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Random Vectors

4. Random Vectors

Everything that holds for random variables (one-dimensional case) can be
easily generalized to any dimension, i.e. to random vectors. We restrict our
discussion to two-dimensional random vectors (X,Y) : § — R,

Definition 4.1.

Let (S, K, P) be a probability space. A random vector is a function
(X,Y) : S — R? satisfying the condition

X<x,Y<y)={ecS|X(e) <x,Y(e) <y}eK,

for all (x,y) € R2.

e if the set of values that it takes, (X, Y)(S), is at most countable in R?,
then (X, Y) is a discrete random vector,

e if (X, Y)(S) is a continuous subset of R?, then (X, Y) is a continuous
random vector.




The function F : R> — R defined by

Fx,y) = P(X<xY<y)
is called the joint cumulative distribution function (joint cdf) of the vector
(X,Y).

The properties of the cdf of a random variable translate very naturally for a
random vector, as well: Let (X, Y) be a random vector with joint cdf
F :R? — Rand let Fy, Fy : R — R be the cdf’s of X and Y, respectively.

» Ifa; < by, k=1,2, then
P(a1 < X< b1,a2 <Y< bz) = F(b],bz) = F(b],az)
F(ai,by) + F(a,ay).
» lim F(x,y) =1,
X,y—00
lim F(x,y) = lim F(x,y) =0, Vx,y € R,
y——00 X——00
lim F(x,y) = Fx(x), Vx € R, lim F(x,y) = Fy(y), Vy € R.
y—r00 X—00
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4.1. Discrete Random Vectors

Let (X,Y) : S — R? be a two-dimensional discrete random vector.
o the joint probability distribution (function) of (X, Y) is a
two-dimensional array of the form

X\Y cee )
X; e pii e | Di 4.1
4j

where (x;,y;) € R?, (i,j) € I x J are the values that (X, Y) takes and
p,'j = P(X = Xi, Y = yj)-
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Properties:

» An important property is that

dopi=pi ) pi=qiand D pi=> > pi=1,
jeJ icl i€l jeJ jel iel
where p; = P(X =x;), i€ Iand gy =P(Y =y;), j € J.
The probabilities p; and g; are called marginal pdf’s.

» For discrete random vectors, the computational formula for the cdf is

F(xvy) = ZZPU? X,y € R.

Xi<xy;j<y
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Operations with discrete random variables
Let X and Y be two discrete random variables with pdf’s

X<xi> and Y(yj> .
Pi Jier 9/ jes

@ Sum. The sum of X and Y is the random variable with pdf given by

X+Y<”+”> : (4.2)
Pij (if)EIXJ
@ Product. The product of X and Y is the random variable with pdf given
by
XY ( i ) : (4.3)
Pij J (ipeixs
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@ Scalar Multiple. The random variable aX, a € R, with pdf given by

aX( i ) . (4.4)
Pi Jier
@ Quotient. The quotient of X and Y is the random variable with pdf given
by
X/Y( %/ > : 4.5)
P/ (ijerxs

provided that y; # 0, for all j € J.

o In general, if # : R — R is a function, then we can define the random
variable A(X), with pdf given by

h(X) ( h(xi) )iel. (4.6)

Pi
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Variables X and Y are said to be independent if
pij =P (X = Xi, Y = yj) =P (X = X,‘) P (Y = yj) = pina (47)

forall (i,j) € I x J.

If X and Y are independent, then in the pdf’s of the sum (4.2), product (4.3)
and quotient (4.5),

pij = pigj, forall (i,j) €1xJ.



Random Vectors Continuous Random Vectors

4.2. Continuous Random Vectors

Let (X, Y) be a continuous random vector with joint cdf F : R> — R.

o then F is absolutely continuous, i.e. there exists a real function
f:R?> = R, such that

x oy
F(x,y) = //f(u,v)dudv, 4.8)

—00 —O0

for all x,y € R.
The function f is called the joint probability density function (joint
pdf) of (X,Y).
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Let (X, Y) be a continuous random vector with joint cdf F and joint density
function f.

Let Fx, Fy : R — R be the cdf’s of X and Y and fx, fy : R — R be the pdf’s
of X and Y, respectively.

Properties:

32F(X y) 2
0y = f(x,y), for all (x,y) € R

> //f(x,y) dvdy = 1.
RZ

» for any domain D C RZ,P((X, Y) € D) = / f(x,y) dxdy.

> fx(x /fxydy,VxE]Randfy /fxydx Vy € R.

When obtamed from the vector (X, Y), the pdf’s fx and fy are called marginal
densities.



Random Vectors Continuous Random Vectors

The continuous random variables X and Y are said to be independent if

T (6y) = (), (4.9)

for all (x,y) € R2.
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Bernoulli Distribution Bern(p)

5 Common Distributions
5.1. Common Discrete Distributions

Bernoulli Distribution Bern(p)

A random variable X has a Bernoulli distribution with parameter
p€(0,1) (g =1-—p),ifits pdfis

X(O 1). (5.1)
q p

EX) = p,
V(X) = pq.

Then

» a Bernoulli random variable models the occurrence or nonoccurrence of
an event

12/31



Common Distributions Discrete Uniform Distribution U (m)

Discrete Uniform Distribution U(m)

A random variable X has a Discrete Uniform distribution () with

parameter m € N, if its pdf is
k
x| 1 : (5.2)
m k=1,m

with mean and variance

m—+1
EX) = ——
() 2 Y
2
m-—1
VX) =
(X) 7

» the random variable that denotes the face number shown on a die when it
is rolled, has a Discrete Uniform distribution U(6).
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Binomial Distribution B(n, p)

A random variable X has a Binomial distribution () with parameters
neNandp € (0,1) (g =1 — p), if its pdf is

k
X( kpk gk > , (5.3)
Cip k=07
with
EX) = np,
V(X) = npq.

» this distribution corresponds to the Binomial model. Given n Bernoulli
trials with probability of success p, let X denote the number of successes.
Then X € B(n, p);

» the Bernoulli distribution is a particular case of the Binomial one, for
n =1, Bern(p) = B(1,p).
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Geometric Distribution Geo(p)

A random variable X has a Geometric distribution () with parameter
p€(0,1) (g =1—p),ifits pdf is given by

X< kk> . (5.4)
P9/ i=o,,...

Its cdf, expectation and variance are given by

Fx) = 1—-¢" x=0,1,...
q

Ex) = €

(X) )
q

ViX) = —.

(X) po

» if X denotes the number of failures that occurred before the occurrence
of the 1°" success in a Geometric model, then X € Geo(p).
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Remark 5.1.

In a Geometric model setup, one might count the number of frials needed to
get the 1% success. Of course, if X is the number of failures and Y the number
of trials, then we simply have ¥ = X + 1 (the number of failures plus the one
success). The variable Y is said to have a Shifted Geometric distribution with
parameter p € (0,1) (Y € SGeo(p)). Its pdf is

k
X < < ) (5.5)
P4 k=12,...

and the rest of its characteristics are given by

Fix) = 1—¢'x=0,1,...
_ 1 _ 4
EX) = o V(X) 2

In some books, this is considered to be a Geometric variable (not in Matlab,
though).
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Negative Binomial (Pascal) Distribution NB(n, p)

A random variable X has a Negative Binomial (Pascal) () distribution

with parameters n € Nandp € (0,1) (¢ = 1 — p), if its pdf is

k
X < ) ) ) .
Coriai?'4 ) io...

Then

» this distribution corresponds to the Negative Binomial model. If X

(5.6)

denotes the number of failures that occurred before the occurrence of the

n[h

success in a Negative Binomial model, then X € NB(n, p);

» it is a generalization of the Geometric distribution, Geo(p) = NB(1,p).
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Poisson Distribution P (\)

A random variable X has a Poisson distribution () with parameter
A > 0, if its pdf is

k
X 2K A 5.7
767
k! k=0,1,...
with
EX) = V(X) = A

» Poisson’s distribution is related to the concept of “rare events”, or
Poissonian events. Essentially, it means that two such events are
extremely unlikely to occur simultaneously or within a very short period
of time. Arrivals of jobs, telephone calls, e-mail messages, traffic
accidents, network blackouts, virus attacks, errors in software, floods,
earthquakes are examples of rare events;

» a Poisson variable X counts the number of rare events occurring during a
fixed time interval. The parameter A represents the average number of
occurrences of the event in that time interval.



(@VLIIEDNILTHONIN  Poisson Distribution P (lambda)

Remark 5.2.

» The sum of n independent Bern(p) random variables is a B(n, p) variable.

» The sum of n independent Geo(p) random variables is a NB(n, p)
variable.




[€URE DIV Uniform Distribution U(a, b)
5.2. Common Continuous Distributions
Uniform Distribution U(a, b)

A random variable X has a Uniform distribution ()with parameters
a,beR, a<b,ifits pdfis

1

— if b
fw = { oo Tr€ladl (5.8)
0, if x ¢ [a,b].
Then its cdf is
x 0, if x<a
xX—a .
F(x) = /f(t)dt = P if a<x<b (5.9
—00 1, if x>b
and its numerical characteristics are
a+b (b — a)?
EX) = ViX) = ~——~.
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» the Uniform distribution is used when a variable can take any value in a
given interval, equally probable. For example, locations of syntax errors
in a program, birthdays throughout a year, arrival times of customers, etc.

b—a

(a) Density Function (pdf) (b) Cumulative Distribution Function (cdf)

Figure 1: Uniform Distribution
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Uniform Distribution U(a, b)

A special case is that of a Standard Uniform Distribution, where a = 0 and

b = 1. The pdf and cdf are given by

0,
0 ={ g TSl Rl - .

x<0
0<x<1
x>1.

(5.10)

» Standard Uniform variables play an important role in stochastic
modeling; in fact, any random variable, with any thinkable distribution
(discrete or continuous) can be generated from Standard Uniform

variables.

Lecture 2
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Normal Distribution N(u, o)

A random variable X has a Normal distribution ((norm|) with parameters

@€ Rand o > 0, if its pdf is

1 _=w)?
> e 22 xeR
T

fx) = .

The cdf of a Normal variable is then given by

<r u)z

1 1
F = dr = ~2dt
(x) oV 2T vV 27T /

and its mean and variance are

E(X) = p,
V(X) = o%

(5.11)

(5.12)
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ol =

A\

0 p—0o p pto 0 I

(a) Density Function (pdf) (b) Cumulative Distribution Function (cdf)

Figure 2: Normal Distribution
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» there is an important particular case of a Normal distribution, namely
N(0, 1), called the Standard (or Reduced) Normal Distribution. A
variable having a Standard Normal distribution is usually denoted by Z.
The density and cdf of Z are given by

2

X
X 1 12
e 2, xeRand Fz(x) =®(x) = — [ e 2dt (5.13)
V2T

1
zZ\X) =
fold) = =
» the function Fz given in (5.13) is known as Laplace’s function and its
values can be found in tables or can be computed by any mathematical

software. One can notice that there is a relationship between the cdf of
any Normal N(u, o) variable Xand that of a Standard Normal variable Z,

namely,
x —
Fx(x) = FZ < M) .

(o)
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Exponential Distribution Exp(\)

A random variable X has an Exponential distribution () with parameter
A > 0, if its pdf and cdf are given by

(5.14)

—Ax . >
{)\e , ifx>0 and F(x) =

l—e ™ x>0
0, ifx <0

0, x<0’

flx) =

respectively. Its mean and variance are given by

EX) = 5,
V(X) = %
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A
[ e e
0 > 0 >
(a) Density Function (pdf) (b) Cumulative Distribution Function (cdf)

Figure 3: Exponential Distribution
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» the Exponential distribution is often used to model time: lifetime,
waiting time, halftime, interarrival time, failure time, time between rare
events, etc. The parameter A represents the frequency of rare events,

measured in time !,

» a word of caution here: The parameter x4 in Matlab (where the
|
Exponential pdf is defined as —e lltx, x > 0)is actually g = 1/A. Tt all

comes from the different interpretation of the “frequency”. For instance,
if the frequency is “2 per hour”, then A = 2/hr, but this is equivalent to
“one every half an hour”, so x = 1/2 hours. The parameter y is
measured in time units.

» the Exponential distribution is a special case of a more general
distribution, namely the Gamma(a, b), a, b > 0, distribution ().
The Gamma distribution models the rotal time of a multistage scheme,
e.g. total compilation time, total downloading time, etc.
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» if a € N, then the sum of « independent Exp(\) variables has a
Gamma(a, 1/X) distribution.

» in a Poisson process, where X is the number of rare events occurring in
time 7, X € P(\t), the time between rare events and the time of the
occurrence of the first rare event have Exp(\) distribution, while 7', the
time of the occurrence of the o' rare event has Gamma(c, 1/))
distribution.
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Gamma-Poisson formula

Let T € Gamma(a, 1/)\) with « € N and A > 0. Then T represents the time
of the occurrence of the o™ rare event. Then, the event (7 > t) means that the
o™ event occurs after the moment 7. That means that before the time 7, fewer
than « rare events occur. So, if X is the number of rare events that occur
before time ¢, then the two events

T>1)=X<aw
are equivalent (equal). Now, X has a P(Ar) distribution. So, we have:
P(T>t) = PX<a)and P(T<t) = P(X> a). (5.15)

» this formula is useful in applications where this setup can be used
(seeing a Gamma variable as a sum of times between rare events, if
a € N), as it avoids lengthy computations of Gamma probabilities.
However, one should be careful, 7 is a continuous random variable, for
which P(T > t) = P(T > t), whereas X is a discrete one, so on the
right-hand sides of (5.15) the inequality signs cannot be changed.
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» the Exponential distributions has the so-called “memoryless property”.
Suppose that an Exponential variable T represents waiting time.
Memoryless property means that the fact of having waited for # minutes
gets “forgotten” and it does not affect the future waiting time. Regardless
of the event (T > ), when the total waiting time exceeds 7, the remaining
waiting time still has Exponential distribution with the same parameter.
Mathematically,

P(T>t+x|T>t) = P(T>x), t,x>0. (5.16)

» the Exponential distribution is the only continuous variable with this
property. Among discrete ones, the Shifted Geometric distribution also
has this property. In fact, there is a close relationship between the two
families of variables. In a sense, the Exponential distribution is a
continuous analogue of the Shifted Geometric one, one measures time
(continuously) until the next rare event, the other measures time
(discretely) as the number of trials until the next success.
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