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5. Properties of Point Estimators

5.1 Fisher Information; Minimum Variance and Efficient Estimators

We are returning now to point estimators and discuss some of their important
properties.
Let us recall our framework: we study a population characteristic X, with pdf
f (x; θ), mean E(X) = µ and variance V(X) = σ2. The target parameter θ is to
be estimated based on a random sample of size n, i.e. sample variables
X1, . . . ,Xn, which are independent and identically distributed (iid), having the
same pdf as X.
A point estimator for (the estimation of) the target parameter θ is a sample
function (statistic)

θ = θ(X1,X2, . . . ,Xn).

One of the first properties that we want in a point estimator is that it is
unbiased,

E(θ) = θ. (5.1)
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The sample mean, the sample moments of order k and the sample variance are
examples of unbiased estimators for the corresponding population
characteristic.

Another desirable trait for a point estimator is that its values do not vary too
much from the value of the target parameter, i.e. that it has a low variance.
This “low” variance property can be measured in several ways.

Definition 5.1.
An estimator θ = θ(X1, . . . ,Xn) is called an absolutely correct estimator for
θ, if it satisfies the conditions

(i) E(θ) = θ,

(ii) lim
n→∞

V(θ) = 0. (5.2)

This is saying that the variance of the estimator decreases as the sample size
increases, so the estimation gets better.
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Remark 5.2.
The sample mean X is an absolutely correct estimator for the theoretical mean
µ = E(X), since (see Proposition 1.4 in Lecture 10)

E(X) = µ and V
(
X
)
=

σ2

n
n→∞−→ 0.

Definition 5.3.
An unbiased estimator θ = θ(X1, . . . ,Xn) for θ is called a
minimum-variance (or optimal) unbiased estimator (MVUE), if it has
lower variance than any other unbiased estimator for θ,

V(θ) ≤ V(θ̂), ∀θ̂ with E(θ̂) = θ. (5.3)

Remark 5.4.
It can be shown that if an unbiased estimator exists for a parameter, then a
MVUE also exists and it is unique. However, they are not easy to produce! In
what follows, we present a way of obtaining MVUE’s via efficient estimators.
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Definition 5.5.

The likelihood function of a sample X1, . . . ,Xn is the joint probability
function of the sample (seen as a vector), i.e. the sample function

L(X1, . . . ,Xn; θ) =
n∏

i=1

f (Xi; θ) = f (X1; θ)f (X2; θ) . . . f (Xn; θ), (5.4)

with value L(x1, . . . , xn; θ) =

n∏
i=1

f (xi; θ), representing the joint probability

distribution (in the discrete case) or the joint density (in the continuous case)
of the random vector (X1, . . . ,Xn).
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Definition 5.6.
For a sample of size n, the Fisher (quantity of) information relative to θ, is
the quantity

In(θ) = E

[(
∂ lnL(X1, . . . ,Xn; θ)

∂θ

)2
]
, (5.5)

if the likelihood function L is differentiable with respect to θ.

Remark 5.7.

The Fisher information is a way of measuring the amount of information that
a random sample X1, . . . ,Xn carries about an unknown parameter θ, upon
which the likelihood function depends. Formally, it is the expected value of
the observed information (or the variance of the score).
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Proposition 5.8.
If the range of X does not depend on θ and the likelihood function L is twice
differentiable with respect to θ, then

In(θ) = −E
[
∂2 lnL(X1, . . . ,Xn; θ)

∂θ2

]
. (5.6)

Corollary 5.9.
If the range of X does not depend on θ, then

In(θ) = nI1(θ). (5.7)
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Proof.
We have

L =

n∏
i=1

f (Xi; θ),

lnL =

n∑
i=1

ln f (Xi; θ),

∂2 lnL
∂θ2 =

n∑
i=1

∂2 ln f (Xi; θ)

∂θ2 .

Then, by the previous Proposition,

In(θ) = −
n∑

i=1

E
[
∂2 ln f (Xi; θ)

∂θ2

]
=

n∑
i=1

I1(θ) = nI1(θ).
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Recall that we seek unbiased estimators with small variance. A MVUE has
the lowest variance that an unbiased estimator can possibly have. The next
result tells us exactly how low that can be, under certain conditions.

Theorem 5.10 (Cramér-Rao Inequality).

Let X be a characteristic whose pdf f (x; θ) is differentiable with respect to θ
and let θ = θ(X1, . . . ,Xn) be an absolutely correct estimator for θ. Then

V(θ) ≥ 1
In(θ)

. (5.8)
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Definition 5.11.
Let θ = θ(X1, . . . ,Xn) be an absolutely correct estimator for θ. The efficiency
of θ is the quantity

e(θ) =
I−1
n (θ)

V(θ)
=

1
In(θ)V(θ)

. (5.9)

The estimator θ is said to be efficient for θ, if e(θ) = 1.

Remark 5.12.
1. So, by Theorem 5.10, the efficiency e(θ) is the minimum possible variance
for an unbiased estimator θ divided by its actual variance. Its value is always
e(θ) ≤ 1. An efficient estimator has the maximum possible efficiency.

2. An efficient estimator may not exist, but if it does, it is also the MVUE.
This is because an efficient estimator maintains equality on the Cramér-Rao
inequality for all parameter values, which means it attains the minimum
variance for all parameters. So, this is one way to obtain MVUE’s. The
MVUE, even if it exists, is not necessarily efficient.
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Example 5.13.
Let X be a characteristic with pdf

f (x; θ) =
1
θ2 xe−

x
θ ,

for x > 0 and 0, otherwise, where θ > 0 is unknown. For a random sample

X1, . . . ,Xn, consider the estimator θ =
1
2

X. Show that a) it is absolutely
correct and b) find its efficiency.

Solution.
Preliminaries (this part is not necessary, but it will help us later)

First, let us see that f (x; θ) is indeed a density function (and recall some
properties along the way).∫

R

f (x) dx =
1
θ2

∞∫
0

xe−
x
θ dx,
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which, with the change of variables u =
x
θ

, is equal to

=
1
θ2

∞∫
0

(θu)e−u(θdu) =

∞∫
0

ue−u du = Γ(2) = 1,

where Γ(a) =

∞∫
0

xa−1e−x dx is Euler’s Gamma function (see Seminar 1).

Recall that Γ(n + 1) = n!.

Computation of the population mean and variance (will be needed later)

With the same change of variables, we compute

E(X) =

∫
R

xf (x) dx =
1
θ2

∞∫
0

x2e−
x
θ dx

= θ

∞∫
0

u2e−u du = θ Γ(3) = 2θ,
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E(X2) =

∫
R

x2f (x) dx =
1
θ2

∞∫
0

x3e−
x
θ dx

= θ2

∞∫
0

u3e−u du = θ2 Γ(4) = 6θ2,

V(X) = E(X2)− (E(X))2 = 6θ2 − 4θ2 = 2θ2.

a) Then for θ we have

E(θ) =
1
2

E(X) =
1
2

E(X) = θ,

which means θ is unbiased and

V(θ) =
1
4

V(X) =
1
4

V(X)
n

=
θ2

2n
→ 0, as n → ∞,

so θ is absolutely correct.
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b) To compute the Fisher information, since the range of X does not depend
on θ, we compute I1 first. We have

L(X1; θ) =
1
θ2 X1e−

1
θ

X1 , lnL = −2 ln θ + lnX1 −
1
θ

X1,

∂ lnL
∂θ

= −2
θ
+

1
θ2 X1,

∂2 lnL
∂θ2 =

2
θ2 − 2

θ3 X1.

Then

I1(θ) = −E
(
∂2 lnL
∂θ2

)
= − 2

θ2 +
2
θ3 E(X1) = − 2

θ2 +
4
θ2 =

2
θ2 .

Thus,

In(θ) =
2n
θ2 and e(θ) =

1
2n
θ2 · θ

2

2n

= 1,

so θ =
1
2

X is an efficient estimator and, by Remark 5.12, also the MVUE for
θ.

■
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5.2 Methods of Pointwise Estimation

So far, we have discussed desirable properties of point estimators, how to
distinguish “good” from “bad” or “better” estimators, based on how reliable
they are in approximating the value of a population parameter. But how to
actually find an estimator, an approximating value θ = θ(X1,X2, . . . ,Xn) for a
target parameter θ, based on sample variables X1,X2, . . . ,Xn? Sometimes,
such a value may be “guessed” from past experience or from observing many
samples over time.

But statisticians wanted more rigorous, more mathematical ways of producing
a point estimator, which can then be analyzed from the various points of view
discussed in the previous section. This question will be addressed in this
section.

We present two of the most popular methods of finding point estimators: the
method of moments and the method of maximum likelihood. We will also
discuss advantages and disadvantages of each method.

Lecture 12 15 / 39



Properties of Point Estimators Methods of Pointwise Estimation

Method of Moments

This is one of the oldest and easiest methods for obtaining point estimators,
first formalized by K. Pearson in the late 1800’s.

 

Karl Pearson (1857 - 1936)
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Let us recall, for a population characteristic X, we define the moments of
order k as

νk = E
(
Xk) =



∑
i∈I

xk
i pi, if X is discrete with pdf X

(
xi

pi

)
i∈I∫

R

xkf (x) dx, if X is continuous with pdf f : R → R.
(5.10)

For a sample drawn from the distribution of X, i.e. sample variables
X1, . . . ,Xn (iid), the sample moments of order k are defined by

νk =
1
n

n∑
i=1

Xk
i . (5.11)
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Also, let us recall (from Proposition 1.9 in Lecture 10) that

E(νk) = νk and V(νk) =
1
n

(
ν2k − ν2

k
)
→ 0, as n → ∞, (5.12)

so the sample moment of order k is an absolutely correct estimator for the
population moment of the same order.
That is precisely the idea of this method. Since the theoretical (population)
moments contain the target parameters that are to be estimated, while the
sample moments are all known, computable from the sample data, simply set
the two to be equal and solve the resulting system. To estimate k parameters,
equate the first k population and sample moments:

ν1 = ν1
. . . . . . . . .
νk = νk

(5.13)

The left-hand sides of these equations depend on the distribution parameters.
The right-hand sides can be computed from data. The method of moments
estimator is the solution of this k × k system of equations.
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Example 5.14.
Let X be a population characteristic with pdf

X
(

−1 1
1−θ

2
1+θ

2

)
,

where θ ∈ (0, 1) is unknown.
a) Based on a random sample X1, . . . ,Xn, find the method of moments
estimator θ̂.
b) Is θ̂ unbiased, absolutely correct?

c) If for 10 observations from the pdf of X, we have
10∑

i=1

Xi = 6, estimate the

standard error σθ̂ in two ways.

Solution. The population mean is

E(X) = −1 − θ

2
+

1 + θ

2
= θ
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and the variance of X is

V(X) = E(X2)− (E(X))2 = 1 − θ2,

since X2 ≡ 1, i.e. its pdf is
(

1
1

)
.

a) There is one unknown, so we have one equation, ν1 = ν1, i.e. E(X) = X,
from which we get

θ̂ = X.

b) Then we know that

E(θ̂) = E(X) = E(X) = θ,

V(θ̂) = V(X) =
V(X)

n
=

1 − θ2

n
→ 0, as n → ∞.

So θ̂ is unbiased and absolutely correct.
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c) If the sample of size n = 10 has
n∑

i=1

Xi = 6, then X = 6/10 = 0.6, so the

estimator is
θ̂ = 0.6.

The standard error of θ̂ is

σθ̂ =

√
V(θ̂).

One way to estimate it, is to use V(θ̂) =
1 − θ2

n
. So,

σθ̂,1 =

√
1 − θ2

n
≈

√
1 − θ̂2

n
=

√
1 − X2

n
=

√
1 − 0.62

10
= 0.253.
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Another way is to approximate the population variance V(X) by the sample

variance. For that, we need
n∑

i=1

X2
i . Since all X2

i ≡ 1, we have

n∑
i=1

X2
i =

10∑
i=1

1 = 10 and

s2 =
1

n − 1

( n∑
i=1

X2
i − nX2

)
=

1
9

(
10 − 10 · (0.6)2

)
= 0.711.

Then, we get the estimate

σθ̂,2 =

√
V(X)

n
≈ s√

10
= 0.267.

■
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Example 5.15.
Let us consider the characteristic X from Example 5.13, with pdf

f (x; θ) =
1
θ2 xe−

x
θ , x > 0,

where θ > 0 is unknown. Based on a random sample X1, . . . ,Xn, find the
method of moments estimator θ for θ. For the sample data
{2.3, 3.7, 1.44, 2.16}, find the numerical estimation of θ.

Solution. There is only one unknown parameter, θ, so we will have only one
equation in system (5.13),

ν1 = ν1, i.e.

E(X) = X.

In our work in Example 5.13, we computed

E(X) =

∫
R

xf (x) dx = 2θ.
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So, we solve the equation
2θ = X,

to find the method of moments estimator

θ =
1
2

X,

which (we know from Example 5.13) is an absolutely correct estimator for θ.

For the sample data x1 = 2.3, x2 = 3.7, x3 = 1.44 and x4 = 2.16, we have

x =
x1 + x2 + x3 + x4

4
=

9.6
4

= 2.4,

so the numerical value of our estimator is

θ = 1.2.

■
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Example 5.16.
Let us use the method of moments to estimate both parameters of the Normal
N(µ, σ) distribution, based on a random sample X1, . . . ,Xn.

Solution.
Now we have a characteristic X with pdf

f (x;µ, σ) =
1

σ
√

2π
e
−
(x − µ)2

2σ2 , x ∈ R,

with µ ∈ R and σ > 0, both unknown.

To estimate two parameters, we need two equations in the system (5.13),{
ν1 = ν1
ν2 = ν2

.
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In the first equation, we have

ν1 = E(X) = µ and

ν1 = X,

since for a Normal N(µ, σ) variable the first parameter is its expectation. We
also know that the variance of a N(µ, σ) variable is equal to σ2. But recall the
computational formula for the variance (in general)

V(X) = E
(
X2)− (E(X))2 = ν2 − ν2

1 .

From here, we get
ν2 = V(X) + ν2

1 = σ2 + µ2.

So our system becomes {
µ = X
µ2 + σ2 = ν2

,
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a system of two equations in two unknowns, with solution
µ = X

σ =

√
ν2 − X2

=

√√√√1
n

n∑
i=1

X2
i −

(
1
n

n∑
i=1

Xi

)2
.

■

Remark 5.17.

Method of moments estimates are typically easy to compute. However, on
rare occasions, when k equations are not enough to estimate k parameters,
higher moments (i.e. more equations) can also be considered, or central
moments can be chosen instead (if it simplifies the computations).
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Method of Maximum Likelihood

Maximum-likelihood estimation was first recommended, analyzed and then
vastly popularized by R. A. Fisher in the 1920’s, although it had been used
earlier by Gauss and Laplace.

 

Sir Ronald Aylmer Fisher (1890 - 1962)

Lecture 12 28 / 39



Properties of Point Estimators Methods of Pointwise Estimation

For a fixed random sample from an underlying probability distribution, the
maximum likelihood method picks the values of the population parameters
that make the data “more likely” than any other values of the parameters
would make them.
Let us illustrate it, first, with a simple, intuitive example, to understand the
underlying ideas.

Example 5.18.
Suppose there are 5 balls in a box, black or white, the number of each being
unknown. Suppose further, that we randomly select 3 of them, without
replacement, and we get all three white. What would be a good estimate, w,
for the number of white balls in the box, w?

Solution. Obviously, w ∈ {3, 4, 5}.
If the true value was w = 3, then the probability of randomly selecting 3
white balls without replacement, would be (by the Hypergeometric model)

p1 =
C3

3C0
2

C3
5

=
1
10

.
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If the true value was w = 4, then the probability of randomly selecting 3
white balls without replacement, would be

p2 =
C3

4C0
1

C3
5

=
4
10

.

And, finally, if the true value was w = 5, then the probability of randomly
selecting 3 white balls without replacement, would be

p3 =
C3

5C0
0

C3
5

= 1.

So, it would seem reasonable to choose w = 5 as our estimate for w, since this
would maximize the probability of obtaining our observed sample.

■
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This, in essence, describes the method of maximum likelihood estimation.
Now let us write it formally.

Recall that the probability of obtaining an observed sample is measured by the
likelihood function of a sample:

L(X1, . . . ,Xn; Θ) =

n∏
i=1

f (Xi; Θ),

where now all unknown target parameters are contained in a vector
Θ = (θ1, . . . , θl).

This method chooses the values of an estimator Θ = (θ1, . . . , θl)
= Θ(X1, . . . ,Xn) that maximize the function L(X1, . . . ,Xn; Θ).
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So, if L is twice differentiable with respect to each θ1, . . . , θl, we find the
solutions of the maximum-likelihood system

∂L(X1, . . . ,Xn; θ1, . . . , θl)

∂θj
= 0, j = 1, l, (5.14)

or, equivalently, but easier to compute, the maximum-likelihood equations

∂ lnL(X1, . . . ,Xn; θ1, . . . , θl)

∂θj
= 0, j = 1, l. (5.15)

If the system (5.15) has a solution, then it can be shown that it is unique and
that it is a point of maximum for the likelihood function.

This is called the maximum likelihood (MLE) estimator.
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Example 5.19.
Consider again the situation in Example 5.15, so a characteristic with pdf

f (x; θ) =
1
θ2 xe−

x
θ ,

for x > 0, with θ > 0 is unknown. Based on a random sample X1, . . . ,Xn, let
us now find the MLE θ̂ for θ.

Solution. The likelihood function is given by

L(X1, . . . ,Xn; θ) =
n∏

i=1

 1
θ2 Xie

−
Xi

θ

 =

 1
θ2 X1e

−
X1

θ

 . . .

 1
θ2 Xne

−
Xn

θ



=

(
n∏

i=1

Xi

)
1
θ2n e

−
1
θ

n∑
i=1

Xi

= K
1
θ2n e

−
nX
θ ,

where K =
n∏

i=1

Xi is a constant with respect to θ.
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Take the logarithm and differentiate it with respect to θ (the only unknown).

lnL = lnK − 2n ln θ − nX
θ

∂ lnL
∂θ

= −2n
θ

+
nX
θ2 .

Then the maximum likelihood system becomes

−2n
θ

+
nX
θ2 = 0,

whose solution is the MLE
θ̂ =

1
2

X,

the same as the method of moments estimator θ.
■
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Example 5.20.
Let us also find the MLE’s for the parameters of the Normal N(µ, σ)
distribution

f (x;µ, σ) =
1

σ
√

2π
e
−
(x − µ)2

2σ2 , x ∈ R,

with µ ∈ R and σ > 0, both unknown.

Solution. We find the likelihood function

L(X1, . . . ,Xn;µ, σ) =

n∏
i=1

 1
σ
√

2π
e
−
(Xi − µ)2

2σ2



=

(
1

σ
√

2π

)n

e
−

1
2σ2

n∑
i=1

(Xi − µ)2
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and its logarithm

lnL(µ, σ) = −n ln (σ
√

2π)− 1
2σ2

(
n∑

i=1

X2
i − 2µ

n∑
i=1

Xi + nµ2

)

= −n lnσ − n ln (
√

2π)− 1
2σ2

(
n∑

i=1

X2
i − 2nµX + nµ2

)
.

The maximum likelihood system will consist of two equations
∂ lnL(µ, σ)

∂µ
= 0

∂ lnL(µ, σ)
∂σ

= 0,

i.e. 
− 1

2σ2

(
−2nX + 2nµ

)
= 0

−n
1
σ
+

1
σ3

(
n∑

i=1

X2
i − 2nµX + nµ2

)
= 0,
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From the first equation, we get

µ̂ = X.

Substituting that into the second equation, we find

n =
1
σ2

(
n∑

i=1

X2
i − 2nµ̂X + nµ̂2

)
,

σ2 =
1
n

(
n∑

i=1

X2
i − 2nX2

+ nX2

)
= ν2 − X2

,

σ̂ =

√
ν2 − X2

.

So, again, the MLE’s coincide with the method of moments estimators.
■
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Remark 5.21.
In some of our examples, the two methods yielded the same point estimator.
That is not always the case. If they differ, the natural question is: which one is
better?

In some respects, when estimating parameters of a known family of
probability distributions, the method of moments is superseded by Fisher’s
method of maximum likelihood, because maximum likelihood estimators
have higher probability of being close to the quantities to be estimated.

However, in some cases, the likelihood equations may be intractable without
computers, whereas the method of moments estimators can be quickly and
easily calculated by hand as seen above.
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Remark (Cont).
Estimates by the method of moments may be used as the first approximation
to the solutions of the likelihood equations, and successive improved
approximations may then be found by some iterative approximation methods
(like the Newton method).

In this way, the method of moments and the method of maximum likelihood
are symbiotic.

In some cases, infrequent with large samples but not so infrequent with small
samples, the estimates given by the method of moments are outside of the
parameter space and it does not make sense to rely on them then. That
problem never arises in the method of maximum likelihood.
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