Lecture 3 J

Lecture 3 1/38

Chapter 2. Computer Simulations
and Monte Carlo Methods

Figure 1: Monte Carlo Casino

Monte Carlo Methods and Random Number Generators

1. Monte Carlo Methods and Random Number Generators
1. Monte Carlo Methods and Random Number Generators

» Monte Carlo (MC) methods are methods of approximation (estimation)
based on computer simulations involving random numbers;

» the name does come from the famous Monte Carlo casino in Monaco
(probability distributions involved in gambling are often complicated,
but they can be estimated via simulations);

» the main purpose of simulations is estimating quantities whose direct
computation is complicated, expensive, time consuming, dangerous, or
plainly impossible (think space shuttle launch, spread of a virus or
disease, performance of a medical device or procedure, etc.);

» MC methods are mostly used for computation of probabilities, expected
values and other distribution characteristics, but they can also be used to
estimate lengths, areas, volumes, integrals, irrational numbers (like

e, V2), etc.

Monte Carlo Methods and Random Number Generators

» recall that the probability can be defined as a long-run proportion
(relative frequency);

» with the help of random number generators, computers can actually
simulate a “long run”;

» the longer the run is simulated, the more accurate the results obtained.

4/38

Monte Carlo Methods and Random Number Generators

Some examples include:

o Forecasting. We already know from Statistics that given a distribution
model, it is often very difficult to make reasonably remote predictions.
Often a one-day development depends on the results obtained during all
the previous days. Then prediction for tomorrow may be straightforward,
whereas computation of a one-month forecast is already problematic.

On the other hand, simulation of such a process can be easily performed
day by day (or even minute by minute). Based on present results, we
simulate the next day and then the next and so on. For a time n, we
estimate X, from the (already known) variables X, X», ..., X,—1.
Controlling the length of this do-loop, we can obtain forecasts for the
next days, weeks, months or years. Such simulations can be used to
predict weather, profit, stock prices, costs, etc. Simulation of future
failures reflects reliability of devices and systems. Simulation of future
stock and commodity prices plays a crucial role in finance, as it allows
evaluations of options and other financial deals.

Monte Carlo Methods and Random Number Generators

o Signal transmission (percolation). Consider a network of nodes (a
graph), some nodes connected, others not. A signal is sent from a certain
node. Once a node k receives a signal, it sends it along each of its output
lines with some probability py. After a certain period of time, one wishes
to estimate the proportion of nodes that received a signal, the probability
for a certain node to receive it, etc.

That would mean generating Bernoulli variables with parameters py.
Line k transmits if the corresponding generated variable X; = 1. In the
end, we simply count the number of nodes that got the signal, or verify
whether the given node received it.

This general percolation model describes the way many phenomena may
spread in real life. The role of a signal may be played by a computer
virus spreading from one computer to another, or by rumors spreading
among people, or by fire spreading through a forest, or by a disease
spreading between residents.

Monte Carlo Methods and Random Number Generators

o Markov chain Monte Carlo. This is a modern technique of generating
random variables from rather complex, often intractable distributions, as
long as conditional distributions have a reasonably simple form. In
semiconductor industry, for example, the joint distribution of good and
defective chips on a produced wafer (which is a thin slice of
semiconductor) has a rather complicated correlation structure. As a
result, it can only be written explicitly for rather simplified artificial
models. On the other hand, the quality of each chip is predictable based
on the quality of the surrounding, neighboring chips. Given its
neighborhood, conditional probability for a chip to fail can be written,
and thus, its quality can be simulated by generating a corresponding
Bernoulli random variable with X; = 1 indicating a failure.

According to the Markov chain Monte Carlo (MCMC) methodology, a
long sequence of random variables is generated from conditional
distributions. A wisely designed MCMC will then produce random
variables that have the desired unconditional distribution, no matter how
complex it is.

Monte Carlo Methods and Random Number Generators

o Queuing systems (server facilities). A queuing system is described by a
number of random variables. It involves spontaneous arrivals of jobs,
their random waiting time, assignment to servers, their random service
and departure time; some jobs may exit prematurely, others may not
enter the system if it appears full or busy, also, intensity of the incoming
traffic and the number of servers on duty may change during the day.

One wants to be able to evaluate a queuing system’s vital performance
characteristics, such as a job’s average waiting time, average length of a
queue, the proportion of customers who had to wait, the proportion of
“unsatisfied customers” (that exit prematurely or cannot enter), the
proportion of jobs spending more than a certain time in the system, the
expected usage of each server, the average number of available (idle)
servers at the time when a job arrives, and so on.

Monte Carlo Methods and Random Number Generators

» so, different types of phenomena can be computer-simulated; however,
one simulation is not enough for estimating probabilities and
expectations;

» once we understand how to program the given phenomenon once, we can
embed it in a do-loop and repeat similar simulations a large number of
times, generating a long run;

» since the simulated variables are random, we will generally obtain a
number of different realizations, from which we calculate probabilities
and expectations as long-run frequencies and averages.

Monte Carlo Methods and Random Number Generators

Random Number Generators

» implementation of MC methods reduces to generation of random
variables from given distributions; all mathematical and statistical
software packages (Matlab, Maple, Mathematica, SAS, R, Splus, SPSS,
Minitab, Excel, etc.) have built-in procedures for generating random
variables from the most common (discrete or continuous) distributions;

» as it turns out, the main job is that of generating random numbers from a
Uniform distribution, in fact, from a Standard Uniform distribution;
these can then be used to generate random numbers from any given
distribution.

Monte Carlo Methods and Random Number Generators

» generating truly random Uniformly distributed numbers is not an easy
task and is an ongoing research area in Modern Statistics and Stochastic
Analysis;

» how do we know that the numbers obtained are “truly random” and do
not have any undesired patterns? For example, quality random number
generation is so important in coding and password creation that people
design special tests to verify the “randomness” of generated numbers;

» more often, pseudo-random (deterministic) numbers are generated, i.e. a
long list of numbers; the user specifies a random number seed that points
to the location from which the list will be read; often each seed is
generated within the system, to improve the quality of random numbers.

2. Discrete Methods

2. Discrete Methods

These are methods for generating some simple discrete variables, most being
specific to certain distributions, by using their interpretation and relationship
with other variables, rather than their definition (pdf or cdf).

From here on, we denote by U € U(0, 1) a Standard Uniform variable. Let us
recall the pdf and cdf (equation (5.10) in Chapter 1, Lecture 2):

1, x€0,1] 0, x=0
o ={ 5 T R =P < - N o<t @

12/38

Discrete Methods

Bernoulli Distribution Bern(p),p € (0,1)

Recall that a Bernoulli distribution models the occurrence (or nonoccurrence)
of an event (success), with a given probability p.

Let U be a Standard Uniform variable. That means its value is in (0, 1), just
like the value of p. Then define

_ I, U<p
X = {O, Usp’ (2.2)

i.e. define “success” as (U < p) (and, obviously, “failure” as (U > p)).
Let us check that this is indeed a Bernoulli variable with parameter p. We have

P(X=1)=PU <p) =Fylp) =p,

by (2.1), since p € (0, 1). So X has the desired distribution.

Discrete Methods

Algorithm 2.1.
Readp € (0,1)
U = rand,

X = (U <p);

» now we can use this simple way of simulating success/failure with a
given probability, for all the variables that are defined in terms of that.

Discrete Methods

Binomial Distribution B(n,p),n € N,;p € (0,1)

Recall (Remark 5.2 in Chapter 1, Lecture 2) that a Binomial B(n, p) variable
is the sum of n independent Bern(p) variables.

Algorithm 2.2.
Readn € N,;p € (0,1)
U = rand(n, 1);

X = sum(U < p);

Discrete Methods

Geometric Distribution Geo(p),p € (0,1)

A Geometric variable counts the number of failures that occurred before the
1% success. We can simulate that.

Algorithm 2.3.

Readp € (0,1)

X = 0; % initial number of failures

while rand > p % while there are failures
X =X+ 1; % count number of failures

end % stop at the first success

Remark 2.4.

Obviously, the same algorithm can be used to simulate a Y € SGeo(p)
variable, as well. Y is the number of zrials needed to get the 1% success, so
simply let Y = X + 1 in Algorithm 2.3.

16/38

Discrete Methods

Negative Binomial (Pascal) Distribution NB(n,p),n € N,p € (0, 1)

Again, we use the same Remark 5.2 (in Chapter 1, Lecture 2), which states
that a NB(n, p) variable is the sum of n independent Geo(p) random variables.

Algorithm 2.5.

Readn € N,p € (0,1)
X = zeros(1,n);
fori =1:n % generate n independent Geo(p) variables
while rand > p % while there are failures
X(i) = X(i) + 1; % count number of failures
end % stop at the first success
end
Y = sum(X); % the sum is a NBin(n, p) variable

Discrete Methods

Arbitrary Discrete Distribution

Let X be an arbitrary discrete random variable with pdf

X0 X1 ...
X , i = 1. 2.3
(oo) X =

» we generalize the idea that was used to generate a Bern(p) variable;

» for that, we basically divided the interval [0, 1] into the disjoint
subintervals [0, p) and [p,p + (1 — p)];

» we can do the same for any number of subintervals, as seen in Figure 2.

Discrete Methods

U<p U>p
X =1 X =0 U
(@ | I I >
o P 1-p 1
o — o~ e
5] 8 8 8
Il Il Il Il
= = ST b U
(b) | I I —1 I >
0 Do b1 P2 : Pn 1

Figure 2: Generating arbitrary discrete distributions

19/38

Discrete Methods

Algorithm 2.6.
@ Readx;, p;, i=1,2,...

e Divide the interval [0, 1] into subintervals

AO = [OaPO)

A1 = [po,po+p1)

Ay = [po+pi,po+pi+p2)

Ai = lpo+--+pi-,pot--+pi)

Then length(A;) = p;, for a finite or countably infinite number of
intervals.

@ GetU € U(0,1).
o If U € A;, then let X = x;.

20/38

Discrete Methods

Then, we have
PX=x)) = PUE€A)
= P(po+- P SU<po++pi1+pi)
= Fy(po+ -+ pit +pi) — Fulpo+ - +pi1)

(Po+ -+ pict +pi) = (Po+ -+ +pi-1)
= DPis

so X has indeed the desired pdf (2.3).

Discrete Methods

Example 2.7.
Let us use Algorithm 2.6 to generate a variable with pdf

0 1
X — 1.
<p0 Pi P2 > Zp’

ieN

Recall that for a discrete random variable, the cdf is computed as

F(x) = P(X <x) Zp,,

xi<x

i.e., in this case,

F(k) = > pi=potpi+-+p k=01,...,
i<k

so to check if U € Ay, we check that F(k — 1) < U < F(k).

Discrete Methods

Algorithm
Read pg, p1, - - -
GetU € U(0,1)
i = 0; % initial value of X
F = po; % initial value of cdf F(0)
while U > F % check if U € A;
i=i+1;
F =F +p;; % new value of cdf, F(i + 1)
end % the while loop ends when U < F (i)
X =1

Discrete Methods

We can use this to generate a Poiss(\) variable, with pdf

i 0 1 2

X N 22 , A>0.
ZeA e de™r e L.

i! i=0,1,... 2

Algorithm 2.8.

Read A > 0
U = rand,
i=0;
F = exp(—));
while U >= F
i=i+1;
F = F + exp(—\) x X'i/factorial(i);
end
X =1

Inverse Transform Method

3. Inverse Transform Method

This is a method used when we want to generate a random variable whose cdf
F does not have a very complicated form. It is based on the following result:

Theorem 3.1.

Let X be a continuous random variable with cdf F : R — R. Then
U=FX)eU(,1).

Proof.

So, F is the cdf of X, i.e. F(x) = P(X < x), for all x € R. We will show that
U has the U(0, 1) pdf, by starting with its cdf and then taking its derivative.

First off, let us notice that, being a cdf (i.e. a probability), F(x) € [0, 1], for all
x € R and, thus, all the values of U are in [0, 1].
[

Inverse Transform Method

Proof.

Secondly, X being a continuous random variable, there exists an interval
[a,b] C R such that :

e F : [a,b] — [0, 1] is strictly increasing (therefore injective),

e F(x) =0,Vx < aand

e F(x) =1,Vx > b.

Hence, its inverse F~! : [0, 1] — [a, b] exists.

Now, let us consider the cdf, Fy.

Letx € R.

If x < 0, then FU(= P(U < x) = P(impossible event) = 0.

Hence, fy(x) = Fj,(x) =

If x > 1, then Fy(x) = P(U
fulx) = Fylx) = 0.

For x € [0, 1], we have
Fy(x) =PU<x)=P(FX)<x)=P(X<F'(x)) =F (F'(x)) =x.

Then the pdf is fy(x) = F};(x) = 1 and, hence, U € U(0, 1).

| A

x) = P(sure event) = 1 and thus,

Inverse Transform Method

As a consequence, to generate a continuous random variable with given cdf F,
we generate a variable U € U(0, 1) and let

X =F (V). (3.1
Indeed, then the cdf of X is

Fx(x) = P(X<x) = P(F ' (U)<x)
= P(U<F(x) = Fy(F(x)) = F(x),

for all x € R, the last assertion following from the fact that F(x) € [0, 1].
Thus X has the desired cdf F.

Inverse Transform Method

Example 3.2.

Use the ITM to generate a random variable X with pdf

fx) = s(x+1),xe[-1,1]. (3.2)

Then use the value U = 0.16 to generate a value for X.

Solution. First, we find the cdf F(x / 1)

If x < —1, obviously F(x) = 0 (the 1ntegrand is 0).
If x € [—1, 1], we have

F(x) = ;/(I—I—l)dt = ;(;tzjw) x

1 2
S = —(x+ 1A
2<2x +x+2> 4()61L)

Inverse Transform Method

1

x> l,thenF(x)—;/(H—l)dt—/f(t)dt— I

—1 R
So,
0,
1
F(.X) == Z(.x—i‘l)z,
1,

x < —1
—1<x<1
x> 1

29/38

Inverse Transform Method

Figure 3: Function F in Example 3.2

The graph of the cdf F is shown in Figure 3. One can see that
F :[—1,1] — [0, 1] is one-to-one and surjective, so the inverse
F~1:100,1] — [-1,1] exists.

We find it by solving F(x) = y for x, i.e. x = F~'(y).

Inverse Transform Method

We have

FEF1 =,
(x+1)> = 4y,
x+1 = /4y,
x = 2y—1,

so, F~!(y) =2,/y — 1, fory € [0, 1].
Then we generate X from U by

X=FlU)=2vU-1.

For the value U = 0.16, we get X =2-04 — 1 = —0.2.

Inverse Transform Method

Example 3.3.
Use the ITM to generate X € Exp(A), A > 0. J

Solution. For X € Exp()\), the pdf and cdf are given by
f(x) = e x>0and F(x) = 1 —e M x>0,

respectively (see equation (5.14), Chapter 1, Lecture 2).
So, we find the inverse of the cdf

F(X) = U,
l—e™ = U,
e = 1-U,

XX = In(l1-0),
X, = —~In(1-U). (3.3)

Inverse Transform Method

Now, algebraically, we cannot simplify this expression, but we can notice the
following:
UeU(0,1)<1-UecU(,1).

Indeed, we see that for x € [0, 1],

Fi_ylx) = Pl-U<x) = PU>1—-x) = 1-PU<1—x)
= 1—-Fy(l—-x) - (1-x) = x = Fyx).
Then, by taking the derivative, fj_y(x) = fy(x), so we can replace U by
1 — U in (3.3) and get
1
X, = =5 In(U). (3.4)
Notice that since U, 1 — U € (0, 1), we have that both In (U),In (1 —U) <0
and, thus, X, X, > 0, as they should be.
|

Inverse Transform Method

Discrete Inverse Transform Method

We can see that the previous algorithm seems to have one major fault, namely,
that it is not applicable to discrete random variables, since in this case, the cdf
F is neither injective, nor surjective and, thus, not invertible.

This problem can be overcome, by adjusting the algorithm the following way.
In equation (3.1), we will take

X = FYU) = min{x|F(x) > U}. (3.5)

This is known as the generalized inverse function.

Inverse Transform Method

A
[AEE—————— —
|
|
p—8
L/ !
&= | |
| |
Ll I | | :
| | |
O | 1 T
Ty Ty T3

Figure 4: Generalized inverse

So, in Figure 4, we have

X, = FYU) = min{x|F(x) > U} = x, here F(x;)=Uj,
X, = FYU;) = min{x|F(x) > Uy} = xy, here F(x;) > U>.

Inverse Transform Method

Example 3.4.
Let us revisit Geometric and Shifted Geometric variables and generate them
using the DITM.

Solution. To keep computations simple, we generate a SGeo(p) variable first
and then adjust it accordingly to get a Geo(p) variable.
For X € SGeo(p),p € (0, 1), recall the cdf (Chapter 1, Lecture 2):

Fx)=1-¢=1-(1-p)*, xeN.

We use (3.5) to find X:

1_(1_p)x > U7
(1_p)x < I_Ua
xIn(1-p) < In(1-U),
In (1 —
x > lrrll((l—]l)]))’ since In (1 —p) < 0.

Inverse Transform Method

The smallest integer value satisfying this is the ceiling function value. Also,
as before, 1 — U can be replaced by U. Thus, a variable X € SGeo(p) is
generated by

x = |an2s]. (6)

For a X € Geo(p) variable, with cdf F(x) = 1 — (1 — p)**!, the same
computations lead to

X = [m(U))—l-‘. 3.7

Inverse Transform Method

Remark 3.5.
Notice how similar formula (3.6)

P In (U)
In(1-p)
for simulating a SGeo(p) variable is to formula (3.4)

X = —%ln(U),

which gives the simulation of an Exp()\) variable.

If A = —In (1 — p), then the generated SGeo(p) variable is just the ceiling of
the Exp(\) one.

In other words, the ceiling of an Exponential variable has Shifted Geometric
distribution. This just shows, again, the strong analogy between the two
distributions.

	Monte Carlo Methods and Random Number Generators
	Discrete Methods
	Inverse Transform Method

