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Random Vectors

4. Random Vectors

Everything that holds for random variables (one-dimensional case) can be
easily generalized to any dimension, i.e. to random vectors. We restrict our
discussion to two-dimensional random vectors (X,Y) : S → R2.

Definition 4.1.

Let (S,K,P) be a probability space. A random vector is a function
(X,Y) : S → R2 satisfying the condition

(X ≤ x,Y ≤ y) = {e ∈ S | X(e) ≤ x,Y(e) ≤ y} ∈ K,

for all (x, y) ∈ R2.

if the set of values that it takes, (X,Y)(S), is at most countable in R2,
then (X,Y) is a discrete random vector,

if (X,Y)(S) is a continuous subset of R2, then (X,Y) is a continuous
random vector.
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Random Vectors

The function F : R2 → R defined by

F(x, y) = P(X ≤ x,Y ≤ y)

is called the joint cumulative distribution function (joint cdf) of the vector
(X,Y).

The properties of the cdf of a random variable translate very naturally for a
random vector, as well: Let (X,Y) be a random vector with joint cdf
F : R2 → R and let FX,FY : R → R be the cdf’s of X and Y , respectively.

➤ If ak < bk, k = 1, 2, then

P(a1 < X ≤ b1, a2 < Y ≤ b2) = F(b1, b2) − F(b1, a2)

− F(a1, b2) + F(a1, a2).

➤ lim
x,y→∞

F(x, y) = 1,

lim
y→−∞

F(x, y) = lim
x→−∞

F(x, y) = 0, ∀x, y ∈ R,

lim
y→∞

F(x, y) = FX(x), ∀x ∈ R, lim
x→∞

F(x, y) = FY(y), ∀y ∈ R.
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Random Vectors Discrete Random Vectors

4.1. Discrete Random Vectors

Let (X,Y) : S → R2 be a two-dimensional discrete random vector.

the joint probability distribution (function) of (X,Y) is a
two-dimensional array of the form

X \ Y . . . yj . . .
...

...
xi · · · pij · · · pi
...

...
qj

(4.1)

where (xi, yj) ∈ R2, (i, j) ∈ I × J are the values that (X,Y) takes and
pij = P(X = xi,Y = yj).
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Random Vectors Discrete Random Vectors

Properties:

➤ An important property is that∑
j∈J

pij = pi,
∑
i∈I

pij = qj and
∑
i∈I

∑
j∈J

pij =
∑
j∈J

∑
i∈I

pij = 1,

where pi = P(X = xi), i ∈ I and qj = P(Y = yj), j ∈ J.
The probabilities pi and qj are called marginal pdf’s.

➤ For discrete random vectors, the computational formula for the cdf is

F(x, y) =
∑
xi≤x

∑
yj≤y

pij, x, y ∈ R.
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Random Vectors Discrete Random Vectors

Operations with discrete random variables
Let X and Y be two discrete random variables with pdf’s

X
(

xi

pi

)
i∈I

and Y
(

yj

qj

)
j∈J

.

Sum. The sum of X and Y is the random variable with pdf given by

X + Y
(

xi + yj

pij

)
(i,j)∈I×J

. (4.2)

Product. The product of X and Y is the random variable with pdf given
by

X · Y
(

xiyj

pij

)
(i,j)∈I×J

. (4.3)
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Random Vectors Discrete Random Vectors

Scalar Multiple. The random variable αX, α ∈ R, with pdf given by

αX
(

αxi

pi

)
i∈I

. (4.4)

Quotient. The quotient of X and Y is the random variable with pdf given
by

X/Y
(

xi/yj

pij

)
(i,j)∈I×J

, (4.5)

provided that yj ̸= 0, for all j ∈ J.

In general, if h : R → R is a function, then we can define the random
variable h(X), with pdf given by

h(X)
(

h(xi)
pi

)
i∈I

. (4.6)
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Random Vectors Discrete Random Vectors

Variables X and Y are said to be independent if

pij = P (X = xi,Y = yj) = P (X = xi)P (Y = yj) = piqj, (4.7)

for all (i, j) ∈ I × J.

If X and Y are independent, then in the pdf’s of the sum (4.2), product (4.3)
and quotient (4.5),

pij = piqj, for all (i, j) ∈ I × J.
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Random Vectors Continuous Random Vectors

4.2. Continuous Random Vectors

Let (X,Y) be a continuous random vector with joint cdf F : R2 → R.

then F is absolutely continuous, i.e. there exists a real function
f : R2 → R, such that

F(x, y) =

x∫
−∞

y∫
−∞

f (u, v) du dv, (4.8)

for all x, y ∈ R.
The function f is called the joint probability density function (joint
pdf) of (X,Y).
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Random Vectors Continuous Random Vectors

Let (X,Y) be a continuous random vector with joint cdf F and joint density
function f .
Let FX,FY : R → R be the cdf’s of X and Y and fX, fY : R → R be the pdf’s
of X and Y , respectively.
Properties:

➤
∂2F(x, y)
∂x∂y

= f (x, y), for all (x, y) ∈ R2.

➤

∫∫
R2

f (x, y) dxdy = 1.

➤ for any domain D ⊆ R2,P
(
(X,Y) ∈ D

)
=

∫∫
D

f (x, y) dxdy.

➤ fX(x) =
∫
R

f (x, y) dy, ∀x ∈ R and fY(y) =
∫
R

f (x, y) dx, ∀y ∈ R.

When obtained from the vector (X,Y), the pdf’s fX and fY are called marginal
densities.
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Random Vectors Continuous Random Vectors

The continuous random variables X and Y are said to be independent if

f(X,Y)(x, y) = fX(x)fY(y), (4.9)

for all (x, y) ∈ R2.
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Common Distributions Bernoulli Distribution Bern(p)

5 Common Distributions

5.1. Common Discrete Distributions

Bernoulli Distribution Bern(p)

A random variable X has a Bernoulli distribution with parameter
p ∈ (0, 1) (q = 1 − p), if its pdf is

X
(

0 1
q p

)
. (5.1)

Then

E(X) = p,

V(X) = pq.

➤ a Bernoulli random variable models the occurrence or nonoccurrence of
an event
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Common Distributions Discrete Uniform Distribution U(m)

Discrete Uniform Distribution U(m)

A random variable X has a Discrete Uniform distribution ( unid ) with
parameter m ∈ N, if its pdf is

X

(
k
1
m

)
k=1,m

, (5.2)

with mean and variance

E(X) =
m + 1

2
,

V(X) =
m2 − 1

12
.

➤ the random variable that denotes the face number shown on a die when it
is rolled, has a Discrete Uniform distribution U(6).
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Common Distributions Binomial Distribution B(n, p)

Binomial Distribution B(n, p)

A random variable X has a Binomial distribution ( bino ) with parameters
n ∈ N and p ∈ (0, 1) (q = 1 − p), if its pdf is

X
(

k
Ck

npkqn−k

)
k=0,n

, (5.3)

with

E(X) = np,

V(X) = npq.

➤ this distribution corresponds to the Binomial model. Given n Bernoulli
trials with probability of success p, let X denote the number of successes.
Then X ∈ B(n, p);

➤ the Bernoulli distribution is a particular case of the Binomial one, for
n = 1, Bern(p) = B(1, p).
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Common Distributions Geometric Distribution Geo(p)

Geometric Distribution Geo(p)

A random variable X has a Geometric distribution ( geo ) with parameter
p ∈ (0, 1) (q = 1 − p), if its pdf is given by

X
(

k
pqk

)
k=0,1,...

. (5.4)

Its cdf, expectation and variance are given by

F(x) = 1 − qx+1, x = 0, 1, . . .

E(X) =
q
p
,

V(X) =
q
p2 .

➤ if X denotes the number of failures that occurred before the occurrence
of the 1st success in a Geometric model, then X ∈ Geo(p).
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Common Distributions Geometric Distribution Geo(p)

Remark 5.1.
In a Geometric model setup, one might count the number of trials needed to
get the 1st success. Of course, if X is the number of failures and Y the number
of trials, then we simply have Y = X + 1 (the number of failures plus the one
success). The variable Y is said to have a Shifted Geometric distribution with
parameter p ∈ (0, 1) (Y ∈ SGeo(p)). Its pdf is

X
(

k
pqk−1

)
k=1,2,...

(5.5)

and the rest of its characteristics are given by

F(x) = 1 − qx, x = 0, 1, . . .

E(X) =
1
p
, V(X) =

q
p2 .

In some books, this is considered to be a Geometric variable (not in Matlab,
though).
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Common Distributions Negative Binomial (Pascal) Distribution NB(n, p)

Negative Binomial (Pascal) Distribution NB(n, p)

A random variable X has a Negative Binomial (Pascal) ( nbin ) distribution
with parameters n ∈ N and p ∈ (0, 1) (q = 1 − p), if its pdf is

X
(

k
Ck

n+k−1pnqk

)
k=0,1,...

. (5.6)

Then

E(X) =
nq
p
, V(X) =

nq
p2 .

➤ this distribution corresponds to the Negative Binomial model. If X
denotes the number of failures that occurred before the occurrence of the
nth success in a Negative Binomial model, then X ∈ NB(n, p);

➤ it is a generalization of the Geometric distribution, Geo(p) = NB(1, p).
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Common Distributions Poisson Distribution P(lambda)

Poisson Distribution P(λ)

A random variable X has a Poisson distribution ( poiss ) with parameter
λ > 0, if its pdf is

X

 k
λk

k!
e−λ


k=0,1,...

(5.7)

with

E(X) = V(X) = λ.

➤ Poisson’s distribution is related to the concept of “rare events”, or
Poissonian events. Essentially, it means that two such events are
extremely unlikely to occur simultaneously or within a very short period
of time. Arrivals of jobs, telephone calls, e-mail messages, traffic
accidents, network blackouts, virus attacks, errors in software, floods,
earthquakes are examples of rare events;

➤ a Poisson variable X counts the number of rare events occurring during a
fixed time interval. The parameter λ represents the average number of
occurrences of the event in that time interval.
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Common Distributions Poisson Distribution P(lambda)

Remark 5.2.

➤ The sum of n independent Bern(p) random variables is a B(n, p) variable.

➤ The sum of n independent Geo(p) random variables is a NB(n, p)
variable.
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Common Distributions Uniform Distribution U(a, b)

5.2. Common Continuous Distributions

Uniform Distribution U(a, b)

A random variable X has a Uniform distribution ( unif )with parameters
a, b ∈ R, a < b, if its pdf is

f (x) =


1

b − a
, if x ∈ [a, b]

0, if x /∈ [a, b].
(5.8)

Then its cdf is

F(x) =

x∫
−∞

f (t)dt =


0, if x ≤ a

x − a
b − a

, if a < x ≤ b

1, if x ≥ b

(5.9)

and its numerical characteristics are

E(X) =
a + b

2
, V(X) =

(b − a)2

12
.
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Common Distributions Uniform Distribution U(a, b)

➤ the Uniform distribution is used when a variable can take any value in a
given interval, equally probable. For example, locations of syntax errors
in a program, birthdays throughout a year, arrival times of customers, etc.

(a) Density Function (pdf) (b) Cumulative Distribution Function (cdf)

Figure 1: Uniform Distribution
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Common Distributions Uniform Distribution U(a, b)

A special case is that of a Standard Uniform Distribution, where a = 0 and
b = 1. The pdf and cdf are given by

fU(x) =
{

1, x ∈ [0, 1]
0, x /∈ [0, 1]

, FU(x) =


0, x ≤ 0
x, 0 < x ≤ 1
1, x ≥ 1 .

(5.10)

➤ Standard Uniform variables play an important role in stochastic
modeling; in fact, any random variable, with any thinkable distribution
(discrete or continuous) can be generated from Standard Uniform
variables.
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Common Distributions Normal Distribution N(mu, sigma)

Normal Distribution N(µ, σ)

A random variable X has a Normal distribution ( norm ) with parameters
µ ∈ R and σ > 0, if its pdf is

f (x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 , x ∈ R. (5.11)

The cdf of a Normal variable is then given by

F(x) =
1

σ
√

2π

x∫
−∞

e−
(t−µ)2

2σ2 dt =
1√
2π

x−µ
σ∫

−∞

e−
t2
2 dt (5.12)

and its mean and variance are

E(X) = µ,

V(X) = σ2.
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Common Distributions Normal Distribution N(mu, sigma)

(a) Density Function (pdf) (b) Cumulative Distribution Function (cdf)

Figure 2: Normal Distribution
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Common Distributions Normal Distribution N(mu, sigma)

➤ there is an important particular case of a Normal distribution, namely
N(0, 1), called the Standard (or Reduced) Normal Distribution. A
variable having a Standard Normal distribution is usually denoted by Z.
The density and cdf of Z are given by

fZ(x) =
1√
2π

e−
x2
2 , x ∈ R and FZ(x) = Φ(x) =

1√
2π

x∫
−∞

e−
t2
2 dt. (5.13)

➤ the function FZ given in (5.13) is known as Laplace’s function and its
values can be found in tables or can be computed by any mathematical
software. One can notice that there is a relationship between the cdf of
any Normal N(µ, σ) variable Xand that of a Standard Normal variable Z,
namely,

FX(x) = FZ

(
x − µ

σ

)
.
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Common Distributions Exponential Distribution Exp(lambda)

Exponential Distribution Exp(λ)

A random variable X has an Exponential distribution ( exp ) with parameter
λ > 0, if its pdf and cdf are given by

f (x) =

{
λe−λx, if x ≥ 0

0, if x < 0
and F(x) =

{
1 − e−λx, x ≥ 0

0, x < 0
, (5.14)

respectively. Its mean and variance are given by

E(X) =
1
λ
,

V(X) =
1
λ2 .
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Common Distributions Exponential Distribution Exp(lambda)

(a) Density Function (pdf) (b) Cumulative Distribution Function (cdf)

Figure 3: Exponential Distribution
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Common Distributions Exponential Distribution Exp(lambda)

➤ the Exponential distribution is often used to model time: lifetime,
waiting time, halftime, interarrival time, failure time, time between rare
events, etc. The parameter λ represents the frequency of rare events,
measured in time−1.

➤ a word of caution here: The parameter µ in Matlab (where the

Exponential pdf is defined as
1
µ

e−
1
µ

x
, x ≥ 0) is actually µ = 1/λ. It all

comes from the different interpretation of the “frequency”. For instance,
if the frequency is “2 per hour”, then λ = 2/hr, but this is equivalent to
“one every half an hour”, so µ = 1/2 hours. The parameter µ is
measured in time units.

➤ the Exponential distribution is a special case of a more general
distribution, namely the Gamma(a, b), a, b > 0, distribution ( gam ).
The Gamma distribution models the total time of a multistage scheme,
e.g. total compilation time, total downloading time, etc.
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Common Distributions Exponential Distribution Exp(lambda)

➤ if α ∈ N, then the sum of α independent Exp(λ) variables has a
Gamma(α, 1/λ) distribution.

➤ in a Poisson process, where X is the number of rare events occurring in
time t, X ∈ P(λt), the time between rare events and the time of the
occurrence of the first rare event have Exp(λ) distribution, while T , the
time of the occurrence of the αth rare event has Gamma(α, 1/λ)
distribution.
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Common Distributions Exponential Distribution Exp(lambda)

Gamma-Poisson formula

Let T ∈ Gamma(α, 1/λ) with α ∈ N and λ > 0. Then T represents the time
of the occurrence of the αth rare event. Then, the event (T > t) means that the
αth event occurs after the moment t. That means that before the time t, fewer
than α rare events occur. So, if X is the number of rare events that occur
before time t, then the two events

(T > t) = (X < α)

are equivalent (equal). Now, X has a P(λt) distribution. So, we have:

P(T > t) = P(X < α) and P(T ≤ t) = P(X ≥ α). (5.15)

➤ this formula is useful in applications where this setup can be used
(seeing a Gamma variable as a sum of times between rare events, if
α ∈ N), as it avoids lengthy computations of Gamma probabilities.
However, one should be careful, T is a continuous random variable, for
which P(T > t) = P(T ≥ t), whereas X is a discrete one, so on the
right-hand sides of (5.15) the inequality signs cannot be changed.
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Common Distributions Exponential Distribution Exp(lambda)

➤ the Exponential distributions has the so-called “memoryless property”.
Suppose that an Exponential variable T represents waiting time.
Memoryless property means that the fact of having waited for t minutes
gets “forgotten” and it does not affect the future waiting time. Regardless
of the event (T > t), when the total waiting time exceeds t, the remaining
waiting time still has Exponential distribution with the same parameter.
Mathematically,

P(T > t + x|T > t) = P(T > x), t, x > 0. (5.16)

➤ the Exponential distribution is the only continuous variable with this
property. Among discrete ones, the Shifted Geometric distribution also
has this property. In fact, there is a close relationship between the two
families of variables. In a sense, the Exponential distribution is a
continuous analogue of the Shifted Geometric one, one measures time
(continuously) until the next rare event, the other measures time
(discretely) as the number of trials until the next success.
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