
5.2 M/M/k Queuing Systems

An M / M / k queuing system is a multiserver extension of an M / M / 1 system.

Definition 5.1. An M / M / k queuing process is a continuous-time Markov queuing process with the

following characteristics:

• k servers;

• unlimited capacity;

• Exponential interarrival times with arrival rate λA;

• Exponential service times with service rate λS;

• independent service and arrival times, independent service times of all servers.

Once again, we use the same approach as before, move from the discrete-time BkSQP to the
continuous-time M / M / k process by letting the frame size ∆ → 0. Recall that

pA = λA∆,

pS = λS∆.

For very small ∆, we neglect terms of the form ∆l, for l ≥ 2, so the transition probabilities for a
BkSQP become:

pi,i+1 = pA(1− pS)
n = λA∆(1− λS∆)n ≈ λA∆ = pA

pi,i = pA C1
n pS(1− pS)

n−1 + (1− pA)(1− pS)
n

= λA∆ n λS∆(1− λS∆)n−1 + (1− λA∆)(1− λS∆)n

≈ (1− λA∆)
(
1− C1

nλS∆+ . . .
)

≈ 1− λA∆− n λS∆ = 1− pA − npS

pi,i−1 = pA C2
n p2S(1− pS)

n−2 + (1− pA) C
1
n pS(1− pS)

n−1

= λA∆
n(n− 1)

2
(λS∆)2 (1− λS∆)n−2

+ (1− λA∆) n λS∆(1− λS∆)n−1

≈ n λS∆ = npS

pi,j = 0, ∀j ̸= i− 1, i, i+ 1.

1

Recall that n = min{i, k} is the number of jobs receiving service among the total of i jobs in the
system. Also, since ∆ is very small, we ignored terms proportional to ∆2,∆3, etc. Then, no more
than one event, arrival or departure, may occur during each frame. Probability of more than one
event is of the order O(∆2). Changing the number of jobs by 2 requires at least 2 events, and thus,
such changes cannot occur during one frame. At the same time, transition from i to i − 1 may be
caused by a departure of any one of the n currently served jobs. This is why we have the departure
probability pS multiplied by n.
So, the transition probability matrix is

P ≈



1− pA pA 0 0 . . . 0 . . .

pS 1− pA − pS pA 0 . . . 0 . . .

0 2pS 1− pA − 2pS pA . . . 0 . . .

...
...

...
... . . . 0 . . .

0 0 . . . kpS 1− pA − kpS 0 . . .

0 0 0 0 kpS 1− pA − kpS . . .
...

...
...

... . . .



.(5.1)

For example, for k = 3 servers, the transition probability matrix is

P ≈



1− pA pA 0 0 0 0 . . .

pS 1− pA − pS pA 0 0 0 . . .

0 2pS 1− pA − 2pS pA 0 0 . . .

0 0 3pS 1− pA − 3pS pA 0 . . .

0 0 0 3pS 1− pA − 3pS pA . . .

0 0 0 0 3pS 1− pA − 3pS . . .
...

...
...

...
...

... . . .



.

2

Next we find the steady-state distribution, as usually, from
πP = π
∞∑
i=0

πi = 1,

again, a system of infinitely many equations with infinitely many unknowns.
The first balance equation is

[π0 π1 π2 . . .] ·


1− pA

pS

0
...

 = π0, i.e.

(1− pA)π0 + pSπ1 = π0, i.e.

−pAπ0 + pSπ1 = 0, i.e.

pSπ1 = pAπ0, i.e.

λSπ1 = λAπ0.

So,

π1 =
λA

λS

π0 = rπ0. (5.2)

The second balance equation is

[π0 π1 π2 . . .] ·



pA

1− pA − pS

2pS

0
...


= π1, i.e.

pAπ0 + (1− pA − pS)π1 + 2pSπ2 = π1, i.e.

pAπ0 − pAπ1 − pSπ1 + 2pSπ2 = 0, i.e. (since pAπ0 = pSπ1)

2pSπ2 = pAπ1, i.e.

2λSπ2 = λAπ1.

3

Thus, we get

π2 =
1

2

λA

λS

π1 =
1

2
rπ1 =

1

2
r2π0. (5.3)

The third balance equation is

[π0 π1 π2 π3 . . .] ·



0

pA

1− pA − 2pS

3pS

0
...


= π2, i.e.

pAπ1 + (1− pA − 2pS)π2 + 3pSπ3 = π2, i.e.

pAπ1 − pAπ2 − 2pSπ2 + 3pSπ3 = 0, i.e. (since pAπ1 = 2pSπ2)

3pSπ3 = pAπ2, i.e.

3λSπ3 = λAπ2.

So,

π3 =
1

3

λA

λS

π2 =
1

3
rπ2 =

1

2 · 3
r3π0 =

1

3!
r3π0. (5.4)

We see a pattern forming. The kth balance equation will yield

πk =
1

k
rπk−1 =

1

k!
rkπ0. (5.5)

Then things change. Let us see the the (k + 1)st equation.

4

[. . . πk−1 πk πk+1 . . .] ·



0
...
0

pA

1− pA − kpS

kpS

0
...


= πk, i.e.

pAπk−1 + (1− pA − kpS)πk + kpSπk+1 = πk, i.e.

pAπk−1 − pAπk − kpSπk + kpSπk+1 = 0, i.e. (since pAπk−1 = kpSπk)

kpSπk+1 = pAπk, i.e.

kλSπk+1 = λAπk,

which yields

πk+1 =
1

k
rπk =

(r
k

) rk

k!
π0. (5.6)

All the rest of the equations will be of the same form

πk+2 =
1

k
rπk+1 =

(r
k

)2 rk
k!
π0

. . . (5.7)

Now we substitute them all in the normalizing equation
∞∑
i=0

πi = 1. We get

5

1 = π0 + π1 + . . .

=
(
π0 + π1 + . . . + πk−1

)
+
(
πk + πk+1 + . . .

)
= π0

[(
1 + r +

r2

2!
+ . . .+

rk−1

(k − 1)!

)
+

rk

k!

(
1 +

r

k
+
(r
k

)2
+ . . .

)]
= π0

(
k−1∑
i=0

ri

i!
+

rk

k!
· 1

1− r/k

)

= π0

(
k−1∑
i=0

ri

i!
+

rk

k!(1− r/k)

)
,

where, in the last part, the Geometric series
∞∑
i=0

(r
k

)i
is convergent and equal to

1

1− r/k
, if the

ratio r/k < 1, i.e. r < k. So, the M / M / k steady-state distribution of number of jobs has pdf

π0 = P (X = 0) =
1

k−1∑
i=0

ri

i!
+

rk

k!(1− r/k)

,

(5.8)

πx = P (X = x) =


rx

x!
π0, for x < k

rk

k!
π0

(r
k

)x−k

, for x ≥ k

,

provided that

r =
λA

λS

< k.

Example 5.2. Consider again Example 4.5 (and 4.6) from Lecture 9 about the message transmis-
sion center (Messages arrive to a communication center at random times according to a Poisson

process, with an average of 5 messages per minute. They are transmitted through a single channel

in the order they were received. On average, it takes 10 seconds to transmit a message). Recall
that when the number of customers increased by 10%, all the parameters of the system increased
significantly, some of them even by more than 100%. Suppose now that the arrival rate has doubled
to 10 messages per minute. On average, it still takes 10 seconds to transmit a message, but assume

6

that 2 additional channels are built with the same parameters as the first channel. Evaluate the new
system’s performance. What percentage of messages will be sent immediately, with no waiting
time?

Solution. This is now an M / M / 3 system with

λA = 10 / minute = 1/6 / second,

µS = 10 seconds =
1

6
minutes,

λS = 6 / minute,

r =
10

6
=

5

3
= 1.667 > 1, but r < 3.

——————————————————————–
Before we proceed with the computation of E(X), let us recall a few formulas related to the

Geometric series:

• the Geometric series
∞∑
i=0

a0q
i is convergent if the ratio |q| < 1 and its sum is equal to

∞∑
i=0

a0q
i =

a0
1− q

;

• under the same conditions (differentiating the equation above with respect to q), the following
series is also convergent

∞∑
i=0

a0i q
i =

a0q

(1− q)2
.

———————————————————————
The steady-state distribution, by (5.8) is given by

π0 =
1

2∑
i=0

ri

i!
+

r3

3!(1− r/3)

=
1

1 + r +
r2

2!
+

r3

3!(1− r/3)

= 0.1727

7

and

πx =


rx

x!
π0, for x = 1, 2

r3

3!
π0

(r
3

)x−3

, for x = 3, 4, . . .

.

Then

E(X) =
∞∑
x=0

xπx =
2∑

x=0

xπx +
∞∑
x=3

xπx

= π0

(
0 + 1 · r + 2 · r

2

2

)
+ π0

r3

3!

∞∑
x=3

x
(r
3

)x−3

= π0

(
r + r2

)
+ π0

r3

3!

∞∑
j=0

(j + 3)
(r
3

)j
= π0

(
r + r2

)
+ π0

r3

3!

[
∞∑
j=0

j
(r
3

)j
+ 3

∞∑
j=0

(r
3

)j]

= π0

(
r + r2

)
+ π0

r3

6

[
r/3

(1− r/3)2
+ 3

1

1− r/3

]
= π0

(
r + r2

)
+

π0r
3(9− 2r)

2(3− r)2

= π0

(
r + r2 +

r3(9− 2r)

2(3− r)2

)
= 2.0418.

Thus, the average number of messages stored in the system at any time is

E(X) = 2.0418.

By Little’s law, the total time from arrival until the end of transmission has an average of

E(R) = E(X)/λA = 0.20418 minutes = 12.2508 seconds.

When a message arrives to the center, its average waiting time until transmission is

E(W) = E(R)− E(S) = E(R)− µS = 12.2508− 10 = 2.2508 seconds.

8

Then, using Little’s law again, the average number of messages waiting to be transmitted is

E(Xw) = λAE(W) = 1/6 · 2.2508 = 0.3751.

Finally, the average number of messages being transmitted is

E(Xs) = E(X)− E(Xw) = 2.0418− 0.3751 = 1.6667 = r.

Alternatively, for the last one, by Little’s law,

E(Xs) = λAE(S) = λAµS =
λA

λS

= r,

just like in the case of an M / M / 1 system.
To answer the last question, a message does not wait at all if there is an idle server (channel) to

service (transmit) it. That happens when the number of jobs in the system is less than the number
of servers k = 3. So,

P (W = 0) = P (X < 3) = P (X = 0 or X = 1 or X = 2)

= π0 + π1 + π2

= π0

(
1 + r +

r2

2!

)
=

73

18
π0 = 0.7004.

Or, we can directly compute

π1 =
r

1!
π0 = 0.2878,

π2 =
r2

2!
π0 = 0.2398,

P (W = 0) = π0 + π1 + π2 = 0.7004.

That means that 70% of the messages are transmitted immediately, with no waiting time.

9

6 M/M/∞ Queuing Systems

Let us now consider an unlimited number of servers k = ∞. That completely eliminates the waiting
time. Whenever a job arrives, there will always be servers available to handle it and thus,

X = Xs, the number of jobs in the system is the number of jobs receiving service,

R = S, response time consists of service time only,

Xw = 0, no jobs waiting in queue,

W = 0, no waiting time.

All the formulas we derived for M / M / k systems apply to M / M /∞ systems, by letting the number
of servers k → ∞. Let us see what we get.
First off, the number of jobs will always be less than the number of servers (i < k), so we always
have n = i. That is, with i jobs in the system, exactly i servers are busy.
The transition probability matrix for the number of jobs in the system, X , is given by

P =



1− pA pA 0 0 0 0 . . .

pS 1− pA − pS pA 0 0 0 . . .

0 2pS 1− pA − 2pS pA 0 0 . . .

0 0 3pS 1− pA − 3pS pA 0 . . .

0 0 0 4pS 1− pA − 4pS pA . . .
...

...
...

...
...

... . . .



.

Let us see what becomes the steady-state distribution. The first component, π0, becomes

π0 = P (X = 0) =
1

∞∑
i=0

ri

i!
+ lim

k→∞

(
rk

k!
· 1

1− r/k

) .

10

Now,

lim
k→∞

(
rk

k!
· 1

1− r/k

)
= lim

k→∞

rk

k!
= 0,

because the factorial converges faster to ∞ than the exponential function. The other term is the
Taylor series of the function er, so the steady-state distribution is

π0 = e−r,

πi =
ri

i!
e−r, ∀i ≥ 1. (6.1)

So the pdf of X(t), the number of concurrent jobs in an M / M /∞ system at time t, is

X(t)

 i

ri

i!
e−r


i=0,1,...

, (6.2)

a Poisson distribution with parameter r =
λA

λS

(which can be arbitrarily large), with mean and

variance
E(X) = V (X) = r. (6.3)

Remark 6.1. Clearly, nobody can physically build an infinite number of devices. In practice, having
an unlimited number of servers simply means that any number of concurrent jobs can be served
simultaneously. Example: internet service providers or telephone companies (which allow virtually
any number of concurrent connections), an unlimited number of people can watch a TV channel or
listen to a radio station, etc. A model with infinitely many servers is a reasonable approximation for
a system where jobs typically don’t wait and get their service immediately. This may be appropriate
for a computer server, a grocery store, Facebook, etc.

Example 6.2. A certain powerful server can afford practically any number of concurrent users.
Users connect to the server at random times, every 3 minutes, on the average, according to a Poisson
counting process. Each user spends an Exponential amount of time on the server with an average of
1 hour and disconnects from it, independently of other users. Find
a) the fraction of time when no users are connected to the server;
b) the expected number of concurrent users at any time;
c) if a message is sent to all users, the probability that 15 or more users will receive this message
immediately.

11

Solution. This fits the description of an M / M /∞ system with

µA = 3 minutes, so

λA = 1/µA = 1/3 / minute,

µS = 1 hour = 60 minutes, so

λS = 1/µS = 1/60 / minute,

r =
λA

λS

=
1/3

1/60
= 20.

The number of concurrent users has Poiss(20) distribution.

a)
P (X = 0) = π0 = e−20 = 2.06 · 10−9 = 0.

This server is practically never idle.

b) The expected number of concurrent users is

E(X) = r = 20 users.

Also, if an urgent message is sent to all the users, then 20 users, on the average, will see it immedi-
ately.

c) Fifteen or more users will receive a message immediately if 15 or more users are connected, so,
with probability

P (X ≥ 15) = 1− P (X < 15) = 1− P (X ≤ 14)

= 1− poisscdf(14, 20) = 0.8951.

7 Simulation of Queuing Systems

We developed a theory and understood how to analyze and evaluate rather basic queuing systems:
Bernoulli and M / M / k. Most of the results were obtained from the Markov property of the consid-
ered queuing processes. For these systems, we derived a steady-state distribution of the number of
concurrent jobs and computed the vital performance characteristics from it.

12

In practice, however, many queuing systems have a rather complex structure. Jobs may arrive
according to a non-Poisson process, often the rate of arrivals changes during the day (there is a
rush hour on highways or on the internet, etc.). Service times may have different distributions and
they are not always memoryless, thus the Markov property may not be satisfied. The number of
servers may also change during the day (additional servers may turn on during rush hours). Some
customers may get dissatisfied with a long waiting time and quit in the middle of their queue. And
so on. Queuing theory does not cover all the possible situations. On the other hand, we can simulate
the behavior of almost any queuing system and study its properties by Monte Carlo methods.

A queuing system is Markov only when its interarrival and service times are memoryless. Then
the future can be predicted from the present without relying on the past. It can be simulated using the
algorithm given for Markov chains (Algorithm 2.13 in Lecture 5). To study long-term characteristics
of a queuing system, the initial distribution of X0 typically does not matter, so we may start this
algorithm with 0 jobs in the system and then “switch on” the servers.
Even when the system is Markov, some interesting characteristics do not follow from its steady-state
distribution directly, but they can be estimated from a Monte Carlo study.

Performance of more complicated and advanced queuing systems can be evaluated by Monte
Carlo methods. One needs to simulate arrivals of jobs, assignment of servers and service times
and to keep track of all variables of interest. Monte Carlo methods of Chapter 2 let us simulate
and evaluate rather complex queuing systems far beyond Bernoulli and M / M / k. As long as we
know the distributions of interarrival and service times, we can generate the processes of arrivals
and services. To assign jobs to servers, we keep track of servers that are available each time when a
new job arrives. When all the servers are busy, the new job will enter a queue. As we simulate the
work of a queuing system, we keep records of events and variables that are of interest to us. After
a large number of Monte Carlo runs, we average our records in order to estimate probabilities by
long-run proportions and expected values by long-run averages.

13

	M/M/k Queuing Systems
	M/M/∞ Queuing Systems
	Simulation of Queuing Systems

