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6. Type II Errors, Power of a Test and the Neyman-Pearson
Lemma

We are returning now to hypothesis testing. Recall that for a target parameter
0, we are testing

Hy: 60 =0y, versus one of
0 < 6y
Hi: 0 > 6 ©.1)
0 # 6o,
The “goodness” of a test is measured by the two probabilities of risk
a = P(typelerror) = P(reject Hy | Hp)
B = P(typellerror) = P(notreject Hy | H)).
The smaller both of them are, the more reliable the test is. For some
problems, a type I error is more dangerous, while for others, a significant type

II error is unacceptable. In general, « is preset, at most 0.05 and the test is
designed so that S is also small enough to be acceptable.



6.1 Type II Errors and Power of a Test

So far, type II errors were not discussed. That is because the computation of 3
can be more difficult. The condition that H is true does not specify an actual
value for the unknown parameter and thus, does not identify a distribution, for
which the probability can be computed.

The simple condition that a parameter 6 is less than, greater than or not equal
to a value is not enough to help us compute the probability.
However, if the alternate H; is also a simple hypothesis

H1:0:91,

then 8 can be computed.

Thus, 3, unlike «, depends on the value specified in the alternative hypothesis,

B = B(61).



Example 6.1.

Let us consider again the problem in Example 4.2. in Lecture 11 (or Example
4.4. in Lecture 10): The number of monthly sales at a firm is known to have a
mean of 20 and a standard deviation of 4 and all salary, tax and bonus figures
are based on these values. However, in times of economical recession, a sales
manager fears that his employees do not average 20 sales per month, but less,
which could seriously hurt the company. For a number of 36 randomly
selected salespeople, it was found that in one month they averaged 19 sales.
At the 5% significance level, does the data confirm or contradict the
manager’s suspicion?

Now let us find (3 for the test

Hy: p=po=20
Hy: p=p =18 <20,

i.e. find B(pu1).




Solution.
We tested a left-tailed alternative for the mean

Hy: p=20
Hi: pu<20.

The population standard deviation was given, 0 = 4 and for a sample of size
n = 36, the sample mean was X = 19. For the test statistic

X —
s = z = = ¢ N0, 1),
vn
the observed value was
X — 19 — 20
Zy = 0#0 = 7 = —1.5.
. 2



At the significance level a = 0.05, we have determined the rejection region

X - X—20
RR = Zy=2" M0 s b = — <1645
6

= {X§—1.645-2+20} = {X <18.9}.

Then, in a similar fashion, we compute
B(p1) = P(notreject Hy |Hi) = P (X > 189 | pu=p).
If the true value of u is 1, then the statistic

X—mwm X

N
has a Standard Normal N(0, 1) distribution.
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Hence,
Blp) = P(X>189|p=p)

X—-18 189-18
= P( > 7 ]u:18>

6 6
= P(Z, >135]Z €N(0,1))
= 1-P(Z, <135|Z €N(0,1))
= 1—®(1.35) = 0.0885,

where

O(x) = Fz(x) = \/127r/e_xz2 dx

is Laplace’s function, the cdf of a N(0, 1) variable.



Remark 6.2.

Let us take a closer look at the computation of o and [ in the previous
example. We used the fact that the variable

_ X
2= o/n

has a N(0, 1) distribution. So, when the true value of p is po = 20, then

Zy=Z(p = po) € N(0, 1)
and when the value is ¢; = 18, then
Zy =Z(p =) € N0, 1).

However, in the end, we expressed the error probabilities « and 3, by looking
at the distribution of X by itself, not its reduced version.




Remark (Cont).
In other words, we used the fact that, when the true value of p is 1o = 20, then

X € N(po,0/+/n)and a = P(X < 18.9),
while when the true value is p; = 18, then

X € N(uy,0/+/n)and = P(X > 18.9).

This can be seen graphically in Figure 1.




Figure 1: Type I and type II errors



In order to have a better control over 3, we introduce the following notion.

Definition 6.3.
The power of a test on a parameter 6, unknown, is the probability of rejecting
the null hypothesis

7(0*) = PlejectHy |9 =6") = P(TSCRR|0=0%), (62)

when the true value of the parameter is 0 = 6*.

Notice that the power of a test is, usually, a function of the parameter 6,
because the alternative hypothesis includes a set of parameter values.

Indeed, if the null hypothesis is true, i.e. § = 6, then
w(6p) = P(TSE€ERR|60=06)) = P(reject Hy|H)) = . (6.3)
For any other value (in the alternative hypothesis Hy) 8 = 6, # 6,
m(01) = P(rejectHy |0 =0,) = P(reject Hy|H;)
= 1 —P(notreject Hy | H)) = 1— 5(6)). (6.4)
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So, basically, the power of a test is the probability of rejecting a false null
hypothesis. The larger the power is, the smaller g is, which is what we want
in a test.

Then we can state a hypothesis testing problem the following way:
For a parametric test where both hypotheses are simple

Hy: 0=20y
H]Z 9:01,

we preset « = 7(fy) and we determine a rejection region RR for which the
power

m(01) = 1—B(6h)

is the largest possible. Such a test is called a most powerful test.



|
6.2 The Neyman-Pearson Lemma (NPL)
Most powerful tests cannot always be found. The following result gives a

procedure for finding such a test, when both hypotheses tested are simple.

Lemma 6.4 (Neyman-Pearson (NPL)).
Let X be a characteristic with pdf f(x; #), with § € A C R, unknown. Suppose
we test on 0 the simple hypotheses

HQZ 0:0()
Hy: 60=0,,

based on a random sample X, ..., X,. Let L(#) = L(X,, ..., X,;0) denote
the likelihood function of this sample. Then for a fixed o € (0, 1), a most
powerful test is the test with rejection region given by

RR = {iézg zka}, (6.5)

where the constant k, > 0 depends only on « and the sample variables.




-
Example 6.5.

Suppose X represents a single observation from a probability density given
by

0x9=1, ifx € (0,1)
ilen ) = { 0, otherwise.

Find the NPL most powerful test that at the 5% significance level tests

Hy: 0=1 (=6
H]: 0230 (:91)

Also, find $ for that test.

Solution.
Since our sample has size 1, we have

L) _ f(Xi;61) _ 30XP
LO0)  fsfo) 1 X




So the rejection region given by the NPL is

RR = {30X > k,} = {X| > K.},

1 1/29
where K, = %ka
We find the value of K, from
a = PX;€RR|Hy) = PX1>K,|0=1)
1
= /dx = 1—-K,,
Ko

ie. K, = 1—a = 0.95.
So, of all tests for testing Hy versus Hy, based on a sample of size 1, the
observation X1, at the significance level a = 0.05, the most powerful test has
rejection region

RR = {X; > 0.95}.



For this test,

Ko
B(0) = PXi<K,|0=30) = /30x29dx
0
Ka
= x300 = (K)* = (1-a)* = 0.166

and the power is
m(01) =1—B(0;) =0.834.

Note that the error probability 3 that we obtained is unacceptably large, but
considering that the estimation was based on a sample of size one, we cannot
expect too much accuracy.

|



Remark 6.6.

Notice that the rejection region and, hence, the most powerful test we found in
Example 6.5, depend on the value stated in H;. For a different value of 8, we
would have found a different rejection region. That is usually the case.

However, sometimes, a test obtained with the NPL actually maximizes the
power for every value in Hy, i.e. even if H; is not a simple hypothesis. Such a
test is called a uniformly most powerful test.




Example 6.7.

Let Xj, ..., X, be a random sample drawn from a Normal N(u, o)
distribution, with € R unknown and o > 0 known. At the significance level
a € (0,1), find a most powerful right-tailed test for testing

Ho: p=po
Hy: u> uo.

Solution.
First we use the NPL to find a most powerful test for a simple alternative, i.e.

Ho: p=po
H : W= 1 > Ho-
We have the Normal pdf
1 (x — u)z)
su) = ————), e R
flep) = —=exp (— S5 1) Wx e



The likelihood function is

1jf<xi;u>:<ajg)ep< zzzx wP).

Then, by the NPL, we find

L(p1) -

L(mo) exp<2<172 [Z(Xi_uo)z - i(xi—m)z]) 2 ka
— _

i= i=1

or, taking the logarithm In (which is an increasing function) on both sides,

n n

2%2 [Z(Xi —mo)® =) (Xi— m)z] > Ink,,

i=1 i=1

n n n n
32y — (3523
i=1 i=1 i=1 i=1

v

202 Ink,,.



B [
After cancellations and using X = — Z X;, we have
n

i=1
2nX (1 — po) > 207 Inka +n(pi — 115)-
Since p; > pp, we get

X > o?Ink, +M1+M0
n(j1 — o) 2

= K,.

Then we use the test statistic 7S = X, for which we found the rejection region

RR = {X>K,}.



But
a = P(fzKaluzuo)
- P(X_“O KQ_MOIM—#)
aEING ’
Koz_,uO
_ p(z > Zo € N(0, 1
02 Sz e N
= P(Z221-0),
: 7—M0
since Zy = € N(0,1).
o/vn
Then we must have
Ka_MO g
e o = e —
U/\/ﬁ 2 —a o= Mo+ 21 Oé\/ﬁ?

so K, is independent of y;.



Thus, the test with RR = {X > K, } is a uniformly most powerful test for
testing

Ho: p=po

Hy: > po,

at the significance level «.

Remark 6.8.

In a similar manner, we can find a uniformly most powerful test for the
left-tailed case

Ho: p=po

Hy: p<pp.




	Type II Errors, Power of a Test and the Neyman-Pearson Lemma
	Type II Errors and Power of a Test
	The Neyman-Pearson Lemma (NPL)


