
Chapter 3. Approximation of Functions

Approximation of functions is one of the most important tasks in Numerical Analysis.
Most functions encountered in mathematical problems and applications cannot be evaluated ex-

actly, even though we usually handle them as if they where completely known quantities. The sim-
plest and most important of these are

√
x, ex, log x, and the trigonometric functions; and there are

many other functions that occur commonly in physics, engineering, and other disciplines. In evalu-
ating functions, by hand or using a computer, we are essentially limited to the elementary arithmetic
operations +,−,× and ÷. Combining these operations means that we can evaluate polynomials
and rational functions, which are polynomials divided by polynomials. All other functions must be
evaluated by using approximations based on polynomials or rational functions, including piecewise
variants of them (e.g., spline functions). Although rational functions generally give slightly more ef-
ficient approximations, polynomials are adequate for most problems and their theory is much easier
to handle.

Interpolation is the process of finding and evaluating a function whose graph goes through a
set of given points. The points may arise as measurements in a physical problem, or they may be
obtained from a known function. The interpolating function is usually chosen from a restricted class
of functions and polynomials are the most commonly used class.

Interpolation is an important tool in producing computable approximations to commonly used
functions. Moreover, to numerically integrate or differentiate a function, we often replace the func-
tion with a simpler approximating expression, which is then integrated or differentiated. These
simpler expressions are almost always obtained by interpolation. Also, some of the most widely
used numerical methods for solving differential equations are obtained from interpolating approxi-
mations. Finally, interpolation is widely used in computer graphics, to produce smooth curves and
surfaces when the geometric object of interest is given at only a discrete set of data points.

Later on, we will briefly consider other forms of function approximations.

1 Polynomial Interpolation

1.1 Lagrange Interpolation

Interpolation problem. Given n+1 distinct points – called nodes (or knots) – xi ∈ [a, b], i = 0, n,
and the values f(xi) = yi of an unknown function f : [a, b] → R, find a polynomial P (x) of

1



minimum degree, satisfying

P (xi) = f(xi), i = 0, n, (1.1)

called interpolation conditions. This polynomial approximates function f .

Linear interpolation

We start with a simple case: consider two interpolation nodes, (x0, y0), (x1, y1), x0 ̸= x1.
We know that there is a unique line passing through these points. That means we can find a polyno-
mial of degree 1 that interpolates the data. Let us find it.

The slope of the line is
m =

y1 − y0
x1 − x0

and its equation is
y − y0 =

y1 − y0
x1 − x0

(x− x0).

We find the linear interpolation polynomial as

P1(x) = y0 +
y1 − y0
x1 − x0

(x− x0)

=

(
1− x− x0

x1 − x0

)
y0 +

x− x0

x1 − x0

y1

=
x− x1

x0 − x1

y0 +
x− x0

x1 − x0

y1.

Example 1.1. Consider the function f(x) =
√
x and the nodes x0 = 1, x1 = 4, i.e. the data

(1, 1), (4, 2).

Solution. The linear interpolation polynomial is

P1(x) =
x− 4

1− 4
· 1 + x− 1

4− 1
· 2 =

1

3
x+

2

3
.

The graphs of f and P1 on the interval [0, 15] are shown in Figure 1.

2



0 5 10 15
0

1

2

3

4

5

6

sqrt(x)

deg = 1

Fig. 1: Linear interpolation of function
√
x

Quadratic interpolation

We go further and consider 3 distinct nodes (x0, y0), (x1, y1), (x2, y2). It can easily be checked that
the quadratic polynomial

P2(x) =
(x− x1)(x− x2)

(x0 − x1)(x0 − x2)
y0 +

(x− x0)(x− x2)

(x1 − x0)(x1 − x2)
y1 +

(x− x0)(x− x1)

(x2 − x0)(x2 − x1)
y2

interpolates these data.

Example 1.2. In Example 1.1 we add the node (9, 3).

Solution. With nodes (1, 1), (4, 2) and (9, 3), the quadratic interpolation polynomial is given by

P2(x) =
(x− 4)(x− 9)

(1− 4)(1− 9)
· 1 + (x− 1)(x− 9)

(4− 1)(4− 9)
· 2 + (x− 1)(x− 4)

(9− 1)(9− 4)
· 3

= − 1

60
x2 +

5

12
x+

3

5
.

The graphs of f and the two interpolation polynomials P1 and P2 are plotted in Figure 2.

3



0 5 10 15
0

1

2

3

4

5

6

sqrt(x)

deg = 1

deg = 2

Fig. 2: Linear and quadratic interpolation of function
√
x

General case

Consider the interval [a, b] ⊂ R, a function f : [a, b] → R and a set of n + 1 distinct nodes
{x0, x1, . . . , xn} ⊂ [a, b].
Recall the notations

u(x) =
n∏

j=0

(x− xj) = (x− x0)(x− x1) . . . (x− xn),

uj(x) =
u(x)

x− xj

, j = 0, 1, . . . , n.

(1.2)

Theorem 1.3. There is a unique polynomial Lnf of degree at most n, satisfying the interpolation

conditions (1.1). This polynomial can be written as

Lnf(x) =
n∑

i=0

li(x)f(xi), (1.3)

4



where

li(x) =
n∏

j=0
j ̸=i

x− xj

xi − xj

=
ui(x)

ui(xi)
=

ui(x)

u′(xi)
. (1.4)

Lnf is called the Lagrange interpolation polynomial of f at the nodes x0, x1, . . . , xn. The functions

li(x), i = 0, n are called Lagrange fundamental (basis) polynomials associated with these points.

Proof. It can easily be checked that li is a polynomial of degree at most n and that

li(xj) = δij =

{
0, i ̸= j

1, i = j
.

Hence, the polynomial Lnf defined in(1.3) is also a polynomial of degree at most n and it satisfies
conditions (1.1).

To prove uniqueness, assume there exists another polynomial P ∗
n (of degree at most n) satisfying

conditions (1.1) and consider
Qn = Ln − P ∗

n .

By (1.1), Qn(xi) = 0, i = 0, . . . , n, which means Qn, a polynomial of degree at most n, has n + 1

distinct roots. By the Fundamental Theorem of Algebra, Qn must be identically zero, thus proving
the uniqueness of Ln.

So, given n+1 distinct points, we can find a unique polynomial of degree at most n, interpolating
the data. It is possible that the degree of the interpolation polynomial to be actually less than n.

Example 1.4. Find the polynomial of minimum degree that interpolates the data

x −2 −1 0 1 2 3

y −5 1 1 1 7 25
.

Solution. Given 6 points, we find, by (1.3)-(1.4) (after simplifying), the polynomial

L5f(x) =
5∑

i=0

li(x)yi = x3 − x+ 1.

which, actually, has degree 3 < 5.

5



Error and convergence

First of all, for any set of distinct nodes, the interpolation problem is well-posed, meaning that it has
a unique solution that depends continuously on the data. Moreover, it can be expressed in terms of
basis polynomials in the form (1.3).

We want to use the approximation

f(x) ≈ Lnf(x), x ∈ [a, b].

To this end, we must assess (bound) the error (the remainder)

(Rnf)(x) = f(x)− (Lnf)(x), x ∈ [a, b]. (1.5)

Theorem 1.5. Let [a, b] ⊂ R, f : [a, b] → R a function of class Cn+1[a, b] and consider the distinct

nodes {x0, x1, . . . , xn} ⊂ [a, b]. Then there exists ξ ∈ (a, b) such that

(Rnf)(x) =
u(x)

(n+ 1)!
f (n+1)(ξ), (1.6)

where u(x) = (x− x0)(x− x1) . . . (x− xn).

Example 1.6. For linear and quadratic interpolation, the remainders are given by

(R1f)(x) =
(x− x0)(x− x1)

2
f ′′(ξ),

(R2f)(x) =
(x− x0)(x− x1)(x− x2)

6
f ′′′(ξ).

For f(x) =
√
x = x1/2, the derivatives are

f ′(x) =
1

2
x−1/2 =

1

2
· 1√

x
,

f ′′(x) =
1

2

(
−1

2

)
x−3/2 = −1

4
· 1

x
√
x
,

f ′′′(x) = −1

4

(
−3

2

)
x−5/2 =

3

8
· 1

x2
√
x
.

6



So, for the remainders, we have

|(R1f)(x)| =
|(x− x0)(x− x1)|

8
· 1

ξ
√
ξ
,

|(R2f)(x)| =
3

8

|(x− x0)(x− x1)(x− x2)|
6

· 1

ξ2
√
ξ

=
|(x− x0)(x− x1)(x− x2)|

16
· 1

ξ2
√
ξ
.

Remark 1.7. In general, an upper bound of the interpolation error is given by

|(Rnf)(x)| ≤ |u(x)|
(n+ 1)!

Mn+1(f), (1.7)

where
Mn+1(f) = sup

t∈[a,b]
|f (n+1)(t)|.

Regarding the convergence of the Lagrange polynomial Lnf to f , this does not happen, in
general. The polynomial does converge, if, for instance, f ∈ C∞[a, b], with |f (k)(x)| ≤ Mk, ∀x ∈
[a, b], k = 0, 1, 2, . . . and satisfies

lim
k→∞

(b− a)k

k!
Mk = 0.

In the early 1900’s, it was proved (by Bernstein and Faber) that for each triangular array of nodes

x
(0)
0

x
(1)
0 x

(1)
1

x
(2)
0 x

(2)
1 x

(2)
2

...
...

... . . .

x
(n)
0 x

(n)
1 x

(n)
2 . . . x

(n)
n

in [a, b] there exists a function f ∈ C[a, b], such that the sequence of Lagrange interpolation poly-
nomials

Lnf = Ln(f, x
(n)
0 , x

(n)
1 , . . . , x(n)

n ;x)

does not converge uniformly to f on [a, b]. Moreover, they proved that for any array of nodes
as above, there exists a function f ∈ C[a, b], such that the corresponding sequence {Lnf}n is
divergent.

7



Example 1.8 (Bernstein’s Example). Let

f(x) = |x|, x ∈ [−1, 1]

and consider the equidistant nodes

x
(n)
k = −1 +

2k

n
, k = 0, n.

One can show that

lim
n→∞

|f(x)− Lnf(x)| = ∞,

for every x ∈ [−1, 1], except x = −1, x = 0 and x = 1 (see Figure 3). Convergence in x = ±1

is trivial, since they are interpolation nodes (where the error is zero). The same is true for x = 0,
when n is even.

-1 -0.5 0 0.5 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f

L
10

f

Fig. 3: Bernstein’s Example, equidistant nodes, n = 10

8



Example 1.9 (Runge’s Example). Consider the function

f(x) =
1

1 + x2
, x ∈ [−5, 5]

and the equally spaced nodes

x
(n)
k = −5 + 10

k

n
, k = 0, n.

It can be shown that

lim
n→∞

|f(x)− Lnf(x)| =

{
0, if |x| < 3.633 . . .

∞, if |x| > 3.633 . . .

-5 0 5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

f

L
10

f

L
13

f

L
17

f

Fig. 4: Runge’s Example, n = 10, 13, 17

Optimal choice of nodes

It may seem that choosing equally spaced nodes is beneficial, because it makes computations easier.
However, as the last two examples showed, that is not the case. In fact, polynomial interpolation in
equally spaced points is highly ill-conditioned: small changes in the data may cause huge changes

9



in the interpolant. This is known as Runge’s phenomenon: a problem of oscillation at the edges of
an interval, that occurs when using polynomial interpolation with polynomials of high degree over
a set of equidistant nodes.

For polynomial interpolation to be a well-conditioned process, unless n is rather small, one
must dispense with equally spaced points. The alternative is to use point sets that are clustered at
the endpoints of the interval. Such families of nodes will minimize the term |u(x)| in the error (1.7).

The simplest examples of clustered point sets are the families of Chebyshev points, obtained by
projecting equally spaced points on the unit circle down to the unit interval [−1, 1].
Assume the interval is [−1, 1]. Then, for a general interval [a, b], we use the linear change of
variables

x =
b− a

2
t+

b+ a

2
, t ∈ [−1, 1], x ∈ [a, b].

Chebyshev points of the first kind

An optimal choice of nodes are the roots of the Chebyshev polynomial of the first kind:

Tn(x) = cos (n arccosx), x ∈ [−1, 1]. (1.8)

With the change of variables x = cos t, t ∈ [0, π], we get

Tn(x) = cos (nt) =
1

2

(
eint + e−int

)
=

1

2

[
(cos t+ i sin t)n + (cos t− i sin t)n

]
=

1

2

[(
x+ i

√
1− x2

)n
+
(
x− i

√
1− x2

)n]
.

The odd powers of the radical will be canceled, resulting in a polynomial of degree n in x, with
leading coefficient 2n−1.

Chebyshev polynomials of the first kind have some remarkable properties:

1. Polynomials of degree 0, 1, 2 and 3 are easily computable using trigonometric identities. They

10



are

T0(x) = 1,

T1(x) = x,

T2(x) = 2x2 − 1,

T3(x) = 4x3 − 3x.

2. Higher degree polynomials can be obtained from the recurrence relation

Tk+1(x) = 2xTk(x)− Tk−1(x), k = 1, 2, . . . .

For example, the next polynomial is

T4(x) = 8x4 − 8x2 + 1.

3. {Tn(x)}n∈N is a sequence of orthogonal polynomials on (−1, 1) with respect to the weight

function w(x) =
1√

1− x2
, i.e.

1∫
−1

Tn(x)Tm(x)√
1− x2

dx =


0, n ̸= m

π, n = m = 0
π

2
, n = m ̸= 0

.

To minimize the term |u(x)| in the error (1.7), on the interval [−1, 1], we choose

u(x) = T̃n+1(x) =
1

2n
Tn+1(x),

i.e. the nodes

xk = cos

(
2k + 1

2n+ 2
π

)
, k = 0, . . . , n, (1.9)

the roots of the Chebyshev polynomial Tn+1. In this case, we have

||Rnf || ≤ 1

2n(n+ 1)!
||f (n+1)||.

11



For the general case, on the interval [a, b], we take

u(x) = T̃n+1(x; a, b) =
(b− a)n+1

22n+1
cos

(
(n+ 1) arccos

2x− a− b

b− a

)
and for the remainder, we have

||Rnf || ≤ (b− a)n+1

22n+1(n+ 1)!
||f (n+1)||.

Example 1.10. Let us revisit Bernstein’s Example, i.e. the function

f(x) = |x|, x ∈ [−1, 1],

only with Chebyshev nodes, this time, given by (1.9). Figure 5 shows a much better behaviour of
the Lagrange polynomial.

-1 -0.5 0 0.5 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f

L
10

f

Fig. 5: Bernstein’s Example, Chebyshev nodes, n = 10

12



Chebyshev points of the second kind

Chebyshev polynomials of the second kind are defined by

Qn(x) =
sin
(
(n+ 1) arccosx

)
√
1− x2

, x ∈ (−1, 1). (1.10)

These polynomials are orthogonal on [−1, 1] with respect to the weight function w(x) =
√
1− x2:

1∫
−1

√
1− x2 Qn(x)Qm(x) dx =

{
0, n ̸= m
π

2
, n = m

.

With the same change of variables as before, x = cos t, t ∈ [0, π], we find

Qn(t) =
sin
(
(n+ 1)t

)
sin t

, t ∈ [0, π].

The roots of Qn are

xk = cos

(
k

n+ 1
π

)
, k = 1, . . . , n. (1.11)

Qn(x) can be generated using the recurrence relations

Qk+1(x) = 2xQk(x)−Qk−1(x), k = 1, 2, . . .

Q0(x) = 1, Q1(x) = 2x.

The first few Chebyshev polynomials of the second kind are

Q0(x) = 1,

Q1(x) = 2x,

Q2(x) = 4x2 − 1,

Q3(x) = 8x3 − 4x.

Remark 1.11. The Chebyshev polynomials of the first and second kinds are closely related. It can

13



be easily checked that they satisfy a pair of mutual recurrence relations:

Tn+1(x) = xTn(x)− (1− x2)Qn−1(x),

Qn+1(x) = xQn(x) + Tn+1(x).

Orthogonal polynomials are used extensively in many problems in Numerical Analysis, so we
will revisit them (these and other families) later on.

1.2 Efficient Computation of Interpolation Polynomials

Recall the Lagrange interpolation polynomial of a function f, at the distinct nodes (xi, fi), fi =

f(xi), i = 0, n:

Lnf(x) =
n∑

i=0

li(x)fi, (1.12)

where

li(x) =
n∏

j=0
j ̸=i

x− xj

xi − xj

=
ui(x)

ui(xi)
=

ui(x)

u′(xi)
,

u(x) =
n∏

j=0

(x− xj), uj(x) =
u(x)

x− xj

, j = 0, 1, . . . , n.

This formula is well-suited for many theoretical uses of interpolation, but it is less desirable for
practical computations. Among its shortcomings:
− for each value of x, all of the basis functions li must be evaluated at x, which requires a product
of n terms; thus, the total work is O(n2) flops (additions and multiplications) for every value of x;
− adding a new node (xn+1, fn+1) requires a new computation from scratch and knowing Lnf(x)

does not lead to a less expensive way to evaluate Ln+1f(x);
− the computation is numerically unstable.
For these reasons, we need alternative and more easily computable formulations and expressions for
interpolation polynomials.

14



1.2.1 Barycentric interpolation

The Lagrange formula (1.12) can be rewritten in such a way that it can be evaluated and updated in
O(n) flops.

Lnf(x) =
n∑

i=0

ui(x)

u′(xi)
fi =

n∑
i=0

u(x)

(x− xi)u′(xi)
fi = u(x)

n∑
i=0

1

u′(xi)

x− xi

fi.

Let

wi =
1

u′(xi)
=

1
n∏

j=0
j ̸=i

(xi − xj)

, i = 0, 1, . . . , n. (1.13)

These are called barycentric weights. With these, the Lagrange interpolation polynomial can be
written as

Lnf(x) = u(x)
n∑

i=0

wi

x− xi

fi. (1.14)

Formula (1.14) is called the first barycentric formula (also known as the modified Lagrange inter-

polation formula).
Now, Lagrange interpolation is a formula requiring O(n2) operations for calculating some quan-

tities independent of x, the weights wi, followed by O(n) flops for evaluating Lnf(x), once these
numbers are known. Incorporating a new node xn+1 entails two calculations:
− dividing each wi, i = 0, . . . , n by xi − xn+1, for a cost of n+ 1 flops,
− computing a new weight wn+1 using formula (1.13), for another n+ 1 flops.

Formula (1.14) can be improved even further. Notice that for the constant function f ≡ 1, the
Lagrange polynomial is f itself

Lnf ≡ 1,

by the uniqueness of the interpolation polynomial. Substituting in (1.14), we find

1 = u(x)
n∑

i=0

wi

x− xi

15



and further

u(x) =
1

n∑
i=0

wi

x− xi

.

Then the Lagrange polynomial can be written as

Lnf(x) =

n∑
i=0

wi

x− xi

fi

n∑
i=0

wi

x− xi

, (1.15)

called the second barycentric formula (or, simply, the barycentric formula).

Example 1.12. Consider our previous example, the function f(x) =
√
x and the nodes x0 = 1 and

x1 = 4.

Solution. We have

w0 =
1

x0 − x1

=
1

1− 4
= −1

3
, w1 =

1

x1 − x0

=
1

4− 1
=

1

3

and

L1f(x) =

w0

x− x0

f(x0) +
w1

x− x1

f(x1)

w0

x− x0

+
w1

x− x1

=
− 1/3

x− 1
· 1 + 1/3

x− 4
· 2

− 1/3

x− 1
+

1/3

x− 4

=
− 1

x− 1
+

2

x− 4

− 1

x− 1
+

1

x− 4

=
−x+ 4 + 2x− 2

−x+ 4 + x− 1
=

1

3
x+

2

3
,

as before.

Remark 1.13. Even though formula (1.15) hardly looks like a polynomial, it actually is, as seen in
the example above. However, there is one troublesome aspect: the interpolation polynomial should
agree with the function value at the nodes, but, it is technically undefined when x equals one of the

16



nodes. In fact, it can easily be shown (using L’Hôpital’s rule) that

lim
x→xk

n∑
i=0

wi

x− xi

fi

n∑
i=0

wi

x− xi

= fk, k = 0, 1, . . . , n,

so a continuous extension to the nodes is justified. This aspect is particularly important in the
implementation of the barycentric formula.

We see that the barycentric formula is a Lagrange formula, but one with a special and beautiful
symmetry. The weights wi appear in the denominator exactly as in the numerator, except without
the function values fi. This means that any common factor in all the weights wi may be canceled

without affecting the value of Lnf , something that will be very useful next.

Computation of the barycentric weights

For some special sets of nodes xj , one can give explicit formulas for the barycentric weights wj ,
using the identity

wj =
1

u′(xj)
.

• The obvious place to start is equidistant nodes with spacing h = 2/n on the interval [−1, 1].
In this case,

wj = (−1)n−j

(
n

j

)
/(hnn!)

Since any common factor that does not depend on j will be canceled in the numerator and
denominator of (1.15), this can be simplified to

wj = (−1)j

(
n

j

)
, j = 0, . . . , n. (1.16)

For a general interval [a, b] we would multiply this formula by 2n(b− a)−n, but this constant
factor too can be dropped, so we end up with (1.16) again, regardless of a and b.

17



• For Chebyshev points of the first kind, after canceling factors independent of j, we find

wj = (−1)j sin
(2j + 1)π

2n+ 2
, j = 0, . . . , n. (1.17)

If n is large, the weights wj in (1.16) for equispaced barycentric interpolation vary by expo-
nentially large factors, of order approximately 2n. The effect will be that even small data near
the center of the interval are associated with large oscillations in the interpolant, of the order
of 2n times bigger, near the edge of the interval, i.e. Runge’s phenomenon.
In contrast, the weights in (1.17) vary by factors O(n), not exponentially, reflecting the good
distribution of the points and making polynomial interpolation a well-conditioned problem.

• If Chebyshev points of the second kind are used, then the weights are given by

wj =

 (−1)j
1

2
, if j = 0 or j = n,

(−1)j, otherwise.
(1.18)

18


	Polynomial Interpolation
	Lagrange Interpolation
	Efficient Computation of Interpolation Polynomials
	Barycentric interpolation



