F_X(x) = F_Z\left(\frac{x-\mu}{\sigma}\right) \ .
$$

Exponential Distribution $Exp(\lambda)$

A random variable X has an Exponential distribution (\exp) with parameter $\lambda > 0$, if its pdf and cdf are given by

$$
f(x) = \begin{cases} \lambda e^{-\lambda x}, & \text{if } x \ge 0 \\ 0, & \text{if } x < 0 \end{cases} \text{ and } F(x) = \begin{cases} 1 - e^{-\lambda x}, & x \ge 0 \\ 0, & x < 0 \end{cases}, \quad (5.14)
$$

respectively. Its mean and variance are given by

$$
E(X) = \frac{1}{\lambda},
$$

$$
V(X) = \frac{1}{\lambda^2}.
$$

Remark 5.3.

1. The Exponential distribution is often used to model *time*: lifetime, waiting time, halftime, interarrival time, failure time, time between rare events, etc. The parameter λ represents the frequency of rare events, measured in $time^{-1}$.

2. A word of **caution** here: The parameter μ in Matlab (where the Exponential pdf is defined as 1 μ $e^{-\frac{1}{\mu}x}$, $x \ge 0$) is actually $\mu = 1/\lambda$. It all comes from the different interpretation of the "frequency". For instance, if the frequency is "2 per hour", then $\lambda = 2/\text{hr}$, but this is equivalent to "one every half an hour", so $\mu = 1/2$ hours. The parameter μ is measured in time units.

3. The Exponential distribution is a special case of a more general distribution, namely the

 $Gamma(a, b), a, b > 0$, distribution (**gam**). The Gamma distribution models the *total* time of a multistage scheme, e.g. total compilation time, total downloading time, etc.

4. If $\alpha \in \mathbb{N}$, then the sum of α independent $Exp(\lambda)$ variables has a $Gamma(\alpha, 1/\lambda)$ distribution. 5. In a Poisson process, where X is the number of rare events occurring in time t, $X \in \mathcal{P}(\lambda t)$, the time between rare events and the time of the occurrence of the first rare event have $Exp(\lambda)$ distribution, while T, the time of the occurrence of the α^{th} rare event has $Gamma(\alpha, 1/\lambda)$ distribution.

Gamma-Poisson formula

Let $T \in Gamma(\alpha, 1/\lambda)$ with $\alpha \in \mathbb{N}$ and $\lambda > 0$. Then T represents the time of the occurrence of the $\alpha^{\rm th}$ rare event. Then, the event $(T>t)$ means that the $\alpha^{\rm th}$ event occurs <u>after</u> the moment $t.$ That means that before the time t, fewer than α rare events occur. So, if X is the number of rare events that occur before time t , then the two events

$$
(T > t) = (X < \alpha)
$$

are equivalent (equal). Now, X has a $\mathcal{P}(\lambda t)$ distribution. So, we have:

$$
P(T > t) = P(X < \alpha) \text{ and}
$$

$$
P(T \le t) = P(X \ge \alpha).
$$
 (5.15)

Remark 5.4. This formula is useful in applications where this setup can be used (seeing a Gamma variable as a sum of times between rare events, if $\alpha \in \mathbb{N}$), as it avoids lengthy computations of Gamma probabilities. However, one should be careful, T is a *continuous* random variable, for which $P(T > t) = P(T > t)$, whereas X is a discrete one, so on the right-hand sides of [\(5.15\)](#page-10-0) the inequality signs cannot be changed.

Remark 5.5. The Exponential distributions has the so-called "memoryless property". Suppose that an Exponential variable T represents waiting time. Memoryless property means that the fact of having waited for t minutes gets "forgotten" and it does not affect the future waiting time. Regardless of the event $(T > t)$, when the total waiting time exceeds t, the remaining waiting time still has

Exponential distribution with the same parameter. Mathematically,

$$
P(T > t + x | T > t) = P(T > x), t, x > 0.
$$
\n(5.16)

The Exponential distribution is the only continuous variable with this property. Among discrete ones, the Shifted Geometric distribution also has this property. In fact, there is a close relationship between the two families of variables. In a sense, the Exponential distribution is a continuous analogue of the Shifted Geometric one, one measures time (continuously) until the next rare event, the other measures time (discretely) as the number of trials until the next success.