Lecture 2

Lecture 2 1/31

4. Random Vectors

Everything that holds for random *variables* (one-dimensional case) can be easily generalized to any dimension, i.e. to random vectors. We restrict our discussion to two-dimensional random vectors $(X, Y) : S \to \mathbb{R}^2$.

Definition 4.1.

Let (S, \mathcal{K}, P) be a probability space. A **random vector** is a function $(X,Y): S \to \mathbb{R}^2$ satisfying the condition

$$(X \le x, Y \le y) = \{e \in S \mid X(e) \le x, Y(e) \le y\} \in \mathcal{K},$$

for all $(x, y) \in \mathbb{R}^2$.

- if the set of values that it takes, (X, Y)(S), is at most countable in \mathbb{R}^2 , then (X, Y) is a **discrete random vector**,
- if (X, Y)(S) is a continuous subset of \mathbb{R}^2 , then (X, Y) is a **continuous** random vector.

Lecture 2

The function $F: \mathbb{R}^2 \to \mathbb{R}$ defined by

$$F(x, y) = P(X \le x, Y \le y)$$

is called the **joint cumulative distribution function (joint cdf)** of the vector (X,Y).

The properties of the cdf of a random variable translate very naturally for a random vector, as well: Let (X, Y) be a random vector with joint cdf $F: \mathbb{R}^2 \to \mathbb{R}$ and let $F_X, F_Y: \mathbb{R} \to \mathbb{R}$ be the cdf's of X and Y, respectively.

ightharpoonup If $a_k < b_k$, $k = \overline{1,2}$, then

$$P(a_1 < X \le b_1, a_2 < Y \le b_2) = F(b_1, b_2) - F(b_1, a_2) - F(a_1, b_2) + F(a_1, a_2).$$

 $\lim_{y \to -\infty} F(x, y) = \lim_{x \to -\infty} F(x, y) = 0, \ \forall x, y \in \mathbb{R},$ $\lim_{y \to \infty} F(x, y) = F_X(x), \ \forall x \in \mathbb{R}, \lim_{x \to \infty} F(x, y) = F_Y(y), \ \forall y \in \mathbb{R}.$

> Lecture 2 3/31

4.1. Discrete Random Vectors

Let $(X, Y): S \to \mathbb{R}^2$ be a two-dimensional discrete random vector.

• the **joint probability distribution (function)** of (X, Y) is a two-dimensional array of the form

$X \setminus Y$	 y_j				
÷	:				
x_i	 p_{ij}	• • •	p_i		
:	:				
	q_i				

where $(x_i, y_j) \in \mathbb{R}^2$, $(i, j) \in I \times J$ are the values that (X, Y) takes and $p_{ij} = P(X = x_i, Y = y_i)$.

Lecture 2

Properties:

➤ An important property is that

$$\sum_{j \in J} p_{ij} = p_i, \ \sum_{i \in I} p_{ij} = q_j \ \text{ and } \ \sum_{i \in I} \sum_{j \in J} p_{ij} = \sum_{j \in J} \sum_{i \in I} p_{ij} = 1,$$

where $p_i = P(X = x_i)$, $i \in I$ and $q_j = P(Y = y_j)$, $j \in J$.

The probabilities p_i and q_j are called **marginal** pdf's.

➤ For discrete random vectors, the computational formula for the cdf is

$$F(x,y) = \sum_{x_i \le x} \sum_{y_i \le y} p_{ij}, \ x, y \in \mathbb{R}.$$

Operations with discrete random variables

Let *X* and *Y* be two discrete random variables with pdf's

$$X \left(\begin{array}{c} x_i \\ p_i \end{array} \right)_{i \in I} \text{ and } Y \left(\begin{array}{c} y_j \\ q_j \end{array} \right)_{j \in J}.$$

• Sum. The sum of X and Y is the random variable with pdf given by

$$X + Y \begin{pmatrix} x_i + y_j \\ p_{ij} \end{pmatrix}_{(i,j) \in I \times J}.$$
 (4.2)

• **Product.** The product of *X* and *Y* is the random variable with pdf given by

$$X \cdot Y \begin{pmatrix} x_i y_j \\ p_{ij} \end{pmatrix}_{(i,j) \in I \times J}.$$
 (4.3)

• Scalar Multiple. The random variable αX , $\alpha \in \mathbb{R}$, with pdf given by

$$\alpha X \left(\begin{array}{c} \alpha x_i \\ p_i \end{array}\right)_{i \in I}. \tag{4.4}$$

• **Quotient.** The quotient of *X* and *Y* is the random variable with pdf given by

$$X/Y \begin{pmatrix} x_i/y_j \\ p_{ij} \end{pmatrix}_{(i,j)\in I\times J}, \tag{4.5}$$

provided that $y_i \neq 0$, for all $j \in J$.

• In general, if $h : \mathbb{R} \to \mathbb{R}$ is a function, then we can define the random variable h(X), with pdf given by

$$h(X) \left(\begin{array}{c} h(x_i) \\ p_i \end{array}\right)_{i \in I}. \tag{4.6}$$

Lecture 2 7/31

Variables *X* and *Y* are said to be **independent** if

$$p_{ij} = P(X = x_i, Y = y_j) = P(X = x_i) P(Y = y_j) = p_i q_j,$$
 (4.7)

for all $(i,j) \in I \times J$.

If X and Y are independent, then in the pdf's of the sum (4.2), product (4.3) and quotient (4.5),

$$p_{ij} = p_i q_j$$
, for all $(i,j) \in I \times J$.

4.2. Continuous Random Vectors

Let (X, Y) be a continuous random vector with joint cdf $F : \mathbb{R}^2 \to \mathbb{R}$.

• then *F* is *absolutely continuous*, i.e. there exists a real function $f: \mathbb{R}^2 \to \mathbb{R}$, such that

$$F(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u,v) du dv, \qquad (4.8)$$

for all $x, y \in \mathbb{R}$.

The function f is called the **joint probability density function (joint pdf)** of (X, Y).

Let (X, Y) be a continuous random vector with joint cdf F and joint density function f.

Let $F_X, F_Y : \mathbb{R} \to \mathbb{R}$ be the cdf's of X and Y and $f_X, f_Y : \mathbb{R} \to \mathbb{R}$ be the pdf's of X and Y, respectively.

Properties:

$$ightharpoonup \frac{\partial^2 F(x,y)}{\partial x \partial y} = f(x,y), \text{ for all } (x,y) \in \mathbb{R}^2.$$

$$\iint_{\mathbb{D}^2} f(x, y) \, dx dy = 1.$$

➤ for any domain
$$D \subseteq \mathbb{R}^2$$
, $P((X,Y) \in D) = \iint_D f(x,y) dxdy$.

When obtained from the vector (X, Y), the pdf's f_X and f_Y are called **marginal** densities.

The continuous random variables *X* and *Y* are said to be **independent** if

$$f_{(X,Y)}(x,y) = f_X(x)f_Y(y),$$
 (4.9)

for all $(x, y) \in \mathbb{R}^2$.

5 Common Distributions

5.1. Common Discrete Distributions

Bernoulli Distribution Bern(p)

A random variable X has a Bernoulli distribution with parameter $p \in (0,1)$ (q = 1 - p), if its pdf is

$$X\left(\begin{array}{cc} 0 & 1\\ q & p \end{array}\right). \tag{5.1}$$

Then

$$E(X) = p,$$

$$V(X) = pq$$

➤ a Bernoulli random variable models the occurrence or nonoccurrence of an event

Discrete Uniform Distribution U(m)

A random variable *X* has a Discrete Uniform distribution ($\lfloor \text{unid} \rfloor$) with parameter $m \in \mathbb{N}$, if its pdf is

$$X\left(\begin{array}{c}k\\\frac{1}{m}\end{array}\right)_{k=\overline{1,m}},\tag{5.2}$$

with mean and variance

$$E(X) = \frac{m+1}{2},$$

 $V(X) = \frac{m^2-1}{12}.$

 \triangleright the random variable that denotes the face number shown on a die when it is rolled, has a Discrete Uniform distribution U(6).

Binomial Distribution B(n, p)

A random variable *X* has a Binomial distribution ($\underline{\text{bino}}$) with parameters $n \in \mathbb{N}$ and $p \in (0, 1)$ (q = 1 - p), if its pdf is

$$X \left(\begin{array}{c} k \\ C_n^k p^k q^{n-k} \end{array} \right)_{k=\overline{0,n}}, \tag{5.3}$$

with

$$E(X) = np,$$

 $V(X) = npq.$

- ▶ this distribution corresponds to the Binomial model. Given n Bernoulli trials with probability of success p, let X denote the number of successes. Then $X \in B(n, p)$;
- the Bernoulli distribution is a particular case of the Binomial one, for n = 1, Bern(p) = B(1, p).

Geometric Distribution Geo(p)

A random variable X has a Geometric distribution (geo) with parameter $p \in (0,1)$ (q=1-p), if its pdf is given by

$$X \left(\begin{array}{c} k \\ pq^k \end{array} \right)_{k=0,1,\dots}. \tag{5.4}$$

Its cdf, expectation and variance are given by

$$F(x) = 1 - q^{x+1}, x = 0, 1, \dots$$

$$E(X) = \frac{q}{p},$$

$$V(X) = \frac{q}{p^2}.$$

if X denotes the number of failures that occurred before the occurrence of the 1st success in a Geometric model, then $X \in Geo(p)$.

Remark 5.1.

In a Geometric model setup, one might count the number of *trials* needed to get the 1st success. Of course, if X is the number of failures and Y the number of trials, then we simply have Y = X + 1 (the number of failures plus the one success). The variable Y is said to have a Shifted Geometric distribution with parameter $p \in (0,1)$ ($Y \in SGeo(p)$). Its pdf is

$$X \left(\begin{array}{c} k \\ pq^{k-1} \end{array} \right)_{k=1,2,\dots} \tag{5.5}$$

and the rest of its characteristics are given by

$$F(x) = 1 - q^x, x = 0, 1, ...$$

 $E(X) = \frac{1}{p}, V(X) = \frac{q}{p^2}.$

In some books, *this* is considered to be a Geometric variable (not in Matlab, though).

Negative Binomial (Pascal) Distribution NB(n, p)

A random variable *X* has a Negative Binomial (Pascal) (nbin) distribution with parameters $n \in \mathbb{N}$ and $p \in (0, 1)$ (q = 1 - p), if its pdf is

$$X \left(\begin{array}{c} k \\ C_{n+k-1}^{k} p^{n} q^{k} \end{array} \right)_{k=0,1,\dots}$$
 (5.6)

Then

$$E(X) = \frac{nq}{p}, V(X) = \frac{nq}{p^2}.$$

- ▶ this distribution corresponds to the Negative Binomial model. If X denotes the number of failures that occurred before the occurrence of the nth success in a Negative Binomial model, then $X \in NB(n, p)$;
- \triangleright it is a generalization of the Geometric distribution, Geo(p) = NB(1, p).

Poisson Distribution $\mathcal{P}(\lambda)$

A random variable *X* has a Poisson distribution (poiss) with parameter $\lambda > 0$, if its pdf is

$$X \left(\begin{array}{c} k \\ \frac{\lambda^k}{k!} e^{-\lambda} \end{array} \right)_{k=0,1,\dots}$$
 (5.7)

with

$$E(X) = V(X) = \lambda.$$

- Poisson's distribution is related to the concept of "rare events", or Poissonian events. Essentially, it means that two such events are extremely unlikely to occur simultaneously or within a very short period of time. Arrivals of jobs, telephone calls, e-mail messages, traffic accidents, network blackouts, virus attacks, errors in software, floods, earthquakes are examples of rare events;
- ▶ a Poisson variable X counts the number of rare events occurring during a fixed time interval. The parameter λ represents the average number of occurrences of the event in that time interval.

Remark 5.2.

- \blacktriangleright The sum of *n* independent Bern(p) random variables is a B(n,p) variable.
- The sum of n independent Geo(p) random variables is a NB(n, p) variable.

5.2. Common Continuous Distributions

Uniform Distribution U(a,b)

A random variable *X* has a Uniform distribution (unif) with parameters $a, b \in \mathbb{R}, \ a < b$, if its pdf is

$$f(x) = \begin{cases} \frac{1}{b-a}, & \text{if } x \in [a,b] \\ 0, & \text{if } x \notin [a,b]. \end{cases}$$
 (5.8)

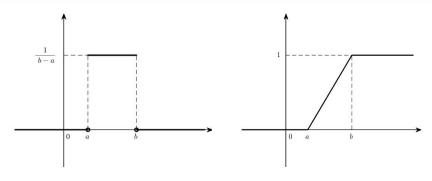
Then its cdf is

$$F(x) = \int_{-\infty}^{x} f(t)dt = \begin{cases} 0, & \text{if } x \le a \\ \frac{x-a}{b-a}, & \text{if } a < x \le b \\ 1, & \text{if } x \ge b \end{cases}$$
 (5.9)

and its numerical characteristics are

$$E(X) = \frac{a+b}{2}, V(X) = \frac{(b-a)^2}{12}.$$

➤ the Uniform distribution is used when a variable can take *any* value in a given interval, equally probable. For example, locations of syntax errors in a program, birthdays throughout a year, arrival times of customers, etc.



(a) Density Function (pdf)

(b) Cumulative Distribution Function (cdf)

Figure 1: Uniform Distribution

Lecture 2

A special case is that of a **Standard Uniform Distribution**, where a=0 and b=1. The pdf and cdf are given by

$$f_U(x) = \begin{cases} 1, & x \in [0, 1] \\ 0, & x \notin [0, 1] \end{cases}, \quad F_U(x) = \begin{cases} 0, & x \le 0 \\ x, & 0 < x \le 1 \\ 1, & x \ge 1. \end{cases}$$
 (5.10)

> Standard Uniform variables play an important role in stochastic modeling; in fact, *any* random variable, with any thinkable distribution (discrete or continuous) can be generated from Standard Uniform variables.

Lecture 2 22/31

Normal Distribution $N(\mu, \sigma)$

A random variable X has a Normal distribution ($\boxed{\text{norm}}$) with parameters $\mu \in \mathbb{R}$ and $\sigma > 0$, if its pdf is

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \ x \in \mathbb{R}.$$
 (5.11)

The cdf of a Normal variable is then given by

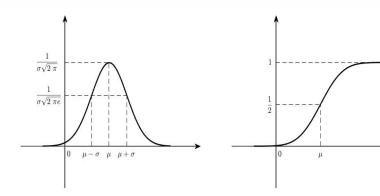
$$F(x) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{(t-\mu)^2}{2\sigma^2}} dt = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\frac{x-\mu}{\sigma}} e^{-\frac{t^2}{2}} dt$$
 (5.12)

and its mean and variance are

$$E(X) = \mu,$$

$$V(X) = \sigma^2$$

□ ト 4 回 ト 4 重 ト 4 重 ト 9 Q (*)



(a) Density Function (pdf)

(b) Cumulative Distribution Function (cdf)

Figure 2: Normal Distribution

Lecture 2 24/31

there is an important particular case of a Normal distribution, namely N(0,1), called the **Standard (or Reduced) Normal Distribution**. A variable having a Standard Normal distribution is usually denoted by Z. The density and cdf of Z are given by

$$f_Z(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}, \ x \in \mathbb{R} \text{ and } F_Z(x) = \Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt.$$
 (5.13)

the function F_Z given in (5.13) is known as *Laplace's function* and its values can be found in tables or can be computed by any mathematical software. One can notice that there is a relationship between the cdf of any Normal $N(\mu, \sigma)$ variable X and that of a Standard Normal variable Z, namely,

$$F_X(x) = F_Z\left(\frac{x-\mu}{\sigma}\right) .$$

Exponential Distribution $Exp(\lambda)$

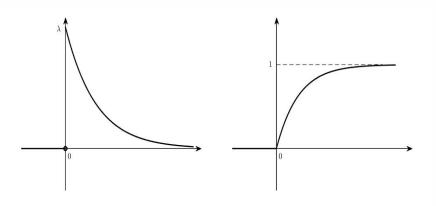
A random variable *X* has an Exponential distribution (exp) with parameter $\lambda > 0$, if its pdf and cdf are given by

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & \text{if } x \ge 0 \\ 0, & \text{if } x < 0 \end{cases} \text{ and } F(x) = \begin{cases} 1 - e^{-\lambda x}, & x \ge 0 \\ 0, & x < 0 \end{cases}, (5.14)$$

respectively. Its mean and variance are given by

$$E(X) = \frac{1}{\lambda},$$

 $V(X) = \frac{1}{\lambda^2}.$



(a) Density Function (pdf)

(b) Cumulative Distribution Function (cdf)

Figure 3: Exponential Distribution

Lecture 2 27/31

- ▶ the Exponential distribution is often used to model time: lifetime, waiting time, halftime, interarrival time, failure time, time between rare events, etc. The parameter λ represents the frequency of rare events, measured in time⁻¹.
- a word of <u>caution</u> here: The parameter μ in Matlab (where the Exponential pdf is defined as $\frac{1}{\mu}e^{-\frac{1}{\mu}x}$, $x \ge 0$) is actually $\mu = 1/\lambda$. It all comes from the different interpretation of the "frequency". For instance, if the frequency is "2 per hour", then $\lambda = 2/hr$, but this is equivalent to "one every half an hour", so $\mu = 1/2$ hours. The parameter μ is measured in time units.
- ▶ the Exponential distribution is a special case of a more general distribution, namely the Gamma(a,b), a,b>0, distribution (gam). The Gamma distribution models the *total* time of a multistage scheme, e.g. total compilation time, total downloading time, etc.

28/31

- if $\alpha \in \mathbb{N}$, then the sum of α independent $Exp(\lambda)$ variables has a $Gamma(\alpha, 1/\lambda)$ distribution.
- in a Poisson process, where X is the number of rare events occurring in time $t, X \in \mathcal{P}(\lambda t)$, the time between rare events and the time of the occurrence of the first rare event have $Exp(\lambda)$ distribution, while T, the time of the occurrence of the α^{th} rare event has $Gamma(\alpha, 1/\lambda)$ distribution.

Gamma-Poisson formula

Let $T \in Gamma(\alpha, 1/\lambda)$ with $\alpha \in \mathbb{N}$ and $\lambda > 0$. Then T represents the time of the occurrence of the α^{th} rare event. Then, the event (T > t) means that the α^{th} event occurs after the moment t. That means that <u>before</u> the time t, fewer than α rare events occur. So, if X is the number of rare events that occur before time t, then the two events

$$(T > t) = (X < \alpha)$$

are equivalent (equal). Now, X has a $\mathcal{P}(\lambda t)$ distribution. So, we have:

$$P(T > t) = P(X < \alpha) \text{ and } P(T \le t) = P(X \ge \alpha).$$
 (5.15)

this formula is useful in applications where this setup can be used (seeing a Gamma variable as a sum of times between rare events, if $\alpha \in \mathbb{N}$), as it avoids lengthy computations of Gamma probabilities. However, one should be **careful**, T is a *continuous* random variable, for which $P(T > t) = P(T \ge t)$, whereas X is a discrete one, so on the right-hand sides of (5.15) the inequality signs cannot be changed.

the Exponential distributions has the so-called "memoryless property". Suppose that an Exponential variable T represents waiting time. Memoryless property means that the fact of having waited for t minutes gets "forgotten" and it does not affect the future waiting time. Regardless of the event (T > t), when the total waiting time exceeds t, the remaining waiting time still has Exponential distribution with the same parameter. Mathematically,

$$P(T > t + x | T > t) = P(T > x), t, x > 0.$$
 (5.16)

➤ the Exponential distribution is the *only continuous* variable with this property. Among discrete ones, the Shifted Geometric distribution also has this property. In fact, there is a close relationship between the two families of variables. In a sense, the Exponential distribution is a continuous analogue of the Shifted Geometric one, one measures time (continuously) until the next rare event, the other measures time (discretely) as the number of trials until the next success.

Lecture 2 31/31