
PART II. STATISTICS

Chapter 5. Descriptive Statistics

Statistics is a branch of Mathematics that deals with the collection, analysis, display and interpre-
tation of numerical data.

Descriptive Statistics includes the collection, presentation and description of numerical data. It
is what most people think of when they hear the word “Statistics”.

Inferential Statistics consists of the techniques of interpretation, of modeling the results from
descriptive Statistics and then using them to make inferences (predictions, approximations).

Historically, descriptive Statistics was developed first, dealing with the “raw” data that people
had to handle every day. As that task became increasingly difficult, a more scientific approach of
Statistics was needed. Modern Statistics, as a rigorous scientific discipline, traces its roots back to
the late 1800’s and F. Galton and K. Pearson.

A new trend in modern Statistics is Exploratory Data Analysis (EDA). This new area of Statis-
tics was promoted by John Tukey beginning in the 1970’s. He encouraged statisticians to explore

the data, often using statistical graphics and other data visualization methods, and possibly formu-
late hypotheses that could lead to new data collection and experiments. With the ready availability
of computing power and expressive data analysis software, EDA has evolved constantly in recent
decades, by means of the rapid development of new technology and access to more and bigger data.

1 Basic Concepts. Terminology

• A population is a set of individuals, objects, items or measurements of interest, whose prop-
erties are to be analyzed. In order to form a population, a set must have a common feature.
The population of interest must be carefully defined and is considered so when its membership
list is specified.

• A subset of the population (a set of observed units collected from the population) is called a
sample, or a selection.

• A characteristic or variable is a certain feature of interest of the elements of a population
or a sample, that is about to be analyzed statistically. Characteristics can be quantitative
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(numerical) or qualitative (categorical, a certain trait). From the probabilistic point of view, a
numerical characteristic is a random variable.

• A numerical characteristic is called a parameter, if it refers to an entire population and a
statistic or sample function, if it refers just to a sample. Populations are characterized by
parameters - usually unknown, which are to be estimated based on statistics - known from
the sample(s) collected.

• The outcomes of an experiment yield a set of data, i.e. the values that a variable takes for all
the elements of a population or a sample.

• Depending on the goal of a data analysis project, the data gathered can be of several types:
- discrete, data that can take on only a discrete set of values (data that can be counted);
- continuous, data that can take on any value in an (possibly infinite) interval (data that can
be measured);
- categorical, data that can take on only a specific set of values representing a set of possible
categories;
- binary, a special case of categorical data with just two categories of values (0/1, yes/no,
true/false);
- ordinal, categorical data that has an explicit ordering.

2 Data Collection

2.1 Sampling

An important first step in any statistical analysis is the sampling technique, i.e. the collection of
methods and procedures used to gather data. There are several ways of collecting data: If every
element of a population is selected, then a census is compiled. However, this technique is hardly
ever used these days, because it can be expensive, time consuming or just plain impossible. Instead,
only a sample is selected, which is analyzed and based on the findings, inferences (estimates)
are made about the entire population, as well as measurements of the degree of accuracy of the
estimates.

A sample is chosen based on a sampling design, the process used to collect sample data. If
elements are chosen on the basis of being “typical”, then we have a judgment sample, whereas if
they are selected based on probability rules, we have a probability sample. Statistical inference
requires probability samples. The most familiar probability sample is a random sample, in which
each possible sample of a certain size has the same chance of being selected and every element in the
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population has an equal probability of being chosen. A random sample must also be representative
for the population it was drawn from (the structure of the sample must be similar to the structure of
the population).

Other types of samples may be considered: systematic sample, stratified sample, quota sample,
cluster sample, etc.

Throughout the remaining chapters, we will only consider simple random sampling, i.e. a
sampling design where units are collected from the entire population independently of each other, all
being equally likely to be sampled. Observations collected by means of a simple random sampling
design are iid (independent, identically distributed) random variables.

2.2 Sampling and Non-Sampling Errors

Sometimes discrepancies occur between a sample and its underlying population.
Sampling errors are caused simply by the fact that only a portion of the entire population is ob-
served. For most statistical procedures, sampling errors decrease (and converge to zero) if the
sample size is appropriately increased.
Non-sampling errors are produced by inappropriate sampling designs or wrong statistical tech-
niques. No statistical procedures can save a poorly collected sample!

3 Graphical Display of Data

“A picture is worth a thousand words!”
Once the sample data is collected, it must be represented in a relevant, “easy to read” way, one that
hopefully reveals important features, patterns of behavior, connections, etc.

Circle graphs (“pie” charts) and bar graphs are popular ways of displaying data, that use the
proportions of each type of data and represent them as percentages.

Example 3.1. Suppose that a software company is having 25 items on sale, 5 of which are learning
programs (L), 8 are antivirus programs (AV), 3 are games (G) and the rest (9) are miscellaneous
(M). Pie charts are shown in Figure 1 and bar graphs in Figure 2.

3.1 Frequency Distribution Tables

Once collected, the raw data must be “organized” in a relevant and meaningful manner. One way
to do that is to write it in a frequency distribution table, which contains the values xi, i = 1, k,
sorted in increasing order, together with their (absolute) frequencies, fi, i = 1, k, i.e. the number
of times each value occurs in the sample data, as seen in Table 1.
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Fig. 2: Bar graphs

Value Frequency
x1 f1
x2 f2
...

...
xk fk

Table 1: Frequency distribution table
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If needed, the table can also contain the relative frequencies

rfi =
fi
N
, ∀i = 1, k,

usually expressed as percentages, the cumulative frequencies

Fi =
i∑

j=1

fj, ∀i = 1, k,

or relative cumulative frequencies

rFi =
1

N

i∑
j=1

fj, ∀i = 1, k,

where N =
k∑

i=1

fi is the sample size.

However, when the data volume is large and the values are non-repetitive, the frequency dis-
tribution is not of much help. Every value is listed with a frequency of 1. In this case, it is better
to group the data into classes and construct a grouped frequency distribution table. So, first we
decide on a reasonable number of classes n, small enough to make our work with the data easier,
but still large enough to not lose the relevance of the data. Then for each class i = 1, n, we have
− the class limits ci−1, ci,
− the class mark xi =

ci−1 + ci
2

, the midpoint of the interval, as an identifier for the class,
− the class width (length) li = ci − ci−1,
− the class frequency fi, the sum of the frequencies of all observations x in that class.

Notice that we used the same notation xi for primary data and for class marks. This is by choice,
since in the case of grouped data, the class mark plays the role of a “representative” for that class and
the class frequency is taken as being the frequency of that one value. The double notation should not
cause confusion throughout the text, since N is the sample size, so x1, . . . , xN denotes the primary
data, while n is the number of classes and thus,(

xi

fi

)
i=1,n

denotes the grouped frequency distribution of the data.

The grouped frequency distribution table will look similar to the one in Table 1, only it will
contain classes instead of individual values, each with their corresponding features.
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Remark 3.2.
1. Relative or cumulative frequencies can also be computed for grouped data, as well, using the
same formulas as for ungrouped data.
2. In general, the classes are taken to be of the same length l.
3. When all classes have the same length, the number of classes, n, and the class length l determine
each other (if one is known, so is the other).

Determining the number of classes
There isn’t an “optimal” way of choosing the number of classes (bins) to group data. But in general,

• there should not be too few or too many classes;

• their number may increase with the sample size;

• they should be chosen to make the frequency distribution table (and then, further, its visual
counterparts, the histogram, the frequency polygon, the stem-and-leaf plot) informative, so
that we can notice patterns, shapes, outliers, etc.

We can start with n = 10 classes (most software have that as the implicit number), see what infor-
mation we get and then decide whether to increase or decrease the number of bins.

There is, also, a customary procedure (empirical formula) of determining the number of classes,
known as Sturges’ rule

n = 1 +
10

3
log10N, (3.1)

where N is the sample size. Then it follows that

l =
xmax − xmin

n
.

Once we determined n and l, we have

ci = xmin + i · l, i = 0, n.

Example 3.3. To evaluate effectiveness of a processor for a certain type of tasks, the random vari-
able X , the CPU time of a job, is studied. The following data represent the CPU times for n = 30

randomly chosen jobs (in seconds):

70 36 43 69 82 48 34 62 35 15

59 139 46 37 42 30 55 56 36 82

38 89 54 25 35 24 22 9 56 19

Let us analyze these data. First, we sort them in increasing order:
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9 15 19 22 24 25 30 34 35 35

36 36 37 38 42 43 46 48 54 55

56 56 59 62 69 70 82 82 89 139

There are N = 30 observations, with xmin = 9 and xmax = 139.

Since there are very few repetitions, an ungrouped frequency distribution table would not tell us
much.

Let us group the data into classes of the same length. With n = 10 bins, we have a class width
of l = 13, whereas with Sturges’ rule, we get n = 5.9237 ≈ 6, l ≈ 21.7.

The grouped frequency tables are shown in Tables 2 and 3. We have also included the relative
and cumulative frequencies.

No Class Mark Freq. C. Freq. R. Freq. R. C. Freq.
1 [9, 22] 15.5 4 4 13% 13%
2 (22, 35] 28.5 6 10 20% 33%
3 (35, 48] 41.5 8 18 27% 60%
4 (48, 61] 54.5 5 23 17% 77%
5 (61, 74] 67.5 3 26 10% 87%
6 (74, 87] 80.5 2 28 7% 94%
7 (87, 100] 93.5 1 29 3% 97%
8 (100, 113] 106.5 0 29 0% 97%
9 (113, 126] 119.5 0 29 0% 97%

10 (126, 139] 132.5 1 30 3% 100%

Table 2: Example 3.3, Grouped frequency distribution table with n = 10 classes

No Class Mark Freq. C. Freq. R. Freq. R. C. Freq.
1 [9, 30.7) 19.85 7 7 23% 23%
2 [30.7, 52.4) 41.55 11 18 37% 60%
3 [52.4, 74.1) 63.25 8 26 27% 87%
4 [74.1, 95.8) 84.95 3 29 10% 97%
5 [95.8, 117.5) 106.65 0 29 0% 97%
6 [117.5, 139) 128.35 1 30 3% 100%

Table 3: Example 3.3, Grouped frequency distribution table with n = 6 classes

Remark 3.4. Due to rounding errors, the length of the last class may be slightly different than the
rest of them, even when we group data into classes of the same width.
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3.2 Histograms and Frequency Polygons

When data is grouped into classes, the best way to visualize the frequency distribution is by con-
structing a histogram (in Matlab hist/histogram ). A histogram is a type of bar graph, where classes
are represented by rectangles whose bases are the class lengths and whose heights are chosen so that
the areas of the rectangles are proportional to the class frequencies. If the classes have all the same
length, then the heights will be proportional to the class frequencies.

A histogram shows the shape of a pdf (probability distribution/density function) or pmf (proba-
bility mass function) of data, checks for homogeneity, and suggests possible outliers.

A frequency histogram consists of columns, one for each class (bin), whose height is deter-
mined by the number of observations in the bin (i.e, the class frequency).

A relative frequency histogram has the same shape but a different vertical scale. Its column
heights represent the proportion of all data that appeared in each bin.

If relative frequencies are considered, then the total areas of all rectangles will be equal to 1.
For a large volume of data grouped into a reasonably large number of classes, the histogram gives
a rough approximation of the density function (pdf) of the population from which the sample data
was drawn.

An alternative in that sense (the sense of roughly approximating the shape of the density func-
tion) to histograms are frequency polygons, obtained by joining the points with coordinates (xi, fi),

i = 1, n (x−coordinates are the class marks and y−coordinates are the class frequencies).

Example 3.5. Let us consider again the data in Example 3.3, the CPU times (in seconds) for N = 30

randomly chosen jobs:

70 36 43 69 82 48 34 62 35 15

59 139 46 37 42 30 55 56 36 82

38 89 54 25 35 24 22 9 56 19

We constructed the grouped frequency distribution tables for these data for n = 10 and for n = 6

classes. Figure 3 shows the corresponding histogram and frequency polygon for grouped data ((a)
and (b)). Also in Figure 3, we show histograms for n = 4 and n = 12 bins, respectively. It is
obvious that n = 4 is too small and n = 12 is too large for the number of bins. The values n = 6

and n = 10 seem to be the best (in terms of the information they provide), especially n = 10.
For 10 classes, let us take a closer look (see Figure 4). What information can we draw from

these histograms?
• the continuous distribution (continuous, because time varies continuously) of the CPU times

is not symmetric, it is skewed to the right, as we see 5 columns to the right of the highest
column and only 2 columns to the left;
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Fig. 3: Histograms and frequency polygons, Example 3.5
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• the value 139 stands alone suggesting that it is in fact an outlier;

• a Gamma family of distributions seems appropriate for CPU times, see the dashed curve in
Figure 4;

• there is no indication of heterogeneity; all data points except x = 139 form a rather homoge-
neous group that fits the sketched Gamma curve.

Fig. 4: Approximation of the pdf, Example 3.5

4 Calculative Descriptive Statistics

In the previous section we have considered some graphical methods for getting an idea of the shape
of the density function of the population from which the sample data was drawn. Some characteris-
tics, such as symmetry, regularity can be observed from these graphical displays of the data. Next,
we consider some statistics that allow us to summarize the data set analytically. Simple descrip-
tive statistics measuring the location, spread, variability and other characteristics can be computed
immediately. It is hoped that these will give us some idea of the values of the parameters that char-
acterize the entire population from which the sample was pooled. We are looking mainly at two
types of statistics: measures of central tendency, i.e. values that locate the observations with highest
frequencies (so, where most of the data values lie) and measures of variability, that indicate how
much the values are spread out.
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4.1 Measures of Central Tendency

These are values that tend to locate in some sense the “middle” of a set of data. The term “average”
is often associated with these values. Each of the following measures of central tendency can be
called the “average” value of a set of data.

Mean

Definition 4.1. The (arithmetic) mean ( mean ) of the data x1, . . . , xN is the value

xa =
1

N

N∑
i=1

xi. (4.2)

For grouped data,

(
xi

fi

)
i=1,n

, the mean is xa =
1

N

n∑
i=1

fixi.

Remark 4.2. Some immediate properties of the arithmetic mean are the following:
1. The sum of all deviations from the mean is equal to 0. Indeed,

N∑
i=1

(xi − xa) =
N∑
i=1

xi −Nxa = 0.

2. The mean minimizes the mean square deviation, i.e. for every a ∈ R,

N∑
i=1

(xi − a)2 ≥
N∑
i=1

(xi − xa)
2 .

Example 4.3. Let us recall the data in Example 3.5, where to evaluate the effectiveness of a proces-
sor, a sample of CPU times for N = 30 randomly chosen jobs (in seconds) was considered:

70 36 43 69 82 48 34 62 35 15

59 139 46 37 42 30 55 56 36 82

38 89 54 25 35 24 22 9 56 19

The mean CPU time is

x =
70 + 36 + . . .+ 56 + 19

30
= 48.2333 seconds.

We may conclude that the mean CPU time of all the jobs handled by that particular processor is
about the same, “near” 48.2333 seconds. In other words, we try to estimate the population mean by
the sample mean. How good would that approximation be? We will learn later how to assess the
accuracy of our estimates.
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Example 4.4. Let us assume that the value x = 139 (that seemed extreme, out of place, when we
looked at the histogram) was not in this sample. Then the mean would be

x1 = 45.1034,

somewhat lower.
Now, in the other direction, let us suppose that the CPU time of one more job (a heavier one) is
recorded and it is found to be 30 minutes = 1800 seconds. The mean of the new sample is

x2 = 104.7419 seconds,

way larger than the first value!

Median

One disadvantage of the sample mean is its sensitivity to extreme observations. As we have seen in
the previous example, one extreme value can significantly shift the value of the mean, to the point
where it becomes almost irrelevant.
The next measure of location is the median, which is much less sensitive than the mean.

Definition 4.5. The median ( median ) is the value M that divides a set of ordered data X into two

equal parts, i.e. the value with the property that it is exceeded by at most a half of observations and

is preceded by at most a half of observations.

A sample is always discrete, since it consists of a finite number of observations. Then, comput-
ing a sample median is similar to the case of discrete distributions. In simple random sampling, all
observations are equally likely, and thus, equal probabilities on each side of a median translate into
an equal number of observations. There are two cases, depending on the sample size N .

If the sorted primary data is

x1 ≤ . . . ≤ xN ,

then

M =

 xk+1, if N = 2k + 1
xk + xk+1

2
, if N = 2k

.

Remark 4.6. The median may or may not be one of the values in the data.

Example 4.7. Let us find the median for the data in Example 4.3 (the CPU times).
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Since there are N = 30 observations, there are two middle values, the 15th and the 16th entries.

9 15 19 22 24 25 30 34 35 35

36 36 37 38 42 43 46 48 54 55

56 56 59 62 69 70 82 82 89 139

Then the median is M = 42.5.

Remark 4.8. For an even number of observations, the median can be chosen to be any number
between the two middle values. So in the previous example, we could say that any number in the
interval (42, 43) is a median.

Example 4.9. Let us add again the extreme value of 30 minutes = 1800 seconds. The new sample

9 15 19 22 24 25 30 34 35 35

36 36 37 38 42 43 46 48 54 55

56 56 59 62 69 70 82 82 89 139 1800

has 31 observations, there is only one middle value (the 16th entry), so the median of the new sample
is

M2 = 43.

Notice that the new value differs very little from the previous one and is still relevant, unlike the
mean. So the median is a robust statistic, not being influenced (so much) by outliers.

Mode

Definition 4.10. A sample mode, xmo, of a set of data is a most frequent value.

Remark 4.11. Notice from the wording of the definition that the mode may not be unique. A
distribution can have one mode − unimodal, two modes − bimodal, three modes − trimodal, or
more − multimodal.
When the pdf of a continuous distribution has multiple local maxima, it is common to refer to all of
the local maxima as modes of the distribution.
If every value occurs only once in a sample, we say that there is no mode.

For data drawn from symmetric distributions, we have

x = M = xmo.

In general,
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xmo ≈ x− 3(x−M).

This empirical formula was given by K. Pearson.

Example 4.12. In our example about the CPU times, the values 35, 36, 56 and 82 appear twice,
while all the other values have a frequency of 1. So all four are modes, this is multimodal data.

9 15 19 22 24 25 30 34 35 35
36 36 37 38 42 43 46 48 54 55

56 56 59 62 69 70 82 82 89 139

If we group the data into 10 classes, then the modal class is the third one, (35, 48], with
modal mark 41.5 (Figure 5(a)). If we have only 6 classes, then the second one is the modal class,
[30.7, 52.4), with mark 41.55 (Figure 5(b)).
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Fig. 5: Modal class

4.2 Measures of Variability

Once we have located the central values of a set of data, it is important to measure the variability,
whether the data values are tightly clustered or spread out. At the heart of Statistics lies variability:
measuring it, reducing it, distinguishing random from real variability, identifying the various sources
of real variability and making decisions in the presence of it. We need to know how “unstable” the
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data is and how much the values differ from its average or from other middle values. These numbers
will have small values for closely grouped data (little variation) and larger values for more widely
spread out data (large variation).

The measures of variation will also help us assess the reliability of our estimates and the accuracy
of our forecasts.

Quantiles, percentiles and quartiles

Consider the primary data X = {x1, . . . , xN}. The first two measures of variation give a very
general idea of the spread in the data values.

Definition 4.13. The range ( range ) of X is the difference

xmax − xmin.

If the values of X are sorted in increasing order, then the range is xN − x1.

Definition 4.14. The mean absolute deviation ( mad ) of X is the mean of the absolute value of the

deviations from the mean, i.e. the value

MAD1 =
1

N

N∑
i=1

|xi − x|.

The median absolute deviation ( mad ) of X is the median of the absolute value of the deviations

from the median, i.e. the value

MAD2 = median{|xi −M |}.

Like the median, the median absolute deviation is not influenced by extreme values, whereas the
mean absolute deviation is.

Next, following the idea behind the definition of the median, we define values that divide the
data into certain percentages. We simply replace 0.5 in its definition by some probability 0 < p < 1.

Definition 4.15. Let X be a set of data sorted increasingly, p ∈ (0, 1) and k = 1, 2, . . . , 99.

(1) A sample p-quantile ( quantile ) is any number that exceeds at most 100p% of the sample and

is exceeded by at most 100(1− p)% of the sample.

(2) A k-percentile ( prctile ) Pk is a (k/100)-quantile. So, Pk exceeds at most k% and is exceeded

by at most (100− k)% of the data

(3) The quartiles of X are the values
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xmin Q1 Q2 Q3 xmax

25% 25% 25% 25%

Fig. 6: Quartiles

Q1 = P25, Q2 = P50 = M and Q3 = P75.

Definition 4.16. Let X be a set of sorted data with quartiles Q1, Q2 and Q3.

(1) The interquartile range ( iqr ) is the difference between the third and the first quartile

IQR = Q3 −Q1. (4.3)

(2) The interquartile deviation or the semi interquartile range is the value

IQD =
IQR

2
=

Q3 −Q1

2
. (4.4)

(3) The interquartile deviation coefficient or the relative interquartile deviation is the value

IQDC =
IQD

M
=

Q3 −Q1

2Q2

. (4.5)

Remark 4.17.
1. The interquartile deviation is an absolute measure of variation and it has an important property:
the range M ± IQD contains approximately 50% of the data.
2. The interquartile deviation coefficient IQDC varies between −1 and 1, taking values close to 0

for symmetrical distributions, with little variation and values close to ±1 for skewed data with large
variation.

Example 4.18. Recall our example about the CPU times (in seconds) for N = 30 randomly chosen
jobs (sorted ascendingly):

9 15 19 22 24 25 30 34 35 35

36 36 37 38 42 43 46 48 54 55

56 56 59 62 69 70 82 82 89 139
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Let us compute various measures of variation.

Solution. For this example, the range is

139− 9 = 130 seconds

and the mean and median absolute deviations are

MAD1 = 19.6133,

MAD2 = 13.5.

To determine the quartiles, notice that 25% of the sample equals 30/4 = 7.5 and 75% of the
sample is 90/4 = 22.5 observations. From the ordered sample, we see that the 8th element, 34, has
7 observations to its left and 22 to its right, so it has no more than 7.5 observations to the left and no

more than 22.5 observations to the right of it. Hence, Q1 = 34.
Similarly, the third quartile is the 23rd smallest element, Q3 = 59. Recall from last time that the

second quartile (the median) is Q2 = M = 42.5. Then

IQR = 59− 34 = 25,

IQD = IQR/2 = 12.5,

IQDC = IQD/Q2 = 0.2941.

The interval
M ± IQD = [30, 55]

contains 14 observations.
The value of the IQDC is close neither to 0, nor to the values ±1. So the data doesn’t show

strong symmetry or strong asymmetry. This may be due to the extreme values 9 and/or 139.

Outliers

The interquartile range is also involved in another important aspect of statistical analysis, namely
the detection of outliers. An outlier, as the name suggests, is basically an atypical value, “far away”
from the rest of the data, that does not seem to belong to the distribution of the rest of the values in
the data set.
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We have seen how the mean is very sensitive to outliers. Other statistical procedures can be
gravely affected by the presence of outliers in the data. Thus, the problem of detecting and locating
an outlier is an important part of any statistical data analysis process.

How to classify a value as being “extreme”? First, we could use a simple property, known as the
“3σ rule”. This is an application of Chebyshev’s inequality

P (|X − E(X)| < ε) ≥ 1− V (X)

ε2
, ∀ε > 0.

If we use the classical notations E(X) = µ, V (X) = σ2, Std(X) = σ for the mean, variance and
standard deviation of X and take ε = 3σ, we get

P (|X − µ| < 3σ) ≥ 1− σ2

9σ2
=

8

9
≈ .89.

This is saying that it is very probable (at least 0.89 probable) that |X − µ| < 3σ, or, equivalently,
that µ − 3σ < X < µ + 3σ. In words, the 3σ rule states that most of the values that any random

variable takes, at least 89%, lie within 3 standard deviations away from the mean. This property is
true in general, for any distribution, but especially for unimodal and symmetrical ones, where that
percentage is even higher.

Based on that, one simple procedure would be to consider an outlier any value that is more than
2.5 standard deviations away from the mean, and an extreme outlier a value more than 3 standard
deviations away from the mean.

A more general approach, that works well also for skewed data, is to consider an outlier any
observation that is outside the range[

Q1 −
3

2
IQR, Q3 +

3

2
IQR

]
= [Q1 − 3IQD, Q3 + 3IQD] .

Also, the coefficient 3/2 can be replaced by some other number to decrease or enlarge the
interval of “normal” values (or, equivalently, the domain that covers the outliers):

[Q1 − w · IQR, Q3 + w · IQR] , w = 0.5, 1, 1.5.

For our example on CPU times of processors, we have

Q1 −
3

2
IQR = −3.5,

Q3 +
3

2
IQR = 96.5,
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so observations outside the interval [−3.5, 96.5] are considered outliers. In this case, there is only
one, the value 139.

Boxplots

All the information we discussed above is summarized in a graphical display, called a boxplot
( boxplot ), a plot in which a rectangle is drawn to represent the second and third quartiles (so
the interquartile range), with a line inside for the median value and which indicates which values
are considered extreme. The “whiskers” of the boxplot are the endpoints of the interval on which
normal values lie (so everything outside the whiskers is considered an outlier).

For the data in Example 4.18, the boxplot is displayed in Figure 7 and it can be drawn vertically
(default) or horizontally. The width of the interval of the whiskers can be changed. The interval that
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Fig. 7: Boxplots

determines the outliers (i.e., outside of which values are considered too extreme, outliers) is

[Q1 − w · IQR,Q3 + w · IQR].

The default value is w = 1.5. With the smaller whiskers, boxplot displays more data points as
outliers.

19



Moments, variance, standard deviation and coefficient of variation

The idea of the mean can be generalized, by taking various powers of the values in the data.

Definition 4.19.
(1) The moment of order k is the value

νk =
1

N

N∑
i=1

xk
i , νk =

1

N

n∑
i=1

fix
k
i , (4.6)

for primary and for grouped data, respectively.

(2) The central moment of order k ( moment ) is the value

µk =
1

N

N∑
i=1

(xi − x)k, µk =
1

N

n∑
i=1

fi(xi − x)k (4.7)

for primary and for grouped data, respectively.

(3) The variance ( var ) is the value

σ2 =
1

N

N∑
i=1

(xi − x)2, σ2 =
1

N

n∑
i=1

fi(xi − x)2 (4.8)

for primary and for grouped data, respectively. The quantity σ =
√
σ2 is the standard devia-

tion ( std ).

Remark 4.20.
1. A more efficient computational formula for the variance is

σ2 =
1

N

(
N∑
i=1

x2
i −

1

N

( N∑
i=1

xi

)2)
=

1

N

(
N∑
i=1

x2
i −Nx2

)
, (4.9)

which follows straight from the definition.
2. We will see later that when the data represents a sample (not the entire population), a better
formula is

s2 =
1

N − 1

N∑
i=1

(xi − x)2 =
1

N − 1

( N∑
i=1

x2
i −Nx2

)
,

s2 =
1

N − 1

n∑
i=1

fi(xi − x)2 =
1

N − 1

( N∑
i=1

fix
2
i −Nx2

)
,

(4.10)
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for the sample variance for primary or grouped data. The reason the sum is divided by N − 1

involves the notion of degrees of freedom, which takes into account the number of constraints in
computing an estimate. The sample observations x1, . . . , xN are independent (by the definition of a
random sample), but when computing the variance, we use the variables x1−x, . . . , xN −x. Notice
that by subtracting the sample mean x from each observation, there exists a linear relation among
the elements, namely

N∑
k=1

(xk − x) = 0

and, thus, we lose 1 degree of freedom due to this constraint. Hence, there are only N−1 degrees of
freedom. So, we will use (4.9) to compute the variance of a set of data that represents a population
and (4.10) for the variance of a sample.

Example 4.21. Consider again our previous example on CPU times (in seconds) for N = 30 ran-
domly chosen jobs:

70 36 43 69 82 48 34 62 35 15

59 139 46 37 42 30 55 56 36 82

38 89 54 25 35 24 22 9 56 19

Recall that for this data the sample mean was x = 48.2333 seconds. The sample variance is

s2 =
(70− 48.2333)2 + . . .+ (19− 48.2333)2

30− 1
=

20391

29
≈ 703.1506 sec2.

Alternatively, using (4.9),

s2 =
702 + . . .+ 192 − 30 · 48.23332

30− 1
=

90185− 69794

29
≈ 703.1506 sec2.

The sample standard deviation is

s =
√
703.1506 ≈ 26.1506 sec.

By the 3σ rule, using x and s as estimates for the population mean µ and population standard
deviation σ, we may infer that at least 89% of the tasks performed by this processor require between
x− 3s = −30.2185 and x+ 3s = 126.6851 (so less than 126.6851) seconds of CPU time.

Definition 4.22. The coefficient of variation is the value

CV =
s

x
.
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Remark 4.23.
1. The coefficient of variation is also known as the relative standard deviation (RSD).
2. It can be expressed as a ratio or as a percentage. It is useful in comparing the degrees of variation
of two sets of data, even when their means are different.
2. The coefficient of variation is used in fields such as Analytical Chemistry, Engineering or Physics
when doing quality assurance studies. It is also widely used in Business Statistics. For example, in
the investing world, the coefficient of variation helps brokers determine how much volatility (risk)
they are assuming in comparison to the amount of return they can expect from a certain investment.
The lower the value of the CV, the better the risk-return trade off.

5 Correlation and Regression

So far we have been discussing a number of descriptive techniques for describing one variable
only. However, a very important part of Statistics is describing the association between two (or
more) variables, whether or not they are independent, and if they are not, what is the nature of
their dependence. One of the most fundamental concepts in statistical research is the concept of
correlation.

Correlation is a measure of the relationship between one dependent variable, called response

and one or more independent variables, called predictor(s). If two variables are correlated, this
means that one can use information about one variable to predict the values of the other variable.

Regression is then the method or statistical procedure that is used to establish that relationship.
Establishing and testing such a relation enables us: to understand interactions, causes, and effects
among variables; to predict unobserved variables based on the observed ones; to determine which
variables significantly affect the variable of interest, etc.

Example 5.1 (World Population). According to the International Data Base of the U.S. Census
Bureau, population of the world grows according to Table 4. How can we use these data to predict
the world population in years 2025 and 2030?

Figure 8 shows that the population (response) is tightly related to the year (predictor). It in-
creases every year, and its growth is almost linear. If we estimate the regression function relating
our response and our predictor (see the dotted line on Figure 8) and extend its graph to the year
2030, the forecast is ready.

A straight line that fits the observed data for years 1950 − 2020 predicts the population of 8.06
billion in 2025 and 8.444 billion in 2030. It also shows that between 2020 and 2025, the world
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Year Pop. (mln. people) Year Pop.(mln.people) Year Pop.(mln.people)
1950 2558 1975 4089 2000 6090
1955 2782 1980 4451 2005 6474
1960 3043 1985 4855 2010 6970
1965 3350 1990 5287 2015 7405
1970 3712 1995 5700 2020 7821

Table 4: World Population 1950-2020

population reaches the historical mark of 8 billion (which actually happened last year ...). How
accurate is the forecast obtained in this example? The observed population during 1950 − 2020

appears rather close to the estimated regression line in Figure 8. It is reasonable to hope that it will
continue to do so through 2030.
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Fig. 8: World population and regression forecast

5.1 Univariate Regression, Curves of Regression

We will restrict our discussion to the case of univariate regression, predicting response Y based
on one predictor X .

So, we have two vectors X and Y of the same length. We can get a first idea of the relationship
between the two, by plotting them in a scattergram, or scatterplot, which is a plot of the points
with coordinates (xi, yi)i=1,k, xi ∈ X, yi ∈ Y, i = 1, k. We group the N primary data into mn
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classes and denote by (xi, yj) the class mark and by fij the absolute frequency of the class (i, j),

i = 1,m, j = 1, n. Then we represent the two-dimensional characteristic (X, Y ) in a correlation

table, or contingency table, as shown in Table 5.

X \ Y y1 . . . yj . . . yn
x1 f11 . . . f1j . . . f1n f1.
...

...
...

...
...

xi fi1 . . . fij . . . fin fi.
...

...
...

...
...

xm fm1 . . . fmj . . . fmn fm.

f.1 . . . f.j . . . f.n f.. = N

Table 5: Correlation Table

Notice that
n∑

j=1

fij = fi.,
m∑
i=1

fij = f.j,
m∑
i=1

fi. =
n∑

j=1

f.j = f.. = N.

Now we can define numerical characteristics associated with (X, Y ).

Definition 5.2. Let (X, Y ) be a two-dimensional characteristic whose distribution is given by Table

5 and let k1, k2 ∈ N.

(1) The (initial) moment of order (k1, k2) of (X, Y ) is the value

νk1k2 =
1

N

m∑
i=1

n∑
j=1

fijx
k1
i yk2j . (5.1)

(2) The central moment of order (k1, k2) of (X, Y ) is the value

µk1k2 =
1

N

m∑
i=1

n∑
j=1

fij(xi − x)k1(yj − y)k2 , (5.2)

where x = ν10 =
1

N

m∑
i=1

fi.xi and y = ν01 =
1

N

n∑
j=1

f.jyj are the means of X and Y ,

respectively.

Remark 5.3. Just as the means of the two characteristics X and Y can be expressed as moments of
(X, Y ), so can their variances:
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σ2
X = µ20 = ν20 − ν2

10,

σ2
Y = µ02 = ν02 − ν2

01.

Definition 5.4. Let (X, Y ) be a two-dimensional characteristic whose distribution is given by Table

5.

(1) The covariance ( cov ) of (X, Y ) is the value

cov(X, Y ) = µ11 =
1

N

m∑
i=1

n∑
j=1

fij(xi − x)(yj − y). (5.3)

(2) The correlation coefficient ( corrcoef ) of (X, Y ) is the value

ρ = ρXY =
cov(X, Y )√
µ20

√
µ02

=
µ11

σXσY

. (5.4)

These two notions have been mentioned before, for two random variables. They are defined simi-
larly for sets of data and they have the same properties. The covariance gives a rough idea of the
relationship between X and Y. As before, if X and Y are independent (so there is no relationship,
no correlation between them), then the covariance is 0. If large values of X are associated with large
values of Y , then the covariance will have a positive value, if, on the contrary, large values of X are
associated with small values of Y , then the covariance will have a negative value. Also, an easier
computational formula for the covariance is cov(X, Y ) = ν11 − x · y.

The correlation coefficient is then

ρ =
ν11 − x · y
σXσY

and, as before, it satisfies the inequality

−1 ≤ ρ ≤ 1 (5.5)

and, by its variation between −1 and 1, its value measures the linear relationship between X and
Y. If ρXY = 1, there is a perfect positive correlation between X and Y , if ρXY = −1, there is a
perfect negative correlation between X and Y . In both cases, the linearity is “perfect”, i.e there
exist a, b ∈ R, a ̸= 0, such that Y = aX + b. If ρXY = 0, then there is no linear correlation
between X and Y , they are said to be (linearly) uncorrelated. However, in this case, they may not
be independent, some other type of relationship (not linear) may exist between them.
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In our task of finding a relationship between X and Y , we may go the following path: knowing
the value of one of the characteristics, try to find a probable, an “expected” value for the other.
If the two characteristics are related in any way, then there should be a pattern developing, that
is, the expected value of one of them, conditioned by the other one taking a certain value, should
be a function of that value that the other variable assumes. In other words, we should consider
conditional means, defined similarly to regular means, only taking into account the condition.

Definition 5.5. Let (X, Y ) be a two-dimensional characteristic whose distribution is given by Table

5.

(1) The conditional mean of Y , given X = xi, is the value

yi = y(xi) =
1

fi.

n∑
j=1

fijyj, i = 1,m. (5.6)

(2) The conditional mean of X , given Y = yj, is the value

xj = x(yj) =
1

f.j

m∑
i=1

fijxi, j = 1, n. (5.7)

Definition 5.6. Let (X, Y ) be a two-dimensional characteristic.

(1) The curve y = f(x) formed by the points with coordinates (xi, yi), i = 1,m, is called the

curve of regression of Y on X .

(2) The curve x = g(y) formed by the points with coordinates (yj, xj), j = 1, n, is called the

curve of regression of X on Y .

Remark 5.7. The curve of regression of a characteristic Y with respect to another characteristic X

is then the mean value of Y , y(x), given X = x. The curve of regression is determined so that it
approximates best the scatterplot of (X, Y ).

5.2 Least Squares Estimation, Linear Regression

One of the most popular ways of finding curves of regression is the least squares method.
Assume the curve of regression of Y on X is of the form

y = y(x) = f(x; a1, . . . , as).
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We determine the unknown parameters a1, . . ., as so that the sum of squares error (SSE) (the sum of
the squares of the differences between the responses yj and their fitted values y(xi), each counted
with the corresponding frequency)

S=SSE =
m∑
i=1

n∑
j=1

fij

(
yj − y(xi)

)2
=

m∑
i=1

n∑
j=1

fij

(
yj − f(xi; a1, . . . , as)

)2
is minimum (hence, the name of the method).
We find the point of minimum (a1, . . . , as) of S by solving the system

∂S

∂ak
= 0, k = 1, s,

i.e.

−2
m∑
i=1

n∑
j=1

fij

(
yj − f(xi; a1, . . . , as)

)∂f(xi; a1, . . . , as)

∂ak
= 0, (5.8)

for every k = 1, s.
Then the equation of the curve of regression of Y on X is

y = f (x; a1, . . . , as) .

Let us consider the case of linear regression and find the equation of the line of regression of Y on
X . We are finding a curve

y = ax+ b,

for which

S(a, b) =
m∑
i=1

n∑
j=1

fij

(
yj − axi − b

)2
is minimum. The system (5.8) becomes

(
m∑
i=1

n∑
j=1

fijx
2
i

)
a +

(
m∑
i=1

n∑
j=1

fijxi

)
b =

m∑
i=1

n∑
j=1

fijxiyj

(
m∑
i=1

n∑
j=1

fijxi

)
a +

(
m∑
i=1

n∑
j=1

fij

)
b =

m∑
i=1

n∑
j=1

fijyj

and after dividing both equations by N ,{
ν20a + ν10b = ν11

ν10a + ν00b = ν01.
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Its solution is

a =
ν11 − ν10ν01

ν20 − ν2
10

=
ν11 − x · y

σ2
X

=
ν11 − x · y
σXσY

· σY

σX

= ρ
σY

σX

,

b = ν01 − ν10a = y − a · x.

So the equation of the line of regression of Y on X is

y − y = ρ
σY

σX

(x− x) (5.9)

and, by analogy, the equation of the line of regression of X on Y is

x− x = ρ
σX

σY

(y − y) . (5.10)

Example 5.8. Let us consider the world population data in Example 5.1 and find the equation of
the line of regression.

Solution. For the world population (1950− 2020) data, we find

x = 1985, y = 4991.5

σX = 24.5, σY = 1884.6

ρ = 0.9972

and the equation of the line of regression

y = 76.72x− 147300.5.

With this, we were able to forecast the values of 8.0604 billion for the year 2025 and 8.444 billion
for 2030. Also, based on this model, the predicted population for 2024 is 7.9808 billion people.

Let us analyze linear regression further.

Remark 5.9.
1. The point of intersection of the two lines of regression (5.9) and (5.10) is (x, y) . This is called
the centroid of the distribution of the characteristic (X, Y ).

2. The slope aY |X = ρ
σY

σX

of the line of regression of Y on X is called the coefficient of regression

of Y on X . Similarly, aX|Y = ρ
σX

σY

is the coefficient of regression of X on Y and we have the

relation

28



ρ2 = aY |X aX|Y .

3. For the angle α between the two lines of regression, we have

tanα =
1− ρ2

ρ2
· σXσY

σ2
X + σ2

Y

.

So, if | ρ | = 1, then α = 0, i.e. the two lines coincide. If | ρ | = 0 (for instance, if X and Y are
independent), then α =

π

2
, i.e. the two lines are perpendicular.

Example 5.10. Let us examine the situations graphed in Figure 9.

• In Figure 9(a) ρ = 0.95, positive and very close to 1, suggesting a strong positive linear
trend. Indeed, most of the points are on or very close to the line of regression of Y on X. The
positivity indicates that large values of X are associated with large values of Y. Also, since
the correlation coefficient is so close to 1, the two lines of regression almost coincide.

• In Figure 9(b) ρ = −0.28, negative and fairly small, close to 0. If a relationship exists between
X and Y, it does not seem to be linear. In fact, they are very close to being independent,
since the points are scattered around the plane, no pattern being visible. The two lines of
regression are very distinct and both have negative slopes, suggesting that large values of X
are associated with small values of Y .

• In Figure 9(c) ρ = 0, so the two characteristics are uncorrelated, no linear relationship exists
between them. However they are not independent, they were chosen so that Y = −X2 +

sin

(
1

X

)
. Notice also, that the two lines of regression are perpendicular.

• Finally, in Figure 9(d) ρ = 0, again, so no linear relationship exists. In fact the two character-
istics are independent, which is suggested by their random scatter inside the plane.

Remark 5.11. Other types of curves of regression that are fairly frequently used are
− exponential regression y = abx,

− logarithmic regression y = a log x+ b,

− logistic regression y =
1

ae−x + b
,

− hyperbolic regression y =
a

x
+ b.
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(a) ρ = 0.95 (b) ρ = −0.28

(c) ρ = 0 (d) ρ = 0

Fig. 9: Scattergram, Lines of Regression and Centroid
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