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Chapter 4. Numerical Characteristics
of Random Variables

the distribution of a random variable or a random vector, the full
collection of related probabilities, contains the entire information about
its behavior;

this detailed information can be summarized in a few vital numerical
characteristics describing the average value, the most likely value of a
random variable, its spread, variability, etc;

these are numbers that will provide some information about a random
variable or about the relationship between random variables.
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Expectation

1. Expectation

Definition 1.1.

(i) If X
(

xi

pi

)
i∈I

is a discrete random variable, then the expectation

(expected value, mean value) of X is the real number

E(X) =
∑
i∈I

xiP(X = xi) =
∑
i∈I

xipi, (1.1)

if it exists (i.e., the series is absolutely convergent).

(ii) If X is a continuous random variable with density function f : R → R,
then its expectation (expected value, mean value) is the real number

E(X) =

∫
R

xf (x)dx, (1.2)

if it exists (i.e., the integral is absolutely convergent).
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Expectation

Remark 1.2.

1. The expected value can be thought of as a “long term” average value, a
number that we expect the values of a random variable to stabilize on.

2. If h : R → R is a measurable function, then

E
(
h(X)

)
=

∑
i∈I

h(xi)pi, (1.3)

if X is discrete and

E
(
h(X)

)
=

∫
R

h(x)f (x) dx, (1.4)

if X is continuous.
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Expectation

It can also be interpreted as a point of equilibrium, a center of gravity.

In the discrete case, if we imagine the probabilities pi to be weights
distributed in the points xi, then E(X) would be the point that holds the whole
thing in equilibrium. In fact, notice that the computational formula (1.1) is
actually a weighted mean.

Consider a random variable with pdf

X
(

0 1
0.5 0.5

)
.

Observing this variable many times, we shall see X = 0 about 50% of times
and X = 1 about 50% of times. The average value of X will then be close to
0.5, so it is reasonable to have E(X) = 0.5, which is what we get by (1.1).
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Expectation

Now, suppose that P(X = 0) = 0.75 and P(X = 1) = 0.25, i.e its pdf is now

X
(

0 1
0.75 0.25

)
.

Then, in a long run, X is equal to 1 only 1/4 of times, otherwise it equals 0.
Therefore, in this case, E(X) = 0.25.

The same interpretation would go for the continuous case, only there the
“weight” would be continuously distributed, according to the density function
f .

The expected value as a center of gravity is illustrated in Figure 1.
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Expectation

Figure 1: Expectation as a center of gravity
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Expectation

Example 1.3.
Let us start with a simple, intuitive example. Let X be the random variable
that denotes the number shown when a die is rolled. What would be the
“expected average value” of X, if the die was rolled over and over?

Solution.
Since any of the 6 numbers is equally probable to show on the die, we would
expect that, in the long run, we would roll as many 1’s as 6’s. These would
average out at

1 + 6
2

=
7
2
.

Also, we would expect to roll the same number of 2’s as 5’s, which would
also average at

2 + 5
2

=
7
2
.

Finally, about the same number of 3’s and 4’s would be expected to show and

their average is again,
7
2

. So, the “long term average” should be, intuitively,
7
2

.
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Expectation

On the other hand, we know that X has a Discrete Uniform U(6) distribution,
with pdf

X

(
1 2 3 4 5 6
1
6

1
6

1
6

1
6

1
6

1
6

)
.

Then, by (1.1),

E(X) =
∑
i∈I

xipi

=
6∑

i=1

i · 1
6

=
1
6

6∑
i=1

i

=
1
6
· 6 · 7

2
=

7
2
,

the value we obtained intuitively.
■
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Expectation

Example 1.4.

Consider now a (continuous) Uniform variable X ∈ U(a, b). That means X
can take any value in the interval [a, b], equally probable (recall Problem 3 in
Seminar 2, about a spyware breaking passwords). What would be a long-run
“expected average value”?

Solution.
In the long run, the variable is just as likely to take values at the beginning of
the interval, as it is to take the ones towards the end of [a, b]. So they would
average out at the value right in the middle, i.e. the midpoint of the interval,

a + b
2

.
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Expectation

Indeed, since the pdf of X is

f (x) =
1

b − a
, x ∈ [a, b]

(and 0 everywhere else), by (1.2), its expected value is

E(X) =

∫
R

xf (x)dx =

b∫
a

x
1

b − a
dx =

1
b − a

b∫
a

xdx

=
1

b − a
· 1

2
x2

∣∣∣∣∣
b

a

=
1

b − a
· b2 − a2

2
=

a + b
2

.

■

Lecture 6 11 / 38



Expectation

Example 1.5.

The expected value of a Bern(p), p ∈ (0, 1) variable with pdf

X
(

0 1
1 − p p

)
is

E(X) = 0 · (1 − p) + 1 · p = p. (1.5)
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Expectation

Theorem 1.6.

If X and Y are either both discrete or both continuous random variables, then
the following properties hold:

a) E(aX + b) = aE(X) + b, for all a, b ∈ R.

b) E(X + Y) = E(X) + E(Y).

c) If X and Y are independent, then E(X · Y) = E(X)E(Y).

d) If X ≤ Y , i.e. X(e) ≤ Y(e), for all e ∈ S, then E(X) ≤ E(Y).
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Expectation

Proof.
We give a selected proof, only for the discrete case.

a) If X is discrete, with pdf

X
(

xi

pi

)
i∈I

,

then Y = aX + b is also discrete and has pdf

Y
(

axi + b
pi

)
i∈I

.

So, its expectation is

E(aX + b) =
∑
i∈I

(axi + b)pi = a
∑
i∈I

xipi + b
∑
i∈I

pi = aE(X) + b.
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Expectation

Proof.
b) For X and Y both discrete, recall that their sum has pdf

X + Y
(

xi + yj

pij

)
(i,j)∈I×J

, pij = P(X = xi,Y = yj)

and that ∑
j∈J

pij = pi,
∑
i∈I

pij = qj,

where pi = P(X = xi), i ∈ I and qj = P(Y = yj), j ∈ J.
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Expectation

Proof.
Then

E(X + Y) =
∑

(i,j)∈I×J

(xi + yj)pij =
∑
i∈I

∑
j∈J

(xi + yj)pij

=
∑
i∈I

∑
j∈J

xipij +
∑
j∈J

∑
i∈I

yjpij

=
∑
i∈I

xi

∑
j∈J

pij︸ ︷︷ ︸
pi

+
∑
j∈J

yj

∑
i∈I

pij︸ ︷︷ ︸
qj

=
∑
i∈I

xipi +
∑
j∈J

yjqj

= E(X) + E(Y).
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Expectation

Proof.
c) For X and Y discrete and independent, we have

E(XY) =
∑
i∈I

∑
j∈J

xiyjpij
ind
=

∑
i∈I

∑
j∈J

xiyjpiqj

=
∑
i∈I

xi

(∑
j∈J

yjqj︸ ︷︷ ︸
E(Y)

)
pi

= E(Y) ·
∑
i∈I

xipi

= E(X) · E(Y).
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Expectation

Proof.
d) We show that if Z ≥ 0, then E(Z) ≥ 0.

Then by a) and b) applied to Z = Y − X, the property follows.

If Z is discrete, Z ≥ 0 means its values zi ≥ 0, ∀i ∈ I and then

E(Z) =
∑
i∈I

ziP(Z = zi) ≥ 0.

Lecture 6 18 / 38



Expectation

Remark 1.7.

1. Property b) in Theorem 1.6 can be generalized to

E
( n∑

i=1

Xi

)
=

n∑
i=1

E(Xi).

2. Property c) in Theorem 1.6 can also be generalized: If X1, . . . ,Xn are
independent, then

E
( n∏

i=1

Xi

)
=

n∏
i=1

E(Xi).

3. An immediate consequence of Theorem 1.6a) is the fact that

E
(
X − E(X)

)
= 0.
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Expectation

Example 1.8.
Let us find the expectation of a Binomial variable X ∈ B(n, p), n ∈ N,
p ∈ (0, 1).

Solution. Recall (Remark 4.8, Lecture 4) that a Binomial variable
X ∈ B(n, p) is the sum of n independent Xi ∈ Bern(p) random variables.
All variables Xi have the same expected value E(Xi) = p, since they have the
same distribution.
Then, by the previous theorem,

E(X) = E
( n∑

i=1

Xi

)
=

n∑
i=1

E(Xi) =

n∑
i=1

p = np.

■

Remark 1.9.
For a Normal variable X ∈ N(µ, σ), the expected value is E(X) = µ.

Lecture 6 20 / 38



Variance and Standard Deviation

2. Variance and Standard Deviation

Expectation shows where the average value of a random variable is located, or
where the variable is expected to be, plus or minus some error. How large
could this “error” be, and how much can a variable vary around its
expectation? The answer to these questions can give important information
about a random variable.

Knowledge of the mean value of a random variable is important, but that
knowledge alone can be misleading. Suppose two patients in a hospital, X and
Y , have their pulse (number of heartbeats per minute) checked every day.
Over the course of time, they each have a mean pulse of 75, which is
considered healthy. But, for patient X the pulse ranges between 70 and 80,
while for patient Y , it oscillates between 40 and 110. Obviously, the second
patient might have some serious health problems, which the expected value
alone would not show.

So, next, we define some measures of variability.
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Variance and Standard Deviation

Definition 2.1.

Let X be a random variable. The variance (dispersion) of X is the number

V(X) = E
[(

X − E(X)
)2]

, (2.1)

if it exists. The value σ(X) = Std(X) =
√

V(X) is called the standard
deviation of X.

Variance (and standard deviation) measure the amount of variability (spread)
in the values that a random variable takes, with large values indicating a wide
spread of values and small values meaning more closely knit values.

The standard deviation brings the numbers to the same “level” (e.g.,
measurement units), while the variance gives the squares of those numbers.
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Variance and Standard Deviation

Theorem 2.2.

Let X and Y be random variables. Then the following properties hold:

a) V(X) = E(X2)−
(
E(X)

)2.

b) V(aX + b) = a2V(X), for all a, b ∈ R.

c) If X and Y are independent, then

V(X + Y) = V(X) + V(Y).

d) If X and Y are independent, then

V(X · Y) = E(X2)E(Y2)−
(
E(X)

)2(E(Y))2
.
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Variance and Standard Deviation

Proof.
We give a selected proof.

a) By properties of expectation in Theorem 1.6, we have

V(X) = E
[
X2 − 2E(X)X +

(
E(X)

)2
]

= E(X2)− 2E(X)E(X) +
(
E(X)

)2

= E(X2)−
(
E(X)

)2
.

b)

V(aX + b) = E
[(

aX + b − E(aX + b)
)2
]

= E
[(

aX + b − aE(X)− b
)2
]

= a2E
[(

X − E(X)
)2
]
= a2V(X).
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Variance and Standard Deviation

Proof.
c) If X, Y are independent, then so are X − E(X), Y − E(Y), thus,

V(X + Y) = E
[(

X + Y − E(X + Y)
)2
]

= E
[(
(X − E(X)) + (Y − E(Y))

)2
]

= E
[(

X − E(X)
)2
]
+ 2E

[(
X − E(X)

)(
Y − E(Y)

)]
+ E

[(
Y − E(Y)

)2
]

ind
= V(X) + 2E

(
X − E(X)

)
· E
(
Y − E(Y)

)
+ V(Y)

= V(X) + V(Y),

since E
(
X − E(X)

)
= 0.
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Variance and Standard Deviation

Remark 2.3.

1. Part a) of Theorem 2.2 provides a more practical computational formula for
the variance than the definition.

Thus, if X
(

xi

pi

)
i∈I

is discrete, then

V(X) =
∑
i∈I

x2
i pi −

(∑
i∈I

xipi

)2

and if X is continuous with density function f , then

V(X) =
∫
R

x2f (x) dx −
(∫

R

xf (x) dx
)2

.
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Variance and Standard Deviation

Remark 2.3.
2. A direct consequence of Theorem 2.2a) (since V(X) ≥ 0) is the following
inequality:

|E(X)| ≤
√

E(X2),

which will be discussed later on in this chapter.

3. If X = b is a constant random variable (i.e. it only takes that one value with
probability 1), then by Theorem 2.2a), V(X) = 0, which is to be expected (the
variable X does not vary at all).
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Variance and Standard Deviation

Remark 2.3.
4. Part c) of Theorem 2.2 can be generalized to any number of random
variables: If X1, . . . ,Xn are independent, then

V
( n∑

i=1

Xi

)
=

n∑
i=1

V(Xi).

5. A consequence of parts b) and c) of Theorem 2.2 is the following property:
If X and Y are independent, then

V(X + Y) = V(X) + V(Y) = V(X) + V(−Y) = V(X − Y).
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Variance and Standard Deviation

Example 2.4.

Find the variance of a random variable X having
a) a Bernoulli Bern(p) distribution;
b) a Binomial B(n, p) distribution.

Solution.
a) We have

X
(

0 1
1 − p p

)
, X2

(
0 1

1 − p p

)
,

so both E(X) = E(X2) = p and thus,

V(X) = p − p2 = pq.
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Variance and Standard Deviation

b) If X is Binomial, again we use the fact that it can be written as

X =

n∑
i=1

Xi,

where X1, . . . ,Xn are independent and identically distributed with a Bern(p)
distribution. Then by part a), V(Xi) = pq, for each i = 1, n and by the
previous remarks,

V(X) = V
( n∑

i=1

Xi

)
=

n∑
i=1

V(Xi) = npq.

■

Remark 2.5.
For a Normal variable X ∈ N(µ, σ), the variance is V(X) = σ2 and its
standard deviation is σ(X) = Std(X) = σ. So, the parameters of a Normal
variable X ∈ N(µ, σ) are its mean value and its standard deviation.
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Median

3. Median

Definition 3.1.

The median of a random variable X with cdf F : R → R is a real number M
that is exceeded with probability no greater than 0.5 and is preceded with
probability no greater than 0.5. That is, M is such that

P(X > M) ≤ 1/2, i.e. 1 − F(M) ≤ 1/2,

P(X < M) ≤ 1/2, i.e. F(M − 0) ≤ 1/2.

Comparing the mean E(X) and the median M, one can tell whether the
distribution of X is

right-skewed (M < E(X)),

left-skewed (M > E(X)), or

symmetric (M = E(X)).
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Median

For continuous distributions, since P(X < M) = P(X ≤ M) = F(M)
= F(M − 0), computing a population median reduces to solving one equation:{

P(X > M) = 1 − F(M) ≤ 1/2
P(X < M) = F(M) ≤ 1/2

⇒ F(M) = 1/2.

The Uniform distribution U(a, b) has cdf F(x) =
x − a
b − a

, x ∈ [a, b]. Solving

the equation F(M) = (M − a)/(b − a) = 1/2, we find the median

M =
a + b

2
,

which is also the expected value E(X). That should be no surprise, knowing
that the Uniform distribution is symmetric (see Figure 2(a)).
For the Exponential distribution Exp(λ), the cdf is F(x) = 1 − e−λx, x > 0.
Solving F(M) = 1 − e−λM = 1/2, we get

M =
ln 2
λ

≈ 0.6931
λ

<
1
λ

= E(X),

since the Exponential distribution is right-skewed (see Figure 2(b)).
Lecture 6 32 / 38



Median

Figure 2: Median for Continuous Distributions
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Median

For discrete distributions, the equation F(x) = 0.5 has either a whole interval
of roots or no roots at all (see Figure 3).

Figure 3: Median for Discrete Distributions
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Median

In the first case, the Binomial distribution B(5, 0.5), with p = 0.5, successes
and failures are equally likely. Pick, for example, x = 2.2 in the interval
(2, 3). Having fewer than 2.2 successes (i.e., at most 2) has the same chance
as having more than 2.2 successes (i.e., at least 3 successes). Therefore,
X < 2.2 with the same probability as X > 2.2, which makes x = 2.2 a central
value, a median. The same is true for any other value in (2, 3). In this case,
for any number M ∈ (2, 3), we have F(M) = F(M − 0) = 0.5, so any such
number is a median.

In the other case, the Binomial distribution B(5, 0.4) with p = 0.4, we have
F(1) = 0.2333 and F(2) = 0.5443, so

F(x) < 0.5 for x < 2,
F(x) > 0.5 for x ≥ 2,

but there is no value of x with F(x) = 0.5. Then, M = 2 is the median. Seeing
a value on either side of M = 2 has probability less than 0.5, which makes
M = 2 a center value. Here, F(M) > 0.5 and F(M − 0) < 0.5.
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Moments

4. Moments

The ideas of expected value and variance can be generalized.

Definition 4.1.
Let X be a random variable and let k ∈ N.
The (initial) moment of order k of X is (if it exists) the number

νk = E(Xk). (4.1)

The absolute moment of order k of X is (if it exists) the number

νk = E(|X|k). (4.2)

The central (centered) moment of order k of X is (if it exists) the number

µk = E
[(

X − E(X)
)k
]
. (4.3)
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Moments

Remark 4.2.

1. If X is a discrete random variable with pdf
(

xi

pi

)
i∈I

, then for every k ∈ N,

νk =
∑
i∈I

xk
i pi, νk =

∑
i∈I

|xi|kpi, µk =
∑
i∈I

(
xi − E(X)

)kpi.

If X is a continuous random variable with pdf f , then for every k ∈ N,

νk =

∫
R

xkf (x) dx, νk =

∫
R

|x|kf (x) dx, µk =

∫
R

(
x − E(X)

)k
f (x) dx.
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Moments

Remark 4.2.

2. The expectation of a random variable X is the moment of order 1,

E(X) = ν1.

The variance of a random variable X is the central moment of order 2,

V(X) = µ2 = ν2 − ν2
1 .

For any random variable X, the central moment of order 1 is 0,

µ1 = E
(
X − E(X)

)
= E(X)− E(X) = 0.

3. An important property of the moments of a random variable X, which we
just state, without proof, is the following: If νn = E(|X|n) exists for some
n ∈ N, then νk, νk and µk also exist, for all k = 1, n.
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