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Probability Space and Rules of Probability

1. Probability Space and Rules of Probability

Chapter 1. Review of Probability Theory
and Statistics

1. Probability Space and Rules of Probability

To any experiment we assign its sample space, denoted by S, consisting of all
its possible outcomes (called elementary events, denoted by ei, i ∈ N).
An event is a subset of S (events are denoted by capital letters,
A,B,Ai, i ∈ N).

Since events are defined as sets, we use set theory in describing them.
• two special events associated with every experiment:

− the impossible event, denoted by ∅ (“never happens”);
− the sure (certain) event, denoted by S (“surely happens”).
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• for events, we have the usual operations of sets:
− complementary event, A,
− union of A and B, A ∪ B = {e ∈ S | e ∈ A or e ∈ B}, the event that occurs

if either A or B or both occur;
− intersection of A and B, A ∩ B = {e ∈ S | e ∈ A and e ∈ B}, the event

that occurs if both A and B occur;
− difference of A and B, A \ B = {e ∈ S | e ∈ A and e /∈ B} = A ∩ B, the

event that occurs if A occurs and B does not;
− A implies (induces) B, A ⊆ B, if every element of A is also an element of

B, or in other words, if the occurrence of A induces (implies) the
occurrence of B; A and B are equal, A = B, if A implies B and B implies A;

• two events A and B are mutually exclusive (disjoint, incompatible) if A
and B cannot occur at the same time, i.e. A ∩ B = ∅;

• three or more events are mutually exclusive if any two of them are, i.e.

Ai ∩ Aj = ∅, ∀i ̸= j;
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• events {Ai}i∈I are collectively exhaustive if
⋃
i∈I

Ai = S;

• events {Ai}i∈I form a partition of S if the events are collectively
exhaustive and mutually exclusive, i.e.⋃

i∈I

Ai = S, and Ai ∩ Aj = ∅,∀i, j ∈ I, i ̸= j.

we consider all events relating to an experiment to belong to a σ-field,
K, a collection of events from from S, an algebraic structure that allows
all the usual set operations (mentioned above) within itself (e.g. the
power set P(S) = {S′|S′ ⊆ S}).
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Definition 1.1.

Let K be a σ-field over S. A mapping P : K → R is called probability if it
satisfies the following conditions:

(i) P(S) = 1;

(ii) P(A) ≥ 0, for all A ∈ K;

(iii) for any sequence (An)n∈N ⊆ K of mutually exclusive events,

P
( ∞⋃

n=1

An

)
=

∞∑
n=1

P(An). (1.1)

The triplet (S,K,P) is called a probability space.
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Theorem 1.2 (Rules of Probability).
Let (S,K,P) be a probability space, and let A,B ∈ K. Then the following
properties hold:

a) P(A) = 1 − P(A).

b) 0 ≤ P(A) ≤ 1.

c) P(∅) = 0.

d) P(A \ B) = P(A)− P(A ∩ B).

e) If A ⊆ B, then P(A) ≤ P(B), i.e. P is monotonically increasing.

f) P(A ∪ B) = P(A) + P(B)− P(A ∩ B).

g) more generally,

P
( n

∪
i=1

Ai

)
=

n∑
i=1

P(Ai) −
∑

1≤i<j≤n

P(Ai ∩ Aj) +
∑

1≤i<j<k≤n

P(Ai ∩ Aj ∩ Ak)

+ . . . + (−1)n−1P
(

n
∩

i=1
Ai

)
, for all n ∈ N.
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Definition 1.3.

Let (S,K,P) be a probability space and let B ∈ K be an event with P(B) > 0.
Then for every A ∈ K, the conditional probability of A given B (or the
probability of A conditioned by B) is defined by

P(A|B) =
P(A ∩ B)

P(B)
. (1.2)
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Theorem 1.4 ((Rules of Probability − Continued)).

h) P(A ∩ B) = P(A)P(B|A) = P(B)P(A|B).
i) Multiplication Rule

P(A1 ∩ · · · ∩ An) = P(A1)P(A2|A1) . . .P(An|A1 ∩ · · · ∩ An−1).

j) Total Probability Rule

− P(A) = P(B)P(A|B) + P
(
B
)

P
(
A|B

)
.

− in general, if {Ai}i∈I is a partition of S,

P(A) =
∑
i∈I

P (Ai)P (A|Ai) . (1.3)
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Definition 1.5.
Two events A,B ∈ K are independent if

P(A ∩ B) = P(A)P(B). (1.4)

➤ A,B independent <=> P(A|B) = P(A) <=> P(B|A) = P(B).

➤ A = ∅ or A = S and B ∈ K, then A,B independent.

➤ A,B independent <=> A,B independent <=> A,B independent.

Definition 1.6.
Consider an experiment whose outcomes are finite and equally likely. Then
the probability of the event A is given by

P(A) =
number of favorable outcomes for the occurrence of A
total number of possible outcomes of the experiment

not
=

Nf

Nt
.

(1.5)

Lecture 1 9 / 24



Probability Space and Rules of Probability

Remark 1.7.
This notion is closely related to that of relative frequency of an event A:
repeat an experiment a number of times N and count the number of times
event A occurs, NA. Then the relative frequency of the event A is

fA =
NA

N
.

Such a number is often used as an approximation to the probability of A. This
is justified by the fact that

fA
N→∞−→ P(A).

The relative frequency is used in computer simulations of random phenomena.

Lecture 1 10 / 24



Probabilistic Models Binomial Model

2. Probabilistic Models

Binomial Model

This model is used when the trials of an experiment satisfy three conditions,
namely

(i) they are independent,

(ii) each trial has only two possible outcomes, which we refer to as “success”
(A) and “failure” (A) (i.e. the sample space for each trial is S = A ∪ A),

(iii) the probability of success p = P(A) is the same for each trial (we denote
by q = 1 − p = P(A) the probability of failure).

Trials of an experiment satisfying (i) − (iii) are known as Bernoulli trials.
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Model: Given n Bernoulli trials with probability of success p, find the
probability P(n; k) of exactly k (0 ≤ k ≤ n) successes occurring.
We have

P(n; k) = Ck
npk(1 − p)n−k = Ck

npkqn−k, k = 0, 1, . . . , n,

n∑
k=0

P(n; k) = 1.
(2.1)
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Pascal (Negative Binomial) Model

Model: Consider an infinite sequence of Bernoulli trials with probability of
success p (and probability of failure q = 1 − p) in each trial. Find the
probability P(n, k) of the nth success occurring after k failures
(n ∈ N, k ∈ N ∪ {0}).
We have

P(n, k) = Ck
n+k−1pnqk, k = 0, 1, . . .

∞∑
k=0

P(n; k) = 1.
(2.2)
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Geometric Model

Although a particular case for the Pascal Model (case n = 1), the Geometric
model comes up in many applications and deserves a place of its own.

Model: Consider an infinite sequence of Bernoulli trials with probability of
success p (and probability of failure q = 1 − p) in each trial. Find the
probability pk that the first success occurs after k failures (k ∈ N ∪ {0}).
Here, we have

pk = pqk, k = 0, 1, . . .

∞∑
k=0

pk = 1.
(2.3)

Lecture 1 14 / 24



Random Variables Random Variables, PDF and CDF

3. Random Variables

3.1. Random Variables, PDF and CDF

Random variables, variables whose observed values are determined by
chance, give a more comprehensive quantitative overlook of random
phenomena. Random variables are the fundamentals of modern Statistics.

Definition 3.1.
Let (S,K,P) be a probability space. A random variable is a function
X : S → R satisfying the property that for every x ∈ R, the event

(X ≤ x) := {e ∈ S | X(e) ≤ x} ∈ K. (3.1)

if the set of values that it takes, X(S), is at most countable in R, then X is
a discrete random variable (quantities that are counted);

if X(S) is a continuous subset of R (an interval), then X is a continuous
random variable (quantities that are measured).
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For each random variable, discrete or continuous, there are two important
functions associated with it:
• PDF (probability distribution/density function)

− if X is discrete, then the pdf is an array

X
(

xi

pi

)
i∈I

, (3.2)

where xi ∈ R, i ∈ I, are the values that X takes and pi = P(X = xi)
− if X is continuous, then the pdf is a function f : R → R;

The pdf has the following properties:

➤ all values xi, i ∈ I, are distinct and listed in increasing order;

➤ all probabilities pi > 0, i ∈ I and f (x) ≥ 0, for all x ∈ R;

➤
∑
i∈I

pi = 1 and
∫
R

f (t)dt = 1.
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• CDF (cumulative distribution function) F = FX : R → R, defined by

F(x) = P(X ≤ x). (3.3)

− if X is discrete, then

F(x) =
∑
xi≤x

pi. (3.4)

− if X is continuous, then

F(x) =

x∫
−∞

f (t) dt. (3.5)

Lecture 1 17 / 24



Random Variables Random Variables, PDF and CDF

The cdf has the following properties:

➤ if a < b are real numbers, then P(a < X ≤ b) = F(b)− F(a);

➤ lim
x→−∞

F(x) = 0 and lim
x→∞

F(x) = 1;

➤ if X is discrete, then P(X < x) = F(x − 0) = lim
y↗x

F(y) and

P(X = x) = F(x)− F(x − 0);

➤ if X is continuous, then P(X = x) = 0,P(X < x) = P(X ≤ x) = F(x)
and
P(a < X ≤ b) = P(a < X ≤ b) = P(a < X < b) = P(a ≤ X ≤ b) =
b∫
a

f (t) dt;

➤ if X is continuous, then F′(x) = f (x), for all x ∈ R.
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3.2. Numerical Characteristics of Random Variables

The expectation (expected value, mean value) of a random variable X is a
real number E(X) defined by

if X is a discrete random variable with pdf
(

xi

pi

)
i∈I

,

E(X) =
∑
i∈I

xiP(X = xi) =
∑
i∈I

xipi, (3.6)

if it exists;

if X is a continuous random variable with pdf f : R → R,

E(X) =
∫
R

xf (x)dx, (3.7)

if it exists.
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The variance (dispersion) of a random variable X is the number

V(X) = E
[(

X − E(X)
)2
]
, (3.8)

if it exists.
The standard deviation of a random variable X is the number

σ(X) = Std(X) =
√

V(X). (3.9)
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Properties:

➤ E(aX + b) = aE(X) + b, for all a, b ∈ R;

➤ E(X + Y) = E(X) + E(Y);

➤ If X and Y are independent, then E(X · Y) = E(X)E(Y);

➤ If X(e) ≤ Y(e) for all e ∈ S, then E(X) ≤ E(Y);

➤ V(X) = E(X2)−
(
E(X)

)2.

➤ If X and Y are independent, then V(X + Y) = V(X) + V(Y).
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Let X be a random variable with cdf F : R → R and α ∈ (0, 1). A quantile of
order α is a number qα satisfying the condition

P(X < qα) ≤ α ≤ P(X ≤ qα),

or, equivalently,

F(qα − 0) ≤ α ≤ F(qα). (3.10)

If X is continuous, then for each α ∈ (0, 1), there is a unique quantile qα ,
given by F(qα) = α, or equivalently, qα = F−1(α). It is the number with the
property that the area to its left, under the graph of the pdf is equal to α (see
Figure 1).
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Figure 1: Quantile qα
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Quantiles are oftenly used in various statistical procedures, such as confidence
intervals, rejection regions, etc. (see Figure 2).

Figure 2: Quantiles for the Normal distribution
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