
2.2 Cubic Splines

Recall the the space of polynomial spline functions of degree m and class k on ∆

Sk
m(∆) = {s | s ∈ Ck[a, b], s|[xi,xi+1] ∈ Pm, i = 1, 2, . . . , n− 1}, (2.1)

∆ : a = x1 < x2 < · · · < xn−1 < xn = b.

Now we focus on the case m = 3.
Cubic splines are the most widely used. In general, cubic splines are fairly smooth functions that

are convenient to work with. Cubic spline interpolation is a useful tool in mathematical modeling of
curves and surfaces of complex geometric shapes in aircraft construction, shipbuilding, production
of hydro turbines and many more areas of science and technology. They have also come to be
widely used in the past several decades in computer graphics. There are several types of cubic
spline functions, depending on the smoothness conditions they satisfy.

Interpolation with cubic splines s ∈ S1
3(∆)

We impose the continuity of the first order derivative of s3(f ; ·) by prescribing the values of the
first derivative at each node xi, i = 1, 2, . . . , n. Given n arbitrary numbers m1,m2, . . . ,mn, called
slopes, we seek a function s3(f ; ·) that satisfies the conditions

s3|[xi,xi+1] = pi(x) ∈ P3, i = 1, 2, . . . , n− 1,

s3(f ;xi) = fi, i = 1, 2, . . . , n,

s′3(f ;xi) = mi, i = 1, 2, . . . , n.

(2.2)

This means that on each subinterval [xi, xi+1], s3(f ; ·) is the unique solution of the Hermite inter-
polation problem

pi(xi) = fi, pi(xi+1) = fi+1,

p′i(xi) = mi, p′i(xi+1) = mi+1, i = 1, n− 1.
(2.3)

The divided differences are computed from the table
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xi fi −→ mi −→
f [xi, xi+1] − mi

hi

−→
mi+1 − 2f [xi, xi+1] + mi

h2
i

−→ −→ −→

xi fi −→ f [xi, xi+1] −→ mi+1 − f [xi, xi+1]

hi

−→ −→

xi+1 fi+1 −→ mi+1

−→

xi+1 fi+1,

Using the Newton form of the Hermite polynomial, we have

pi(x) = fi +mi(x− xi) +
f [xi, xi+1]−mi

hi

(x− xi)
2

+
mi+1 − 2f [xi, xi+1] +mi

h2
i

(x− xi)
2(x− xi+1).

Alternatively, we can write it in Taylor’s form around xi. Considering that x− xi+1 = x− xi − hi,
for x ∈ [xi, xi+1], we get

pi(x) = ci,0 + ci,1(x− xi) + ci,2(x− xi)
2 + ci,3(x− xi)

3, (2.4)

with
ci,0 = fi,

ci,1 = mi,

ci,2 =
f [xi, xi+1]−mi

hi

− ci,3hi =
3f [xi, xi+1]− 2mi −mi+1

hi

,

ci,3 =
mi+1 − 2f [xi, xi+1] +mi

h2
i

.

(2.5)

Hence, to compute s3(f ;x) at a point x ∈ [a, b] that is not a node, we first identify the interval
[xi, xi+1] that contains x, then compute the coefficients in (2.5) and evaluate the spline using (2.4).

Next, we discuss some possible choices for the parameters m1,m2, . . . ,mn.
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Piecewise cubic Hermite interpolation

Assuming that the derivatives f ′(xi), i = 1, . . . , n, are known, we choose mi = f ′(xi). This way,
we obtain a strictly local scheme, where the polynomial on each subinterval [xi, xi+1] is completely
determined by the interpolation data at node points inside, independently of the other pieces. The
error in this case (see Example 1.4, in Lecture 6) is

||f(·)− s3(f, ·)||∞ ≤ 1

384
|∆|4 ||f (4)||∞. (2.6)

For equally spaced nodes, we have

|∆| = (b− a)/(n− 1)

and, therefore,

||f(·)− s3(f, ·)||∞ = O(n−4), n → ∞. (2.7)

Interpolation with cubic splines s ∈ S2
3(∆)

To have s3(f ; ·) ∈ S2
3(∆), we require continuity of the second derivatives at the nodes, i.e.

p′′i−1(xi) = p′′i (xi), i = 2, . . . , n− 1,

which, for the Taylor coefficients in (2.4), means

2ci−1,2 + 6ci−1,3hi−1 = 2ci,2, i = 2, . . . , n− 1. (2.8)

Substituting in (2.5), we obtain the linear system

himi−1 + 2(hi−1 + hi)mi + hi−1mi+1 = bi, i = 2, . . . , n− 1, (2.9)

where

bi = 3
(
hif [xi−1, xi] + hi−1f [xi, xi+1]

)
. (2.10)

Thus, we have a system of n− 2 linear equations with n unknowns, m1,m2, . . . ,mn. Once m1 and
mn are chosen, the system is tridiagonal and can be solved efficiently by several methods.

Next, we discuss possible choices for m1 and mn.
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1. Complete (clamped) splines. We take

m1 = f ′(a), mn = f ′(b).

For this type of spline, it can be shown that, if f ∈ C4[a, b], then

||f (r)(·)− s
(r)
3 (f, ·)||∞ ≤ Cr|∆|4−r ||f (4)||∞, r = 0, 1, 2, 3, (2.11)

where
C0 =

5

384
, C1 =

1

24
, C2 =

3

8
,

and C3 depends on the ratio |∆|/min
i

hi.

2. Endpoint second derivative splines. We require

s′′3(f, a) = f ′′(a), s′′3(f, b) = f ′′(b).

These lead to two more equations,

2m1 + m2 = 3f [x1, x2]−
1

2
f ′′(a)h1,

mn−1 + 2mn = 3f [xn−1, xn]−
1

2
f ′′(b)hn−1.

(2.12)

We place the first equation at the beginning of the system (2.9) and the second at the end of
it, thus preserving the tridiagonal structure of the system.

3. Natural cubic splines. Imposing

s′′3(f ; a) = s′′3(f ; b) = 0,

we get the same two equations as above, with f ′′(a) = f ′′(b) = 0:

2m1 + m2 = 3f [x1, x2],

mn−1 + 2mn = 3f [xn−1, xn].
(2.13)

Motivation for these boundary conditions can be given by looking at the physics of bending

thin beams of flexible materials to pass thru the given data. To the left of x1 and to the right of
xn, the beam is straight and therefore the second derivatives are zero at the transition points
x1 and xn.
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The advantage of this type of spline is that it requires only the function values of f – no
derivatives – but the price paid is a decrease in the accuracy to O(|∆|2) near the endpoints
(unless indeed f ′′(a) = f ′′(b) = 0).

4. “Not-a-knot” (deBoor) splines. Here we impose the conditions that the first two pieces and
the last two, coincide, i.e.

p1(x) ≡ p2(x), pn−2(x) ≡ pn−1(x).

This means that the first and last interior nodes, x2 and xn−1, are both inactive (hence, the
name). We get two more equations expressing the continuity of s′′′3 (f ;x) at x = x2 and
x = xn−1. This comes down to the equality of the leading coefficients c1,3 = c2,3 and
cn−2,3 = cn−1,3. Thus, we get

h2
2 m1 +

(
h2
2 − h2

1

)
m2 − h2

1 m3 = β1,

h2
n−1 mn−2 +

(
h2
n−1 − h2

n−2

)
mn−1 − h2

n−2 mn = β2,
(2.14)

where

β1 = 2
(
h2
2f [x1, x2]− h2

1f [x2, x3]
)
,

β2 = 2
(
h2
n−1f [xn−2, xn−1]− h2

n−2f [xn−1, xn]
)
.

Again, we place the first equation at the beginning of the system (2.9) and the second at the end
of it. Even so, the resulting system is no longer tridiagonal, but it can be transformed into a
tridiagonal one, by combining equations 1 and 2, and n−1 and n, respectively. Consequently,
the first and the last equations become

h2 m1 +
(
h2 + h1

)
m2 = γ1,(

hn−1 − hn−2

)
mn−1 + hn−2 mn = γ2,

(2.15)

where

γ1 =
1

h2 + h1

[
f [x1, x2]h2

(
h1 + 2

(
h1 + h2

))
+ h2

1f [x2, x3]

]
,

γ2 =
1

hn−1 + hn−2

[
h2
n−1f [xn−2, xn−1] +

(
2
(
hn−1 + hn−2

)
+ hn−1

)
hn−2f [xn−1, xn]

]
.
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Finding cubic splines using the second derivatives

Computational formulas for finding cubic splines s ∈ S2
3(∆) can be derived (in a similar way)

when the arbitrary numbers M1,M2, . . . ,Mn, called moments, are given and forced to satisfy the
conditions

s3|[xi,xi+1] = pi(x) ∈ P3, i = 1, 2, . . . , n− 1,

s3(f ;xi) = fi, i = 1, 2, . . . , n,

s′′3(f ;xi) = Mi, i = 1, 2, . . . , n.

(2.16)

Since s3 is a cubic polynomial, its second derivative is linear. Hence, on [xi, xi+1], we have

s′′3(f ;x) = ax+ b,

satisfying the conditions

s′′3(f ;xi) = Mi, s
′′
3(f ;xi+1) = Mi+1, i = 1, 2, . . . , n− 1.

The values a and b are determined from the system{
axi + b = Mi

axi+1 + b = Mi+1

.

Integrating successively, then imposing (2.16) and the continuity conditions at the nodes,
s′3(f ;xi) = s′3(f ;xi+1), i = 1, n− 1, we get the linear system

hi−1 Mi−1 + 2 (hi−1 + hi)Mi + hi Mi+1 = 6 (f [xi, xi+1]− f [xi−1, xi]) , (2.17)

for i = 2, n− 1.
The two extra conditions needed for a closed system can be imposed, e.g., on M1 and Mn. If
M1 = Mn = 0, we get the natural cubic spline.
Other conditions can be enforced, such as the continuity of s′′′3 (f ;x) at x = x2 and x = xn−1, which
lead to deBoor cubic splines.
If the first and last equations are

2M1 + M2 = 6 (f [x1, x2]− f ′
1) ,

Mn−1 + 2Mn = 6 (f ′
n − f [xn−1, xn]) ,

(2.18)

where f ′
1 = f ′(a), f ′

n = f ′(b), then the resulting function is the complete cubic spline.
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Example 2.1. Find the natural cubic spline that interpolates the data

xi 1 2 4 5

fi 3 5 9 10

Solution.
We have n = 4 nodes and h1 = 1, h2 = 2, h3 = 1.

From (2.9)–(2.13), the linear system for the slopes mi is
2m1 + m2 = 6

2m1 + 6m2 + m3 = 18

2m2 + 6m3 + 2m4 = 12

m3 + 2m4 = 3

with solution
m1 =

87

46
, m2 =

51

23
, m3 =

21

23
, m4 =

24

23
.

The system (from (2.17) together with the conditions M1 = M4 = 0) for the moments Mi becomes
M1 = 0

M1 + 6M2 + 2M3 = 0

2M2 + 6M3 + M4 = −6

M4 = 0

whose solution is
M1 = 0, M2 =

3

8
, M3 = −9

8
, M4 = 0.

Hence, both ways, we get the natural cubic spline function

s3(x) =



x3

16
− 3x2

16
+

17x

8
+ 1, x ∈ [1, 2]

−x3

8
+

15x2

16
− x

8
+

5

2
, x ∈ [2, 4]

3x3

16
− 45x2

16
+

119x

8
− 35

2
, x ∈ [4, 5]

.
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Minimality properties of cubic spline interpolants

Natural and complete splines have interesting optimality properties. Henceforth, we denote them
by snat(f ; ·) and scompl(f ; ·), respectively.

Theorem 2.2. Let g ∈ C2[a, b] be any function that interpolates f on ∆. Then

b∫
a

|s′′nat(f ;x)|2dx ≤
b∫
a

|g′′(x)|2dx, (2.19)

with equality if and only if g(·) = snat(f ; ·).

For the next minimality result, we slightly change the subdivision ∆. Consider the grid

∆′ : a = x0 = x1 < x2 < · · · < xn−1 < xn = xn+1 = b, (2.20)

where the endpoints are double nodes. That means that when we use ∆′, we interpolate the function
values at all interior points, and, both the functional and the derivative values, at the endpoints.

Theorem 2.3. Let g ∈ C2[a, b] be any function that interpolates f on ∆′. Then

b∫
a

|s′′compl(f ;x)|2dx ≤
b∫
a

|g′′(x)|2dx, (2.21)

with equality if and only if g(·) = scompl(f ; ·).

Remark 2.4. Taking g(·) = scompl(f ; ·) in Theorem 2.2, we get

b∫
a

|s′′nat(f ;x)|2dx ≤
b∫
a

|s′′compl(f ;x)|2dx. (2.22)

So, in a sense, the natural cubic spline is the “smoothest” interpolant.

Remark 2.5. These minimality properties are at the origin of the name “spline”. A spline is a
flexible strip of wood used in drawing curves (or a musical instrument in that shape).

Example 2.6. Consider the function f(x) = arctan x, x ∈ [−2, 2] and the nodes {−2,−1, 0, 1, 2}.
Figure 1 shows the graphs of the function f , the nodes and the complete, natural, deBoor and
piecewise Hermite cubic splines interpolating f . In Figure 2 we have the interpolation errors.
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Fig. 1: Interpolation with cubic splines, f(x) = arctan x
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Fig. 2: Errors in cubic spline interpolation, f(x) = arctan x
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3 Least Squares Approximation

3.1 Best approximation problem

In general, an approximation problem can be described as follows: Let f ∈ X be a function, Φ,
a family of approximants and || · || a norm on X . We seek an approximation φ∗ ∈ Φ of f that
approximates the given function “as well as possible”.

||f − φ∗|| ≤ ||f − φ||, ∀φ ∈ Φ. (3.1)

This is called a best approximation problem of f with elements of Φ. The function φ∗ is called a
best approximation of f relative to the norm || · ||. Given a basis {πj}mj=1 of Φ, we can write

Φ = Φm =
{
φ | φ(t) =

m∑
j=1

cjπj(t), cj ∈ R
}
. (3.2)

Φ is a finite dimensional linear space or a subset of one.
In the preceding sections we gave a polynomial (i.e., we used Φ = Pm) or piecewise polynomial

(with Φ = Sk
m(∆)) approximation based on using interpolation at suitably chosen node points.

Another approach is to seek an approximation with a small “average error” over the interval of
approximation. That “average error” can be best expressed in terms of inner products and norms.

3.2 Scalar Products and Norms

The functions we want to approximate can be defined continuously, i.e., on an interval [a, b], or
discreetly, on a set of points {t1, . . . , tN}. A measure will de defined accordingly, as an integral in
the continuous case and as a sum for discrete functions.

Many measures also involve weight functions. An intuitive, physical justification for a weighted

measure would be that some observations are more important than others, or they are more common,
so they “weigh more”.
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Definition 3.1. A weight function w is defined as follows:

− continuous case, a function w : [a, b] → R+, satisfying the conditions

(i)

b∫
a

|x|nw(x) dx exists and is finite , ∀n ≥ 0,

(ii) if

b∫
a

w(x)g(x) dx = 0, g(x) ≥ 0, then g ≡ 0;

− discrete case, wi ≥ 0, satisfying the conditions

(i)
N∑
i=1

|ti|nw(ti) exists and is finite , ∀n ≥ 0,

(ii) if
N∑
i=1

wigi = 0, gi ≥ 0, then gi = 0,∀i = 1, N.

A few commonly used continuous weights:

w(x) ≡ 1 on [−1, 1],

w(x) =
1√

1− x2
on [−1, 1],

w(x) =
√
1− x2 on [−1, 1],

w(x) = e−x on [0, ∞),

w(x) = e−x2
on (−∞, ∞).

Definition 3.2. Let w be a weight function. The scalar (inner) product of two functions u and v is

defined as

< u, v > =

b∫
a

w(x)u(x)v(x) dx for continuous functions and

< u, v > =
N∑
i=1

wiuivi in the discrete case.

The norm of a function u is

||u|| =
(
< u, u >

) 1
2 .
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The most frequently used (discrete and continuous) norms are given in Table 1.

Discrete norm Continuous norm

||u||p =
( N∑

i=1

wi

∣∣u(ti)∣∣p)1/p

, p ≥ 1 ||u||p =
( b∫

a

w(x)
∣∣u(x)∣∣p dx)1/p

, p ≥ 1

||u||∞ = max
i=1,m

|u(ti)| ||u||∞ = max
x∈[a,b]

|u(x)|

Table 1: Commonly used discrete and continuous norms

Let us recall the main properties of scalar products:

1. Symmetry: < u, v > = < v, u >;

2. Homogeneity: < αu, v > = < u, αv > = α < u, v >, α ∈ R;

3. Additivity: < u+ v, z > = < u, z > + < v, z >;

4. Positive definiteness: < u, u > ≥ 0 and < u, u > = 0 ⇐⇒ u = 0;

5. Cauchy–Bunyakovsky–Schwarz inequality: | < u, v > | ≤ ||u|| · ||v||.

Definition 3.3. We say that two functions u and v are orthogonal if

< u, v > = 0.

More generally, we say that a family of functions {uk}k=1,n is an orthogonal system if

< ui, uj > = 0, i ̸= j.

They are called orthonormal if

< ui, uj > = δij.
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3.3 Least Squares Approximation

We will consider a particular case for problem (3.1) by choosing the (discrete or continuous) 2-norm.
In what follows, || · || will mean || · ||2. So, we want to minimize the square of the error

E2(φ) = ||φ− f ||2 = < φ− f, φ− f >

= < φ,φ > −2 < φ, f > + < f, f > (3.3)

= ||φ||2 − 2 < φ, f > + ||f ||2.

This is then called a least squares approximation problem or mean square approximation problem.
Its solution was given by Gauss and Legendre at the beginning of the 19th century.

3.3.1 Normal equations

Recall that we seek a function φ ∈ Φm that minimizes E2 in (3.3). Then

φ(t) =
m∑
j=1

cjπj(t).

Substitute φ into (3.3) to get

E2(φ) = <
m∑
i=1

ciπi,
m∑
j=1

cjπj > −2 <
m∑
j=1

cjπj, f > + ||f ||2

=
m∑
i=1

m∑
j=1

cicj < πi, πj > −2
m∑
j=1

cj < πj, f > + ||f ||2.

We want to find the values cj ∈ R that minimize the error above. We solve this problem (finding the
minimum of a function) by taking partial derivatives with respect to each unknown ci and setting
them equal to 0. Thus, we get

∂E2

∂ci
= 2

m∑
j=1

cj < πi, πj > −2 < πi, f > = 0, i = 1, . . . ,m,

or

m∑
j=1

< πi, πj > cj = < πi, f >, i = 1, . . . ,m. (3.4)
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The equations in (3.4) are called normal equations and they form a linear system

Ac = b, (3.5)

with

aij = < πi, πj > and bi = < πi, f > . (3.6)

Now, since the scalar product is symmetric, so is matrix A. Also, for every x ∈ Φ, x ̸= 0,

xTAx =
m∑
i=1

m∑
j=1

aijxixj =
m∑
i=1

m∑
j=1

xixj < πi, πj >

=
m∑
i=1

m∑
j=1

< xiπi, xjπj > =
∣∣∣∣∣∣ m∑

i=1

xiπi

∣∣∣∣∣∣2 > 0.

So A is symmetric and positive definite, therefore, nonsingular. Thus, the system (3.5) has a unique
solution c∗j , j = 1, . . . ,m, and hence, so does the least squares approximation problem,

φ∗(t) =
m∑
j=1

c∗jπj(t). (3.7)

Example 3.4. Find the linear least squares approximation of the function f(x) = cos πt on [0, 1],
using the canonical basis πj(t) = tj−1, j ∈ N∗.

Solution. The function is given on an interval, so we want the continuous least squares approxima-
tion. Since we want a linear approximation, i.e., a polynomial of degree 1, we have the basis

π1(t) = 1, π2(t) = t

and we seek an approximation polynomial

φ(t) = c1π1(t) + c2π2(t) = a+ bt,

with simplified notation c1 = a, c2 = b. The normal equations (3.4) are

< π1, π1 > a + < π1, π2 > b = < π1, f >,

< π2, π1 > a + < π2, π2 > b = < π2, f >,
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with

< π1, π1 > =

1∫
0

dt = 1, < π1, π2 > =

1∫
0

tdt = 1/2, < π2, π2 > =

1∫
0

t2dt = 1/3,

< π1, f > =

1∫
0

cos πt dt =
1

π
sin πt

∣∣∣1
0
= 0,

< π2, f > =

1∫
0

t cos πt dt =
1

π
t sin πt

∣∣∣1
0
− 1

π

1∫
0

sin πt dt =
1

π2
cos πt

∣∣∣1
0
= − 2

π2
,

the last one being integrated by parts (u = t, dv = cosπt dt). Then we solve the system
a +

1

2
b = 0,

1

2
a +

1

3
b = − 2

π2

,

with solution a =
12

π2
, b = −24

π2
.

So, we found the linear least squares approximation

φ∗(t) =
12

π2
(1− 2t).

Let us look at the error at some points:

t f(t) φ∗(t) |f(t)− φ∗(t)|
0 1 12/π2 12/π2 − 1 ≈ 0.22

1/6
√
3/2 8/π2

√
3/2− 8/π2 ≈ 0.06

1/4
√
2/2 6/π2

√
2/2− 6/π2 ≈ 0.01

1/3 1/2 4/π2 1/2− 4/π2 ≈ 0.09

1/2 0 0 0

1 −1 −12/π2 12/π2 − 1 ≈ 0.22

When we seek the discrete least squares approximation of some scattered data, the problem is
known as data fitting, and it arises in many applications.

15



Example 3.5. Find the least squares polynomial approximation that best fits the following data:

xi −5 −3 −1 1 3 5

yi 4.8 3.0 2.0 2.8 3.2 10

Solution. The scatterplot is shown in Figure 3. We see from the graph that the best fit is given by a
quadratic function,

φ (x) = a+ bx+ cx2,

i.e., the basis is 1, x, x2 (the canonical basis again).

-5 0 5

1

2

3

4

5

6

7

8

9

10

Fig. 3: Data fitting, Example 3.5

The normal equations (3.4) are

< π1, π1 > a + < π1, π2 > b + < π1, π3 > c = < π1, y >,

< π2, π1 > a + < π2, π2 > b + < π2, π3 > c = < π2, y >,

< π3, π1 > a + < π3, π2 > b + < π3, π3 > c = < π3, y >,
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with

< πi, πj > =
6∑

k=1

xi−1
k xj−1

k =
6∑

k=1

xi+j−2
k and

< πi, y > =
6∑

k=1

xi−1
k yk, i, j = 1, 3, k = 1, . . . , 6.

So, the normal equations are

a

6∑
k=1

1 + b

6∑
k=1

xk + c

6∑
k=1

x2
k =

6∑
k=1

yk,

a

6∑
k=1

xk + b
6∑

k=1

x2
k + c

6∑
k=1

x3
k =

6∑
k=1

xkyk,

a
6∑

k=1

x2
k + b

6∑
k=1

x3
k + c

6∑
k=1

x4
k =

6∑
k=1

x2
kyk.

The sums are computed in the following table (on the last row)

xk yk x2
k x3

k x4
k xkyk x2

kyk

−5 4.8 25 −125 625 −24.0 120

−3 3.0 9 −27 81 −9.0 27

−1 2.0 1 −1 1 2.0 2

1 2.8 1 1 1 2.8 2.8

3 5.2 9 27 81 15.6 46.8

5 10.0 25 125 625 50 250
6∑

k=1

0 27.8 70 0 1414 33.4 448.6

The resulting linear system is
6a + 70c = 27.8

70b = 33.4

70a + 1414c = 448.6

,

with solution a = 2.206, b = 0.477, c = 0.208. The best fit approximation of this data is

φ∗(x) = 0.208x2 + 0.477x+ 2.206.
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3.3.2 Orthogonal polynomials

Least square approximations can use other functions, not just polynomials, and bases other than

canonical can be used, as well. The ideas and procedures described in the previous section still
apply.

As we have seen in this chapter, polynomials or piecewise polynomials work quite well and it is
rarely the case when other, more complicated approximating functions have to be used.

As far as the basis is concerned, in the continuous case, some choices are better than others and
things can be improved there. Let us point out a few troublesome aspects:

• For continuous least squares approximations, the linear system Ac = b in (3.5)-(3.6) can be
ill-conditioned. If the canonical basis, πj(t) = tj−1, j = 1,m, is used on the interval [0, 1] (as
in Example 3.4), then

aij = < πi, πj > =

1∫
0

ti+j−2dt =
1

i+ j − 1
, i, j = 1,m,

i.e., A = Hm, the Hilbert matrix, which is known to be very ill-conditioned. The basis
functions become almost linearly dependent, as the exponent grows. The solution of the
linear system (3.5) is extremely sensitive to small changes in the coefficients or right-hand
constants and as a consequence, when m ≥ 4, the solutions will be completely unsatisfactory.

• Another disadvantage is that all the coefficients cj found this way depend on m, cj = c
(m)
j .

Increasing m will produce an enlarged system of normal equations with a completely new

solution vector. There is no relation between c
(m)
j and c

(m+n)
j , so no way of using previous

computations.

Both these problems can be overcome if the basis {πj}mj=1 is chosen to be orthogonal. If < πi, πj >

= 0, i ̸= j, then the coefficients aij = 0, i ̸= j, which means the system Ac = b is diagonal with
solution

c∗j =
< πj, f >

< πj, πj >
, j = 1, . . .m (3.8)

and the least squares approximation is given by

φ∗(t) =
m∑
j=1

< πj, f >

< πj, πj >
πj(t). (3.9)
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Now, instead of solving a system of normal equations, we can use formula (3.8) directly. Obviously,
the coefficients c∗j are independent of m and once computed, they remain the same for any larger m.
We now have what is called permanence of the coefficients.

Another aspect: recall from linear algebra that any linearly independent system can be orthogo-
nalized using the Gram-Schmidt procedure. So using an orthogonal basis is not restrictive at all.

In fact, applying that procedure to the canonical basis 1, t, t2, . . . on an interval [a, b], with
respect to an appropriate weight function w, several well-known families of orthogonal polynomials
can be obtained, including the Chebyshev polynomials (of the first and second kind) that were
already discussed. Also, that procedure provides a linear recurrence relation between 3 consecutive
such orthogonal polynomials:

πk+1(t) = (t− αk)πk(t)− βkπk−1(t), k = 0, 1, . . . , π−1(t) = 0, π0(t) = 1, (3.10)

where

αk =
< tπk, πk >

||πk||2
, k = 0, 1, . . . , βk =

||πk||2

||πk−1||2
, k = 1, 2, . . . , β0 = µ0. (3.11)

Such examples are given in Table 2.

Name Notation Polynomial Weight fn. Interval αk βk

β0 = 2,

Legendre lm
[
(x2 − 1)m

](m)
1 [−1, 1] 0 βk = (4− k−2)−1, k ≥ 1

β0 = π,

Chebyshev 1st Tm cos (m arccosx) (1− x2)−
1
2 [−1, 1] 0 β1 =

1
2 ,

βk = 1
4 , k ≥ 2

β0 =
π
2 ,

Chebyshev 2nd Qm
sin [(m+ 1) arccosx]√

1− x2
(1− x2)

1
2 [−1, 1] 0 βk = 1

4 , k ≥ 1

β0 = Γ(1 + a),

Laguerre La
m x−aex (xm+ae−x)

(m)
xae−x, a > −1 [0,∞) 2k + a+ 1 βk = k(k + a), k ≥ 1

β0 =
√
π,

Hermite Hm (−1)mex
2
(
e−x2

)(m)
e−x2 R 0 βk = k

2 , k ≥ 1

Table 2: Orthogonal polynomials and recurrence coefficients

Example 3.6. Let f : [−1, 1] → [0, π], f(t) = arccos t. Find the least squares polynomial approxi-

mation φ∗ of f relative to the weight function w(t) =
1√

1− t2
.
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Solution. For this weight function, we use Chebyshev polynomials of the first kind, πj(t) = Tj(t).
Recall that

< πi, πj > =

1∫
−1

Ti(t)Tj(t)√
1− t2

dt =


0, i ̸= j

π, i = j = 0
π

2
, i = j ̸= 0

,

so
< π0, π0 > = π and < πj, πj > =

π

2
, j ̸= 0.

Now, compute the numerators of the coefficients c∗j .

< πj, f > =

1∫
−1

1√
1− t2

cos (j arccos t) arccos t dt.

With the change of variables t = cosx, we have arccos t = x,
√
1− t2 = sinx, dt = − sinx dx

and the interval [−1, 1] is mapped into [π, 0]. So,

< πj, f > =

π∫
0

1

sinx
x cos (jx) sinx dx =

π∫
0

x cos (jx) dx.

Then,

< π0, f > =

π∫
0

x dx =
1

2
x2

∣∣∣∣π
0

=
π2

2
.

For j ̸= 0, we use integration by parts with u = x, dv = cos (jx) dx
(

so du = dx, v =
1

j
sin (jx)

)
:

< πj, f > =

π∫
0

x cos (jx) dx =
1

j
x sin (jx)

∣∣∣∣π
0

− 1

j

π∫
0

sin (jx) dx

= 0 +
1

j2
cos (jx)

∣∣∣∣π
0

=
1

j2

(
cos (jπ)− cos 0

)
=

1

j2

(
(−1)j − 1

)
=

 0, j even

− 2

j2
, j odd

.
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So,

c∗0 =
π

2
, c∗j =

 0, j ̸= 0 even

− 4

j2π
, j odd

.

Then the least squares approximating polynomial is given by

φ∗
2n+1(t) =

π

2
−

n∑
i=0

4

(2i+ 1)2π
T2i+1(t).

This is the solution of the least squares problem:

1∫
−1

1√
1− t2

(
f(t)− φ∗

n(t)
)2

dt = min


1∫
−1

1√
1− t2

(
f(t)− φ(t)

)2
dt : φ ∈ Pn

 .

The approximation is quite good, even for small degrees, as seen in Figure 4.
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Fig. 4: Example 3.6
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