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Cumulative Distribution Function

2. Cumulative Distribution Function

Definition 2.1.

Let X be a random variable (of any type, discrete or continuous). The function
F = FX : R → R, defined by

FX(x) = P(X ≤ x), (2.1)

is called the (cumulative) distribution function (cdf) of X.

Example 2.2.

Let us go back to Example 1.4 (or 1.10) in Lecture 3 (the indicator of an
event). Its pdf is

XA

(
0 1

1 − p p

)
, p = P(A).
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Cumulative Distribution Function

From the analysis we did, let us recall:

For x < 0,
P(XA ≤ x) = P(∅) = 0.

If 0 ≤ x < 1,

P(XA ≤ x) = P(XA = 0) = 1 − p.

Finally for x ≥ 1,

P(XA ≤ x) = P({XA = 0}∪{XA = 1}) = 1 − p + p = 1.

So, we find now the cdf of XA to be

FA(x) =


0, if x < 0
1 − p, if 0 ≤ x < 1
1, if x ≥ 1.
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Cumulative Distribution Function

The graphic representation of FA is given in Figure 1 (with circles denoting
excluded points).

Figure 1: Cumulative distribution function for the indicator random variable
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Cumulative Distribution Function

Remark 2.3.

It easily follows from the previous example that for a discrete random variable
with pdf

X
(

xi

pi

)
i∈I

,

the cdf is computed by

F(x) =
∑
xi≤x

pi (2.2)

and for every A ⊆ R,

P(X ∈ A) =
∑
xi∈A

pi. (2.3)
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Cumulative Distribution Function

Theorem 2.4.

Let X be a random variable with cdf F : R → R. Then F has the following
properties:

a) If a < b are real numbers, then P(a < X ≤ b) = F(b)− F(a).

b) F is monotonely increasing, i.e. if a < b, then F(a) ≤ F(b).

c) F is right continuous, i.e. F(x + 0) = F(x), for every x ∈ R, where
F(x + 0) = lim

y↘x
F(y) is the limit from the right at x.

d) lim
x→−∞

F(x) = 0 and lim
x→∞

F(x) = 1.

e) For every x ∈ R, P(X < x) = F(x − 0) = lim
y↗x

F(y) and

P(X = x) = F(x)− F(x − 0).
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Cumulative Distribution Function

Proof.
We give a selected proof.

a) If a < b, then X ≤ a implies X ≤ b, so, as events,

(X ≤ a) ⊆ (X ≤ b) and (X ≤ a) ∩ (X ≤ b) = (X ≤ a).

Then, (by Theorem 2.5 c) in Chapter 1 (Lecture 1) and the fact that
A ∩ B = A \ B),

P(a < X ≤ b) = P
(
(X ≤ b) ∩ (X ≤ a)

)
= P

(
(X ≤ b) \ (X ≤ a)

)
= P(X ≤ b)− P

(
(X ≤ a) ∩ (X ≤ b)

)
= P(X ≤ b)− P(X ≤ a) = F(b)− F(a).

b) If a < b, then F(b)− F(a) = P(a < X ≤ b) ≥ 0, since it is a probability.
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Cumulative Distribution Function

Proof.
d) We have

lim
x→−∞

F(x) = lim
x→−∞

P(X ≤ x) = P(∅) = 0.

and
lim

x→∞
F(x) = lim

x→∞
P(X ≤ x) = P(S) = 1.

e) Just the second part:

P(X = x) = P
(
(X ≤ x) \ (X < x)

)
= P(X ≤ x)− P(X < x)

= F(x)− F(x − 0).
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Common Discrete Distributions

3. Common Discrete Distributions

Bernoulli Distribution Bern(p)

A random variable X has a Bernoulli distribution with parameter p ∈ (0, 1), if
its pdf is

X
(

0 1
1 − p p

)
. (3.1)

Notice that this is the pdf of the indicator random variable from Example 1.10
in Chapter 1 (Lecture 3).

A Bernoulli r. v. models the occurrence or nonoccurrence of an event.
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Common Discrete Distributions

Discrete Uniform Distribution U(m)

A random variable X has a Discrete Uniform distribution ( unid ) with
parameter m ∈ N, if its pdf is

X

(
k
1
m

)
k=1,m

. (3.2)

The random variable in Example 1.3 (and 1.9) (Lecture 3), the number shown
on a die, has a Discrete Uniform distribution U(6).
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Common Discrete Distributions

Binomial Distribution B(n, p)

A random variable X has a Binomial distribution ( bino ) with parameters
n ∈ N and p ∈ (0, 1) (q = 1 − p), if its pdf is

X
(

k
Ck

npkqn−k

)
k=0,n

. (3.3)

This distribution corresponds to the Binomial model. Given n Bernoulli trials
with probability of success p, let X denote the number of successes. Then
X ∈ B(n, p).

Also, notice that the Bernoulli distribution is a particular case of the Binomial
one, for n = 1, Bern(p) = B(1, p).
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Common Discrete Distributions

Hypergeometric Distribution H(N, n1, n)

A random variable X has a Hypergeometric distribution ( hyge ) with
parameters N, n1, n ∈ N (n, n1 ≤ N), if its pdf is

X

 k
Ck

n1
Cn−k

N−n1

Cn
N


k=0,n

. (3.4)

This distribution corresponds to the Hypergeometric model. If X is the
number of successes in a Hpergeometric model, then X ∈ H(N, n1, n).
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Common Discrete Distributions

Negative Binomial (Pascal) Distribution NB(n, p)

A random variable X has a Negative Binomial (Pascal) ( nbin ) distribution
with parameters n ∈ N and p ∈ (0, 1), if its pdf is

X
(

k
Ck

n+k−1pnqk

)
k=0,1,...

. (3.5)

This distribution corresponds to the Negative Binomial model. If X denotes
the number of failures that occurred before the occurrence of the nth success
in a Negative Binomial model, then X ∈ NB(n, p).
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Common Discrete Distributions

Geometric Distribution Geo(p)

As before (probabilistic models), we have an important special case for the
Negative Binomial distribution; if n = 1 in the previous distribution, then we
have a Geometric distribution.
A random variable X has a Geometric distribution ( geo ) with parameter
p ∈ (0, 1), if its pdf is given by

X
(

k
pqk

)
k=0,1,...

. (3.6)

If X denotes the number of failures that occurred before the occurrence of the
1st success in a Geometric model, then X ∈ Geo(p).

Also, Geo(p) = NB(1, p).
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Common Discrete Distributions

Remark 3.1.

Recall a point that was made when we discussed the Geometric Model: In a
Geometric model setup, one might count the number of trials (not failures)
needed to get the 1st success. Of course, if X is the number of failures and Y
the number of trials, then we simply have Y = X + 1 (the number of failures
plus the one success).

The variable Y is said to have a Shifted Geometric distribution with
parameter p ∈ (0, 1) (Y ∈ SGeo(p)). Its pdf is

X
(

k
pqk−1

)
k=1,2,...

. (3.7)
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Common Discrete Distributions

Poisson Distribution P(λ)

A random variable X has a Poisson distribution ( poiss ) with parameter
λ > 0, if its pdf is

X

 k
λk

k!
e−λ


k=0,1,...

(3.8)

A Poisson r.v. does not come from the Poisson model!

Poisson random variables arise in connection with so-called Poisson
processes, processes that involve observing discrete events in a continuous
interval of time, length, space, etc.

The variable of interest in a Poisson process, X, represents the number of
occurrences of the discrete event in a fixed interval of time, length, space.
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Common Discrete Distributions

For instance, the number of gas emissions taking place at a nuclear plant in a
3-month period, the number of earthquakes hitting a certain area in a year, the
number of white blood cells in a drop of blood, all these are modeled by
Poisson random variables.

The parameter λ of a Poisson distribution represents the average number of
occurrences of the event in that interval of time or other continuous medium
(this will be discussed in more detail in the next chapter).

Poisson’s distribution is also known as the “law of rare events”, the name
coming from the fact that

lim
k→∞

λk

k!
e−λ = 0,

i.e. as k gets larger, the event (X = k) becomes less probable, more “rare”.
The discrete events that are counted in a Poisson process are also called “rare
events”.
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Discrete Random Vectors; Joint Probability Distribution , Function;
Operations with Discrete Random Variables and Independent Discrete

Random Variables

4. Discrete Random Vectors; Joint Probability Distribution
Function; Operations with Discrete Random Variables and
Independent Discrete Random Variables

We will restrict our discussion to a two-dimensional discrete random vector
(X,Y) : S → R2.

Definition 4.1.

Let (S,K,P) be a probability space. A discrete random vector is a function
(X,Y) : S → R2 satisfying the following two conditions:

(i) for all (x, y) ∈ R2,

(X ≤ x,Y ≤ y) = {e ∈ S | X(e) ≤ x,Y(e) ≤ y} ∈ K

(ii) the set of values that it takes, (X,Y)(S), is at most countable in R2;
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Discrete Random Vectors; Joint Probability Distribution , Function;
Operations with Discrete Random Variables and Independent Discrete

Random Variables

Definition 4.2.

Let (X,Y) : S → R2 be a two-dimensional discrete random vector. The joint
probability distribution (function) of (X,Y) is a two-dimensional array of
the form

X \ Y y1 . . . yj . . .

x1
...

...
xi · · · pij · · · pi
...

...

qj

(4.1)

where (xi, yj) ∈ R2, (i, j) ∈ I × J are the values that (X,Y) takes and
pij = P(X = xi,Y = yj) is the probability that (X,Y) takes the value (xi, yj).
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Discrete Random Vectors; Joint Probability Distribution , Function;
Operations with Discrete Random Variables and Independent Discrete

Random Variables

Proposition 4.3.

Let (X,Y) be a random vector with joint probability distribution given by
(4.1). Then ∑

j∈J

pij = pi and
∑
i∈I

pij = qj,

where pi = P(X = xi), i ∈ I and qj = P(Y = yj), j ∈ J.
The probabilities pi and qj are called marginal pdf’s.

This simply follows from the fact that the two collections of events{
(Y = yj)

}
j∈J and

{
(X = xi)

}
i∈I

form a partition of the sample space.
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Operations with discrete random variables

Let X
(

xi

pi

)
i∈I

and Y
(

yj

qj

)
j∈J

be two discrete random variables and let

α ∈ R. As before, denote by pij = P(X = xi,Y = yj). We can define the
following operations:

Sum. The sum of X and Y is the random variable with pdf given by

X + Y
(

xi + yj

pij

)
(i,j)∈I×J

. (4.2)

Product. The product of X and Y is the random variable with pdf given by

X · Y
(

xiyj

pij

)
(i,j)∈I×J

. (4.3)
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Operations with Discrete Random Variables and Independent Discrete

Random Variables Operations with discrete random variables

Scalar Multiple. The random variable αX, α ∈ R, with pdf given by

αX
(

αxi

pi

)
i∈I

. (4.4)

Quotient. The quotient of X and Y is the random variable with pdf given by

X/Y
(

xi/yj

pij

)
(i,j)∈I×J

, (4.5)

provided that yj ̸= 0, for all j ∈ J.

In general, if h : R → R is a function, then we can define the random variable
h(X), with pdf given by

h(X)
(

h(xi)
pi

)
i∈I

. (4.6)
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Definition 4.4.

Two discrete random variables X and Y with probability distribution functions

X
(

xi

pi

)
i∈I

and Y
(

yj

qj

)
j∈J

are said to be independent if

pij = P (X = xi,Y = yj) = P (X = xi)P (Y = yj) = piqj, (4.7)

for all (i, j) ∈ I × J.

Remark 4.5.

If X and Y are independent discrete random variables, then in (4.2), (4.3) and
(4.5), pij = piqj, for all (i, j) ∈ I × J.
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Example 4.6.

Let X be a random variable with pdf

X

(
−1 0 1

1
2

1
4

1
4

)
.

Find the pdf of Y = 3X2 − 1.

Solution.
Remember, we operate on the values, never on the probabilities!

If X takes the values −1, 0 and 1, then Y takes the values −1 (when X = 0)
and 2 (when X = −1 or X = 1).

Now, we compute carefully the probability for each value.

P(Y = −1) = P(X = 0) =
1
4
,

■
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X

(
−1 0 1

1
2

1
4

1
4

)
, Y = 3X2 − 1.

P(Y = 2) = P
(
(X = −1)∪ (X = 1)

)
= P(X = −1) + P(X = 1)

=
1
2
+

1
4

=
3
4
,

since the events (X = −1) and (X = 1) are mutually exclusive.

Thus, the pdf of Y is

Y

(
−1 2

1
4

3
4

)
.

■
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Example 4.7.

Let X and Y be two independent random variables with pdf’s

X
(

−1 0
0.2 0.8

)
and Y

(
1 2

0.6 0.4

)
,

respectively. Find the pdf of X + Y .

Solution.
First, let’s find all the possible values of X + Y , by taking all the combinations
of xi + yj, i, j = 1, 2.

So, X + Y can take the values 0, 1 and 2.

Then compute their corresponding probabilities:

P(X + Y = 0) = P(X = −1,Y = 1)
ind
= P(X = −1)P(Y = 1)

= 0.2 · 0.6 = 0.12,
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X
(

−1 0
0.2 0.8

)
, Y

(
1 2

0.6 0.4

)

P(X + Y = 1) = P
(
(X = −1,Y = 2)∪ (X = 0,Y = 1)

)
m.e.
= P(X = −1,Y = 2) + P(X = 0,Y = 1)
ind
= P(X = −1)P(Y = 2) + P(X = 0)P(Y = 1)

= 0.2 · 0.4 + 0.8 · 0.6 = 0.56,

P(X + Y = 2) = P(X = 0,Y = 2)
ind
= 0.8 · 0.4 = 0.32.

Alternatively, we could have computed the first and the third (which are
easier) and found the second one by

P(X + Y = 1) = 1 −
(

P(X + Y = 0) + P(X + Y = 2)
)
= 1 − 0.44 = 0.56.
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So, we found the pdf

X + Y
(

0 1 2
0.12 0.56 0.32

)
.

■

Remark 4.8.

1. The sum of n independent Bern(p) random variables is a B(n, p) variable.
2. The sum of n independent Geo(p) random variables is a NB(n, p) variable.
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