Chapter 1. Review of Probability Theory and Statistics

1 Probability Space and Rules of Probability

To any experiment we assign its **sample space**, denoted by S , consisting of all its possible outcomes (called **elementary events**, denoted by e_i , $i \in \mathbb{N}$).

An event is a subset of S (events are denoted by capital letters, A, B, A_i , $i \in \mathbb{N}$).

Since events are defined as sets, we use set theory in describing them.

- two special events associated with every experiment:
	- the **impossible** event, denoted by \emptyset ("never happens");
	- the sure (certain) event, denoted by S ("surely happens").
- for events, we have the usual operations of sets:
	- complementary event, \overline{A} ,
	- union of A and B, $A \cup B = \{e \in S \mid e \in A \text{ or } e \in B\}$, the event that occurs if either A or B or both occur;
	- intersection of A and B, $A \cap B = \{e \in S \mid e \in A \text{ and } e \in B\}$, the event that occurs if both A and B occur;
	- **difference** of A and B, $A \setminus B = \{e \in S \mid e \in A \text{ and } e \notin B\} = A \cap \overline{B}$, the event that occurs if A occurs and B does not;
	- A implies (induces) B, $A \subseteq B$, if every element of A is also an element of B, or in other words, if the occurrence of A induces (implies) the occurrence of B ; A and B are equal, $A = B$, if A implies B and B implies A;
- two events A and B are **mutually exclusive (disjoint, incompatible)** if A and B cannot occur at the same time, i.e. $A \cap B = \emptyset$;
- three or more events are mutually exclusive if **any two of them are**, i.e.

$$
A_i \cap A_j = \emptyset, \forall i \neq j;
$$

• events $\{A_i\}_{i\in I}$ are collectively exhaustive if $\bigcup A_i = S;$ i∈I

• events $\{A_i\}_{i\in I}$ form a **partition** of S if the events are collectively exhaustive and mutually exclusive, i.e.

$$
\bigcup_{i\in I} A_i = S, \text{ and } A_i \cap A_j = \emptyset, \forall i, j \in I, i \neq j.
$$

• we consider all events relating to an experiment to belong to a σ -field, K, a collection of events from from S, an algebraic structure that allows all the usual set operations (mentioned above) within itself (e.g. the power set $\mathcal{P}(S) = \{S' | S' \subseteq S\}$).

Definition 1.1. Let K be a σ -field over S. A mapping $P: K \to \mathbb{R}$ is called **probability** if it satisfies *the following conditions:*

- (i) $P(S) = 1$;
- (ii) $P(A) > 0$, for all $A \in \mathcal{K}$;
- (iii) *for any sequence* $(A_n)_{n \in \mathbb{N}} \subseteq \mathcal{K}$ *of mutually exclusive events,*

$$
P\left(\bigcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} P(A_n). \tag{1.1}
$$

The triplet (S, \mathcal{K}, P) *is called a probability space.*

Theorem 1.2. *(*Rules of Probability*)*

Let (S, K, P) *be a probability space, and let* $A, B \in K$ *. Then the following properties hold:*

- a) $P(\overline{A}) = 1 P(A)$.
- b) $0 < P(A) < 1$.
- c) $P(\emptyset) = 0$.

d)
$$
P(A \setminus B) = P(A) - P(A \cap B)
$$
.

- e) *If* $A \subseteq B$ *, then* $P(A) \leq P(B)$ *, i.e. P is monotonically increasing.*
- f) $P(A \cup B) = P(A) + P(B) P(A \cap B)$.
- g) *more generally,*

$$
P\left(\bigcup_{i=1}^{n} A_i\right) = \sum_{i=1}^{n} P(A_i) - \sum_{1 \leq i < j \leq n} P(A_i \cap A_j) + \sum_{1 \leq i < j < k \leq n} P(A_i \cap A_j \cap A_k)
$$

+ \ldots + (-1)^{n-1} P\left(\bigcap_{i=1}^{n} A_i\right), \text{ for all } n \in \mathbb{N}.

Definition 1.3. Let (S, K, P) be a probability space and let $B \in K$ be an event with $P(B)$ 0*.* Then for every $A \in \mathcal{K}$, the **conditional probability of** A **given** B (or the **probability of** A *conditioned by* B*) is defined by*

$$
P(A|B) = \frac{P(A \cap B)}{P(B)}.\t(1.2)
$$

Theorem 1.4. (Rules of Probability $-$ Continued)

- h) $P(A \cap B) = P(A)P(B|A) = P(B)P(A|B)$.
- i) *Multiplication Rule* $P(A_1 \cap ... \cap A_n) = P(A_1)P(A_2|A_1)...P(A_n|A_1 \cap ... \cap A_{n-1}).$
- j) *Total Probability Rule*

$$
- P(A) = P(B)P(A|B) + P(\overline{B}) P(A|\overline{B}).
$$

− *in general, if* {Ai}i∈^I *is a partition of* S*,*

$$
P(A) = \sum_{i \in I} P(A_i) P(A|A_i).
$$
 (1.3)

Definition 1.5. *Two events* $A, B \in \mathcal{K}$ *are independent if*

$$
P(A \cap B) = P(A)P(B). \tag{1.4}
$$

- A, B independent $\langle \equiv \rangle P(A|B) = P(A) \langle \equiv \rangle P(B|A) = P(B)$.
- $A = \emptyset$ or $A = S$ and $B \in \mathcal{K}$, then A, B independent.
- A, B independent $\lt=\gt; \overline{A}$, B independent $\lt=\gt; \overline{A}$, \overline{B} independent.

Definition 1.6. *Consider an experiment whose outcomes are finite and equally likely. Then the probability of the event* A *is given by*

$$
P(A) = \frac{\text{number of favorable outcomes for the occurrence of } A}{\text{total number of possible outcomes of the experiment}} = \frac{N_f}{N_t}.
$$
\n(1.5)

Remark 1.7. This notion is closely related to that of *relative frequency* of an event A: repeat an experiment a number of times N and count the number of times event A occurs, N_A . Then the relative frequency of the event A is

$$
f_A = \frac{N_A}{N}.
$$

Such a number is often used as an approximation to the probability of A. This is justified by the fact that

$$
f_A \stackrel{N \to \infty}{\longrightarrow} P(A).
$$

The relative frequency is used in computer simulations of random phenomena.

2 Probabilistic Models

Binomial Model

This model is used when the trials of an experiment satisfy three conditions, namely

- (i) they are independent,
- (ii) each trial has only two possible outcomes, which we refer to as "success" (A) and "failure" (\overline{A}) (i.e. the sample space for each trial is $S = A \cup \overline{A}$),
- (iii) the probability of success $p = P(A)$ is the same for each trial (we denote by $q = 1-p = P(\overline{A})$ the probability of failure).

Trials of an experiment satisfying $(i) - (iii)$ are known as **Bernoulli trials.**

Model: Given n Bernoulli trials with probability of success p, find the probability $P(n; k)$ of exactly k ($0 \leq k \leq n$) successes occurring.

We have

$$
P(n;k) = C_n^k p^k (1-p)^{n-k} = C_n^k p^k q^{n-k}, \quad k = 0, 1, ..., n \text{ and } \qquad (2.1)
$$

$$
\sum_{k=0}^n P(n;k) = 1.
$$

Pascal (Negative Binomial) Model

Model: Consider an infinite sequence of Bernoulli trials with probability of success p (and probability of failure $q = 1 - p$) in each trial. Find the probability $P(n, k)$ of the *n*th success occurring after k failures ($n \in \mathbb{N}$, $k \in \mathbb{N} \cup \{0\}$). We have

$$
P(n,k) = C_{n+k-1}^{k} p^{n} q^{k}, \quad k = 0, 1, ... \text{ and}
$$
\n
$$
\sum_{k=0}^{\infty} P(n;k) = 1.
$$
\n(2.2)

Geometric Model

Although a particular case for the Pascal Model (case $n = 1$), the Geometric model comes up in many applications and deserves a place of its own.

Model: Consider an infinite sequence of Bernoulli trials with probability of success p (and probability of failure $q = 1 - p$) in each trial. Find the probability p_k that the first success occurs after k failures ($k \in \mathbb{N} \cup \{0\}$).

Here, we have

$$
p_k = pq^k, \ k = 0, 1, \dots \text{ and}
$$
\n
$$
\sum_{k=0}^{\infty} p_k = 1.
$$
\n(2.3)

3 Random Variables

3.1 Random Variables, PDF and CDF

Random variables, variables whose observed values are determined by chance, give a more comprehensive quantitative overlook of random phenomena. Random variables are the fundamentals of modern Statistics.

Definition 3.1. Let (S, \mathcal{K}, P) be a probability space. A **random variable** is a function $X : S \to \mathbb{R}$ *satisfying the property that for every* $x \in \mathbb{R}$ *, the event*

$$
(X \le x) := \{ e \in S \mid X(e) \le x \} \in \mathcal{K}.
$$
\n(3.1)

- *if the set of values that it takes,* X(S)*, is at most countable in* R*, then* X *is a discrete random variable (quantities that are counted);*
- *if* $X(S)$ *is a continuous subset of* $\mathbb R$ *(an interval), then* X *is a continuous random variable (quantities that are measured).*

For each random variable, discrete or continuous, there are two important functions associated with it:

• PDF (probability distribution/density function)

 $-$ if X is discrete, then the pdf is an array

$$
X\left(\begin{array}{c}x_i\\p_i\end{array}\right)_{i\in I},\tag{3.2}
$$

where $x_i \in \mathbb{R}$, $i \in I$, are the values that X takes and $p_i = P(X = x_i)$

- if X is continuous, then the pdf is a function $f : \mathbb{R} \to \mathbb{R}$;
- CDF (cumulative distribution function) $F = F_X : \mathbb{R} \to \mathbb{R}$, defined by

$$
F(x) = P(X \le x). \tag{3.3}
$$

– if X is discrete, then

$$
F(x) = \sum_{x_i \le x} p_i. \tag{3.4}
$$

 $-$ if X is continuous, then

$$
F(x) = \int_{-\infty}^{x} f(t) dt.
$$
 (3.5)

The pdf has the following properties:

- all values $x_i, i \in I$, are distinct and listed in increasing order;
- all probabilities $p_i > 0, i \in I$ and $f(x) \ge 0$, for all $x \in \mathbb{R}$;

•
$$
\sum_{i \in I} p_i = 1 \text{ and } \int_{\mathbb{R}} f(t) dt = 1.
$$

The cdf has the following properties:

- if $a < b$ are real numbers, then $P(a < X \le b) = F(b) F(a)$;
- $\lim_{x \to -\infty} F(x) = 0$ and $\lim_{x \to \infty} F(x) = 1$;
- if X is discrete, then $P(X < x) = F(x-0) = \lim_{y \nearrow x} F(y)$ and $P(X = x) = F(x) F(x-0)$;
- if X is continuous, then $P(X = x) = 0$, $P(X < x) = P(X \leq x) = F(x)$ and b

$$
P(a < X \le b) = P(a < X \le b) = P(a < X < b) = P(a \le X \le b) = \int_{a}^{b} f(t) \, dt;
$$

• if X is continuous, then $F'(x) = f(x)$, for all $x \in \mathbb{R}$.

3.2 Numerical Characteristics of Random Variables

The expectation (expected value, mean value) of a random variable X is a real number $E(X)$ defined by

• if *X* is a discrete random variable with pdf
$$
\begin{pmatrix} x_i \\ p_i \end{pmatrix}_{i \in I}
$$
,

$$
E(X) = \sum_{i \in I} x_i P(X = x_i) = \sum_{i \in I} x_i p_i,
$$
\n(3.6)

,

if it exists;

• if X is a continuous random variable with pdf $f : \mathbb{R} \to \mathbb{R}$,

$$
E(X) = \int_{\mathbb{R}} x f(x) dx,
$$
\n(3.7)

if it exists.

The **variance (dispersion)** of a random variable X is the number

$$
V(X) = E\left(X - E(X)\right)^2,\tag{3.8}
$$

if it exists.

The **standard deviation** of a random variable X is the number

$$
\sigma(X) = \text{Std}(X) = \sqrt{V(X)}.
$$
\n(3.9)

Properties:

• $E(aX + b) = aE(X) + b$, for all $a, b \in \mathbb{R}$;

- $E(X + Y) = E(X) + E(Y);$
- If X and Y are independent, then $E(X \cdot Y) = E(X)E(Y)$;
- If $X(e) \leq Y(e)$ for all $e \in S$, then $E(X) \leq E(Y)$;
- $V(X) = E(X^2) E(X)^2$.
- If X and Y are independent, then $V(X + Y) = V(X) + V(Y)$.

Let X be a random variable with cdf $F : \mathbb{R} \to \mathbb{R}$ and $\alpha \in (0, 1)$. A quantile of order α is a number q_α satisfying the condition $P(X < q_\alpha) \leq \alpha \leq P(X \leq q_\alpha)$, or, equivalently,

$$
F(q_{\alpha}-0) \leq \alpha \leq F(q_{\alpha}). \tag{3.10}
$$

If X is continuous, then for each $\alpha \in (0, 1)$, there is a *unique* quantile q_{α} , given by $F(q_{\alpha}) = \alpha$, or equivalently, $q_{\alpha} = F^{-1}(\alpha)$. It is the number with the property that the area to its left, under the graph of the pdf is equal to α (see Figure [1\)](#page-7-0).

Fig. 1: Quantile q_{α}

Quantiles are oftenly used in various statistical procedures, such as confidence intervals, rejection regions, etc. (see Figure [2\)](#page-8-0).

Fig. 2: Quantiles for the Normal distribution