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6. Type II Errors, Power of a Test and the Neyman-Pearson
Lemma

We are returning now to hypothesis testing. Recall that for a target parameter
θ, we are testing

H0 : θ = θ0, versus one of

H1 :


θ < θ0
θ > θ0
θ ̸= θ0,

(6.1)

The “goodness” of a test is measured by the two probabilities of risk

α = P(type I error) = P(reject H0 | H0)

β = P(type II error) = P(not reject H0 | H1).

The smaller both of them are, the more reliable the test is. For some
problems, a type I error is more dangerous, while for others, a significant type
II error is unacceptable. In general, α is preset, at most 0.05 and the test is
designed so that β is also small enough to be acceptable.

Lecture 13 2 / 22



6.1 Type II Errors and Power of a Test

So far, type II errors were not discussed. That is because the computation of β
can be more difficult. The condition that H1 is true does not specify an actual
value for the unknown parameter and thus, does not identify a distribution, for
which the probability can be computed.

The simple condition that a parameter θ is less than, greater than or not equal
to a value is not enough to help us compute the probability.
However, if the alternate H1 is also a simple hypothesis

H1 : θ = θ1,

then β can be computed.

Thus, β, unlike α, depends on the value specified in the alternative hypothesis,

β = β(θ1).
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Example 6.1.
Let us consider again the problem in Example 4.2. in Lecture 11 (or Example
4.4. in Lecture 10): The number of monthly sales at a firm is known to have a
mean of 20 and a standard deviation of 4 and all salary, tax and bonus figures
are based on these values. However, in times of economical recession, a sales
manager fears that his employees do not average 20 sales per month, but less,
which could seriously hurt the company. For a number of 36 randomly
selected salespeople, it was found that in one month they averaged 19 sales.
At the 5% significance level, does the data confirm or contradict the
manager’s suspicion?

Now let us find β for the test

H0 : µ = µ0 = 20
H1 : µ = µ1 = 18 < 20,

i.e. find β(µ1).
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Solution.
We tested a left-tailed alternative for the mean

H0 : µ = 20
H1 : µ < 20.

The population standard deviation was given, σ = 4 and for a sample of size
n = 36, the sample mean was X = 19. For the test statistic

TS = Z =
X − µ
σ√
n

∈ N(0, 1),

the observed value was

Z0 =
X − µ0

σ√
n

=
19 − 20

4
6

= −1.5.
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At the significance level α = 0.05, we have determined the rejection region

RR =

Z0 =
X − µ0

σ√
n

≤ z0.05

 =

X − 20
4
6

≤ −1.645


=

{
X ≤ −1.645 · 4

6
+ 20

}
=
{

X ≤ 18.9
}
.

Then, in a similar fashion, we compute

β(µ1) = P(not reject H0 | H1) = P
(
X > 18.9 | µ = µ1

)
.

If the true value of µ is µ1, then the statistic

Z1 =
X − µ1

σ√
n

=
X − 18

4
6

has a Standard Normal N(0, 1) distribution.
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Hence,

β(µ1) = P
(
X > 18.9 | µ = µ1

)
= P

(
X − 18

4
6

>
18.9 − 18

4
6

| µ = 18

)
= P(Z1 > 1.35 | Z1 ∈ N(0, 1))

= 1 − P(Z1 ≤ 1.35 | Z1 ∈ N(0, 1))

= 1 − Φ(1.35) = 0.0885,

where

Φ(x) = FZ(x) =
1√
2π

x∫
−∞

e−
x2
2 dx

is Laplace’s function, the cdf of a N(0, 1) variable.
■
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Remark 6.2.
Let us take a closer look at the computation of α and β in the previous
example. We used the fact that the variable

Z =
X − µ

σ/
√

n

has a N(0, 1) distribution. So, when the true value of µ is µ0 = 20, then

Z0 = Z(µ = µ0) ∈ N(0, 1)

and when the value is µ1 = 18, then

Z1 = Z(µ = µ1) ∈ N(0, 1).

However, in the end, we expressed the error probabilities α and β, by looking
at the distribution of X by itself, not its reduced version.
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Remark (Cont).
In other words, we used the fact that, when the true value of µ is µ0 = 20, then

X ∈ N(µ0, σ/
√

n) and α = P(X ≤ 18.9),

while when the true value is µ1 = 18, then

X ∈ N(µ1, σ/
√

n) and β = P(X > 18.9).

This can be seen graphically in Figure 1.
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α β

X ∈ N (µ1, σ/
√
n) X ∈ N (µ0, σ/

√
n)

µ1 = 18 µ0 = 2018.9

Figure 1: Type I and type II errors
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In order to have a better control over β, we introduce the following notion.

Definition 6.3.
The power of a test on a parameter θ, unknown, is the probability of rejecting
the null hypothesis

π(θ∗) = P(reject H0 | θ = θ∗) = P(TS ∈ RR | θ = θ∗), (6.2)

when the true value of the parameter is θ = θ∗.

Notice that the power of a test is, usually, a function of the parameter θ,
because the alternative hypothesis includes a set of parameter values.

Indeed, if the null hypothesis is true, i.e. θ = θ0, then

π(θ0) = P(TS ∈ RR | θ = θ0) = P(reject H0 | H0) = α. (6.3)

For any other value (in the alternative hypothesis H1) θ = θ1 ̸= θ0,

π(θ1) = P(reject H0 | θ = θ1) = P(reject H0 | H1)

= 1 − P(not reject H0 | H1) = 1 − β(θ1). (6.4)
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So, basically, the power of a test is the probability of rejecting a false null
hypothesis. The larger the power is, the smaller β is, which is what we want
in a test.

Then we can state a hypothesis testing problem the following way:
For a parametric test where both hypotheses are simple

H0 : θ = θ0
H1 : θ = θ1,

we preset α = π(θ0) and we determine a rejection region RR for which the
power

π(θ1) = 1 − β(θ1)

is the largest possible. Such a test is called a most powerful test.
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6.2 The Neyman-Pearson Lemma (NPL)
Most powerful tests cannot always be found. The following result gives a
procedure for finding such a test, when both hypotheses tested are simple.

Lemma 6.4 (Neyman-Pearson (NPL)).
Let X be a characteristic with pdf f (x; θ), with θ ∈ A ⊂ R, unknown. Suppose
we test on θ the simple hypotheses

H0 : θ = θ0
H1 : θ = θ1,

based on a random sample X1, . . . ,Xn. Let L(θ) = L(X1, . . . ,Xn; θ) denote
the likelihood function of this sample. Then for a fixed α ∈ (0, 1), a most
powerful test is the test with rejection region given by

RR =

{
L(θ1)

L(θ0)
≥ kα

}
, (6.5)

where the constant kα > 0 depends only on α and the sample variables.
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Example 6.5.
Suppose X1 represents a single observation from a probability density given
by

f (x; θ) =
{

θxθ−1, if x ∈ (0, 1)
0, otherwise.

Find the NPL most powerful test that at the 5% significance level tests

H0 : θ = 1 (= θ0)
H1 : θ = 30 (= θ1).

Also, find β for that test.

Solution.
Since our sample has size 1, we have

L(θ1)

L(θ0)
=

f (X1; θ1)

f (X1; θ0)
=

30X29
1

1
= 30X29

1 .
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So the rejection region given by the NPL is

RR = {30X29
1 ≥ kα} = {X1 ≥ Kα},

where Kα =

(
1
30

kα

)1/29

.

We find the value of Kα from

α = P(X1 ∈ RR | H0) = P(X1 ≥ Kα | θ = 1)

=

1∫
Kα

dx = 1 − Kα,

i.e. Kα = 1 − α = 0.95.
So, of all tests for testing H0 versus H1, based on a sample of size 1, the
observation X1, at the significance level α = 0.05, the most powerful test has
rejection region

RR = {X1 ≥ 0.95}.
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For this test,

β(θ1) = P(X1 < Kα | θ = 30) =

Kα∫
0

30x29 dx

= x30
∣∣∣Kα

0
= (Kα)

30 = (1 − α)30 = 0.166

and the power is
π(θ1) = 1 − β(θ1) = 0.834.

Note that the error probability β that we obtained is unacceptably large, but
considering that the estimation was based on a sample of size one, we cannot
expect too much accuracy.

■
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Remark 6.6.
Notice that the rejection region and, hence, the most powerful test we found in
Example 6.5, depend on the value stated in H1. For a different value of θ1, we
would have found a different rejection region. That is usually the case.

However, sometimes, a test obtained with the NPL actually maximizes the
power for every value in H1, i.e. even if H1 is not a simple hypothesis. Such a
test is called a uniformly most powerful test.
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Example 6.7.
Let X1, . . . ,Xn be a random sample drawn from a Normal N(µ, σ)
distribution, with µ ∈ R unknown and σ > 0 known. At the significance level
α ∈ (0, 1), find a most powerful right-tailed test for testing

H0 : µ = µ0
H1 : µ > µ0.

Solution.
First we use the NPL to find a most powerful test for a simple alternative, i.e.

H0 : µ = µ0
H1 : µ = µ1 > µ0.

We have the Normal pdf

f (x;µ) =
1

σ
√

2π
exp

(
− (x − µ)2

2σ2

)
, ∀x ∈ R.
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The likelihood function is

L(µ) =

n∏
i=1

f (Xi;µ) =
( 1
σ
√

2π

)n
exp
(
− 1

2σ2

n∑
i=1

(Xi − µ)2
)
.

Then, by the NPL, we find

L(µ1)

L(µ0)
= exp

( 1
2σ2

[ n∑
i=1

(Xi − µ0)
2 −

n∑
i=1

(Xi − µ1)
2
])

≥ kα,

or, taking the logarithm ln (which is an increasing function) on both sides,

1
2σ2

[ n∑
i=1

(Xi − µ0)
2 −

n∑
i=1

(Xi − µ1)
2
]

≥ ln kα,

n∑
i=1

X2
i − 2µ0

n∑
i=1

Xi + nµ2
0 −

(
n∑

i=1

X2
i − 2µ1

n∑
i=1

Xi + nµ2
1

)
≥ 2σ2 ln kα.
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After cancellations and using X =
1
n

n∑
i=1

Xi, we have

2nX(µ1 − µ0) ≥ 2σ2 ln kα + n(µ2
1 − µ2

0).

Since µ1 > µ0, we get

X ≥ σ2 ln kα
n(µ1 − µ0)

+
µ1 + µ0

2
= Kα.

Then we use the test statistic TS = X, for which we found the rejection region

RR = {X ≥ Kα}.
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But

α = P
(

X ≥ Kα | µ = µ0

)
= P

(X − µ0

σ/
√

n
≥ Kα − µ0

σ/
√

n
| µ = µ0

)
= P

(
Z0 ≥ Kα − µ0

σ/
√

n
| Z0 ∈ N(0, 1)

)
= P

(
Z0 ≥ z1−α

)
,

since Z0 =
X − µ0

σ/
√

n
∈ N(0, 1).

Then we must have

Kα − µ0

σ/
√

n
= z1−α, Kα = µ0 + z1−α

σ√
n
,

so Kα is independent of µ1.
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Thus, the test with RR = {X ≥ Kα} is a uniformly most powerful test for
testing

H0 : µ = µ0
H1 : µ > µ0,

at the significance level α.
■

Remark 6.8.

In a similar manner, we can find a uniformly most powerful test for the
left-tailed case

H0 : µ = µ0
H1 : µ < µ0.
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