
3.2 Higher Order One-Point Iteration Methods

Let us recall the main fixed-point iteration results from last time.

Theorem 3.1. Let g ∈ C1[a, b], such that g
(
[a, b]

)
⊆ [a, b] and

λ := max
x∈[a,b]

∣∣g′(x)∣∣ < 1. (3.1)

Then:

a) Function g has a unique fixed point α ∈ [a, b].

b) For any initial choice x0 ∈ [a, b], the sequence xn+1 = g(xn) converges to α, as n → ∞.

c) |xn − α| ≤ λn|x0 − α| ≤ λn

1− λ
|x1 − x0|, n ≥ 1.

d)

lim
n→∞

xn+1 − α

xn − α
= g′(α), (3.2)

so, if g′(α) ̸= 0, the iterative method xn+1 = g(xn) is linearly convergent to the root α with rate

of convergence bounded by λ.

Theorem 3.2. Assume α is a fixed point of g and that g is continuously differentiable in a neighbor-

hood of α, with

|g′(α)| < 1. (3.3)

Then the conclusions of Theorem 3.1 still hold, provided that x0 is chosen sufficiently close to α.

So far, there isn’t much information in the case g′(α) = 0, although the convergence is clearly
quite good. Moreover, what happens if the derivatives of g of up to some order are all 0 at α? Can
we expect a faster convergence? The answer is in the following result.

Theorem 3.3. Assume α is a fixed point of g and that g is p times continuously differentiable for all

x near α, for some p ≥ 2. Furthermore, assume that

g′(α) = . . . = g(p−1)(α) = 0, g(p)(α) ̸= 0. (3.4)

Then, if the initial value x0 is chosen sufficiently close to α, the iteration xn+1 = g(xn) converges

to α with order of convergence p, and

lim
n→∞

xn+1 − α

(xn − α)p
=

1

p!
g(p)(α). (3.5)

1

Proof. Since g′(α) = 0, by Theorem 3.2, it follows that the iterative method xn+1 = g(xn)

converges to α, if x0 is sufficiently close to α.
For the order of convergence, we use the Taylor series expansion of g around α:

xn+1 = g(xn) = g(α) + (xn − α)g′(α) + · · ·+ (xn − α)p−1

(p− 1)!
g(p−1)(α) +

(xn − α)p

p!
g(p)(ξn),

for some ξn between xn and α. Using (3.4) and the fact that g(α) = α, we get

xn+1 − α =
(xn − α)p

p!
g(p)(ξn),

xn+1 − α

(xn − α)p
=

1

p!
g(p)(ξn).

Letting n → ∞, both xn, ξn → α and, hence, (3.5) follows.

Example 3.4. Recall Newton’s iterative method

xn+1 = xn −
f(xn)

f ′(xn)
, n ≥ 0. (3.6)

Let us analyze it by this new result.

Solution. We have

g(x) = x− f(x)

f ′(x)
,

for a simple root of f , α, which means f(α) = 0 and f ′(α) ̸= 0. We have

g′(x) = 1−
(
f ′(x)

)2 − f(x)f ′′(x)(
f ′(x)

)2 =
f(x)f ′′(x)(
f ′(x)

)2 .

We compute the second derivative, but discard the argument x:

g′′ =

(
f ′f ′′ + ff ′′′)(f ′)2 − 2f ′f ′′ · ff ′′(

f ′
)4 .

2

Then

g(α) = α,

g′(α) = 0,

g′′(α) =

(
f ′(α)f ′′(α)

)(
f ′(α)

)2(
f ′(α)

)4 =
f ′′(α)

f ′(α)

and Theorem 3.3 gives the previously found quadratic convergence (p = 2) and error estimate

lim
n→∞

xn+1 − α

(xn − α)2
=

1

2
g′′(α) =

f ′′(α)

2f ′(α)
.

Example 3.5. Let us revisit the problem from Example 3.7 (Lecture 11): equation x2 − 3 = 0,
with α =

√
3.

Solution. Last time we saw several ways of rewriting the equation in the form g(x) = x, some
“better” than others, from the convergence point of view.

Let us use Newton’s iteration. We have

f(x) = x2 − 3, f ′(x) = 2x,

so,

g(x) = x− f(x)

f ′(x)
= x− x2 − 3

2x
=

1

2

(
2x− x+

3

x

)
=

1

2

(
x+

3

x

)
, g(α) = α,

which was one of the methods discussed (part (c)). Further, we have

g′(x) =
1

2

(
1− 3

x2

)
, g′(α) = 0,

g′′(x) =
3

x3
, g′′(α) =

1√
3

̸= 0.

So, indeed, the iteration xn+1 =
1

2

(
xn +

3

xn

)
converges quadratically (p = 2) to α.

As a side note, rewriting the equation x2 − 3 = 0 as x =
1

2

(
x +

3

x

)
(which leads to faster

convergence) was not a “lucky guess”, it is actually Newton’s method.

3

Example 3.6. Consider the equation

x = g(x) =
c

2
x2 + (c+ 3)x+ 4, (3.7)

with c ̸= 0. Show that α = −2 is a solution of (3.7). For what values of c will the iteration
xn+1 = g(xn) converge to α (provided that x0 is chosen sufficiently close to α)? Discuss the
convergence order.

Solution. We have

g(x) =
c

2
x2 + (c+ 3)x+ 4, g(−2) = 2c− 2(c+ 3) + 4 = −2,

g′(x) = cx+ c+ 3, g′(−2) = −2c+ c+ 3 = 3− c,

g′′(x) = c.

In order to have the iteration xn+1 = g(xn) converge to α, we impose the condition

|g′(α)| < 1 ⇐⇒ |3− c| < 1 ⇐⇒ −1 < c− 3 < 1 ⇐⇒ c ∈ (2, 4).

So, for any 2 < c < 4, the method converges (at least) linearly, with rate of convergence |c− 3|.
Now, if g′(α) = 0, i.e., c = 3, and x0 is close enough to −2, then the convergence is quadratic
(p = 2) and

lim
n→∞

xn+1 − α

(xn − α)2
= lim

n→∞

xn+1 + 2

(xn + 2)2
=

1

2
g′′(−2) =

c

2
=

3

2
.

Example 3.7. Does the iteration

xn+1 = x5
n − 10x3

n − 20x2
n − 15xn − 5

converge to α = −1, provided that x0 is chosen sufficiently close to α? If so, determine the
convergence order and bound the error.

Solution. We have g(x) = x5 − 10x3 − 20x2 − 15x− 5 and

g(−1) = −1 + 10− 20 + 15− 5 = −1,

so α = −1 is a fixed point of g.

4

For convergence (and the order of convergence), we compute successively

g′(x) = 5x4 − 30x2 − 40x− 15, g′(−1) = 5− 30 + 40− 15 = 0,

g′′(x) = 20x3 − 60x− 40 = 20(x3 − 3x− 2), g′′(−1) = 20(−1 + 3− 2) = 0,

g′′′(x) = 20(3x2 − 3) = 60(x2 − 1), g′′′(−1) = 0,

g(4)(x) = 120x, g(4)(−1) = −120 ̸= 0.

So, for x0 sufficiently close to −1, we have

lim
n→∞

xn+1 + 1

(xn + 1)4
=

1

4!
g(4)(−1) = − 1

24
· 120 = −5.

Then, it follows that

|xn+1 + 1| ≤ c1|xn + 1|4 ≤ ... ≤ c|x0 + 1|4n+1
.

So, for |x0 + 1| < 1, the method converges with order of convergence p = 4 and the error estimate
above.

4 Numerical Approximation of Multiple Roots

Definition 4.1. We say that a function f has a root α of multiplicity m > 1 if

f(x) = (x− α)m h(x), h continuous at x = α and h(α) ̸= 0. (4.1)

We restrict our discussion to the case where m is a positive integer, although some of our consid-
erations are equally valid for non-integer values. If h is smooth enough at x = α, then (4.1) is
equivalent to

f(α) = f ′(α) = . . . = f (m−1)(α) = 0, f (m)(α) ̸= 0. (4.2)

There are several challenges in approximating multiple roots.

Uncertainty

When finding a root of any function on a computer, there is always an interval of uncertainty about
the root, due to measuring/rounding/truncation errors, and this is made worse when the root is
multiple.

5

Example 4.2. Consider evaluating the two functions

f1(x) = x2 − 3,

f2(x) = x2(x2 − 6) + 9.

Notice that α =
√
3 has multiplicity 1 as a root of f1 and multiplicity 2 as a root of f2, since

f ′
2(x) = 4x(x2 − 3).

Using four-digit decimal arithmetic, we have

f1(x) < 0, for x ≤ 1.731,

f1(1.732) = 0, and

f1(x) > 0, for x > 1.733,

so α ∈ (1.731, 1.733). But for f2,

f2(x) = 0, for 1.726 ≤ x ≤ 1.738,

implying that α ∈ [1.726, 1.738], thus limiting the amount of accuracy that can be attained in finding
a root of f2.

Loss of Precision

Another problem with multiple roots is that the earlier rootfinding methods will not perform as well
when the root being sought is multiple. Let us investigate this for Newton’s method. We consider
Newton’s method as a fixed-point iteration

xn+1 = g(xn), g(x) = x− f(x)

f ′(x)
, x ̸= α, f(x) = (x− α)m h(x), m > 1.

We have

f ′(x) = m(x− α)m−1 h(x) + (x− α)m h′(x) = (x− α)m−1
[
m h(x) + (x− α) h′(x)

]
,

6

so,

g(x) = x− (x− α)m h(x)

(x− α)m−1
[
m h(x) + (x− α) h′(x)

]
= x− (x− α)

h(x)

m h(x) + (x− α) h′(x)
= x− (x− α)φ(x),

where

φ(x)
not
=

h(x)

m h(x) + (x− α) h′(x)
, φ(α) =

1

m
.

Then,

g′(x) = 1− φ(x)− (x− α)φ′(x),

g′(α) = 1− φ(α) = 1− 1

m
̸= 0.

Thus, in this case, Newton’s method converges only linearly, with rate of convergence 1− 1

m
< 1.

One way to fix this loss of accuracy would be to change the problem into an equivalent one:
instead of solving f(x) = 0 which has α as a multiple root, consider the equation

u(x) :=
f(x)

f ′(x)
= 0, (4.3)

for which α is a simple root. Then Newton’s method is defined by

xn+1 = xn −
u(xn)

u′(xn)
. (4.4)

We have

u′ =

(
f ′)2 − ff ′′(

f ′
)2 ,

u

u′ =

f

f ′(
f ′)2 − ff ′′(

f ′
)2

=
ff ′(

f ′
)2 − ff ′′

,

so Newton’s method is given by

xn+1 = xn −
f(xn)f

′(xn)(
f ′(xn)

)2 − f(xn)f ′′(xn)
, n ≥ 0. (4.5)

7

Although this method restores the order of convergence p = 2, it has several disadvantages: it
requires the computation of the second derivative f ′′, it involves more complex computations than
the original method, and the denominator in (4.5) can take very small values, as xn → α.

A better alternative is to modify the method, instead of the function.

Newton’s Method for Multiple Roots

To improve Newton’s method, we would like a function g for which g′(α) = 0 (as before), even for
multiple roots. Consider the following idea: if α is a root of f , then in the vicinity of α, we have

f(x) = (x− α)mh(x) ≈ (x− α)m c,

for some constant c. Then

f ′(x) ≈ m(x− α)m−1 c,
f(x)

f ′(x)
≈ x− α

m
,

x− α ≈ m
f(x)

f ′(x)
, α ≈ x−m

f(x)

f ′(x)
.

Thus, we define Newton’s method for multiple roots by

xn+1 = xn −m
f(xn)

f ′(xn)
. (4.6)

Now, indeed, it is easy to check (by our earlier computations) that for g(x) = x − m
f(x)

f ′(x)
, we

have

g(α) = α, g′(α) = 1−m φ(α) = 0,

so the method converges quadratically again and

lim
n→∞

xn+1 − α

(xn − α)2
=

1

2
g′′(α).

5 Newton’s Method for Nonlinear Systems

Many of the methods considered in the previous sections can be generalized to the multidimensional
case, i.e. to systems of nonlinear equations. These problems are widespread in applications, and they

8

are varied in form. There is a great variety of methods for the solution of such systems. We only
consider the two-dimensional case

f1(x1, x2) = 0

f2(x1, x2) = 0,
(5.1)

or, in vector notation,

f(x) = 0, x =

[
x1

x2

]
, f(x) =

[
f1(x1, x2)

f2(x1, x2)

]
. (5.2)

The one-point iteration theory discussed in the previous sections still stands, with appropriate ad-
justments (norm instead of absolute value and Jacobian matrix instead of derivative). Newton’s
method is derived similarly with the one-dimensional case, considering Taylor series expansions of
each fi, i = 1, 2 and expanding fi(α) about x0 = [x1,0 x2,0]

T . We get

xn+1 = xn −
(
Jf(xn)

)−1
f(xn), n ≥ 0, (5.3)

where Jf(xn) is the Jacobian matrix of f at xn,

Jf(x) =

 ∂f1(x)

∂x1

∂f1(x)

∂x2
∂f2(x)

∂x1

∂f2(x)

∂x2

 (5.4)

This is Newton’s method for nonlinear systems.
In actual practice, we do not invert Jf(xn), particularly for systems of more than two equations.
Instead we solve numerically a linear system for a correction term to xn:

Jf(xn)δn+1 = −f(xn),

xn+1 = xn + δn+1.
(5.5)

This is more efficient in computation time, requiring only about one-third as many operations as
inverting Jf(xn).

Example 5.1. Solve the system

f1(x1, x2) ≡ 4x2
1 + x2

2 − 4 = 0

f2(x1, x2) ≡ x1 + x2 − sin (x1 − x2) = 0.

9

Solution. There are only two roots, one near (1, 0) and its reflection about the origin near (−1, 0)

(see Figure 1).

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

Fig. 1: Example 5.1

Using Newton’s method with x0 = [1 0]T we obtain the results in Table 1.

n x1,n x2,n f1(xn) f2(xn)
0 1.0 0.0 0.0 1.59e− 1
1 1.0 −0.1029207154 1.06e− 2 4.55e− 3
2 0.9986087598 −0.1055307239 1.46e− 5 6.63e− 7
3 0.9986069441 −0.1055304923 1.32e− 11 1.87e− 12

Table 1: Newton’s Method for Example 5.1

10

	Higher Order One-Point Iteration Methods
	Numerical Approximation of Multiple Roots
	Newton's Method for Nonlinear Systems

