
Chapter 1. Preliminaries

Numerical Analysis, a branch of Applied Mathematics situated at the border between Mathematics
and Computer Science, produces methods and procedures for finding numerical solutions of various
problems, with a given precision. Standard topics in a Numerical Analysis course are the approx-
imation of problems by simpler problems, the construction of algorithms, iteration methods, error
analysis, stability, asymptotic error formulas, the effects of machine arithmetic, etc.

The study will focus on issues such as:

• Problems modeled by functions that do not have an analytical expression, whose values are
known only at a discrete set of points. Based on these, we want to approximate values of the
function at new points, values of the derivatives or integrals of the function, etc. Such prob-
lems lead to finite and divided differences, interpolation formulas, numerical differentiation
and integration schemes and many others.

• In many practical situations it is necessary to solve various types of equations or systems of
equations, such as: algebraic, transcendental, differential, or integral equations, whose exact
solutions cannot be found. They need to be approximated numerically.

An approximating procedure must satisfy several properties:

1. To be convergent, meaning the sequence of iterations (successive approximations) must con-
verge to the exact solution, in order to produce “better and better” approximations.

2. To be stable (to have stability), meaning that small variations of the input data should lead to
small variations in the results (the approximating solutions).

3. From its structure and properties, to be able to estimate the error and the speed of convergence

of the approximating method.

Many times, the conditions that ensure stability of a numerical method coincide with the ones that
guarantee its convergence.
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1 Taylor Polynomials

We start with a very useful tool from Calculus, Taylor’s theorem. This will be needed for both the
development and understanding of many of the numerical methods discussed later on.

In fact, Taylor polynomials give the very first example of a numerical method, being used as a
way to evaluate other functions approximately.

Theorem 1.1. [Taylor’s Theorem] Let f : [a, b] → R be a function with n+ 1 continuous deriva-

tives on [a, b], for some n ≥ 0 and let x, x0 ∈ [a, b]. Then

f(x) = Tn(x) +Rn(x), (1.1)

where

Tn(x) = f(x0) +
(x− x0)

1!
f ′(x0) + · · ·+ (x− x0)

n

n!
f (n)(x0) (1.2)

is Taylor’s polynomial of degree n of f at x0 and

Rn(x) =
1

n!

x∫
x0

(x− t)nf (n+1)(t)dt =
(x− x0)

n+1

(n+ 1)!
f (n+1)(ξ), ξ between x and x0, (1.3)

is the error of the Taylor approximation.

Example 1.2. Using Taylor’s theorem with x0 = 0, we obtain the following well-known formulas:

ex = 1 + x+
x2

2!
+ · · ·+ xn

n!
+

xn+1

(n+ 1)!
eξx ,

cosx = 1− x2

2!
+

x4

4!
− · · ·+ (−1)n

x2n

(2n)!
+ (−1)n+1 x2n+2

(2n+ 2)!
cos ξx,

sinx = x− x3

3!
+

x5

5!
− · · ·+ (−1)n−1 x2n−1

(2n− 1)!
+ (−1)n

x2n+1

(2n+ 1)!
sin ξx,

(1 + x)a = 1 +
( a

1

)
x+

( a

2

)
x2 + · · ·+

( a

n

)
xn +

( a

n+ 1

) xn+1

(1 + ξx)n+1−a
,

with

( a

k

)
=

a(a− 1) · · · (a− k + 1)

k!
, k = 1, 2, 3, . . . , a ∈ R.
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An important special case of the last formula is a = −1, with x replaced by −x:

1

1− x
= 1 + x+ x2 + · · ·+ xn +

xn+1

1− x
,

where the remainder has a simpler form than before. This is easily proved by multiplying both sides
by 1 − x and then simplifying. Rearranging the terms, we obtain the familiar formula for a partial
sum of the Geometric series:

1 + x+ x2 + · · ·+ xn =
1− xn+1

1− x
, x ̸= 1.

Series representations for the functions in Example 1.2 can be obtained by letting n → ∞. Recall
that the series for the first three functions converge for all x ∈ R, while those for the last two
converge for |x| < 1. So, by taking Taylor polynomials of higher and higher degree, we can obtain
better and better approximations of the functions above.
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Fig. 1: Taylor approximations of ex

Example 1.3. Consider the function f(x) = ex. Figure 1 shows the approximations of f with
Taylor polynomials of degree 1, 2, 3 and 4, for x ∈ [−1, 1]. The errors of these approximations,
max

x∈[−1,1]
{ex − pn(x)}, are graphed in Figure 2.
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Fig. 2: Errors in Taylor approximations of ex

Taylor’s formula in two dimensions

Theorem 1.4. Let f : D ⊂ R2 → R2 be a function which is n+ 1 times continuously differentiable

on D, for some n ≥ 0 and let (x, y), (x0, y0) ∈ D. Then

f(x, y) = Tn(x, y) +Rn(x, y), (1.4)

where

Tn(x, y) = f(x0, y0) +
x− x0

1!
f ′
x(x0, y0) +

y − y0
1!

f ′
y(x0, y0)

+
1

2!

[
(x− x0)

2f ′′
x2(x0, y0) + 2(x− x0)(y − y0)f

′′
xy(x0, y0) + (y − y0)

2f ′′
y2(x0, y0)

]
+

n∑
j=1

1

j!

[
(x− x0)

∂

∂x
+ (y − y0)

∂

∂y

]j
f(x, y)

∣∣∣∣∣
x=x0
y=y0

(1.5)

and

Rn(x, y) =
1

(n+ 1)!

[
(x− x0)

∂

∂x
+ (y − y0)

∂

∂y

]n+1

f(x, y)

∣∣∣∣∣
x=ξ
y=η

, (1.6)

with (ξ, η) a point on the line segment determined by the points (x, y) and (x0, y0).
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2 Errors: Sources, Propagation, Analysis

2.1 Types of Numerical Problems

Let us first consider the following simple examples:

Example 2.1. Compute
3∫

1

1

x
dx.

Solution. Its exact value is

3∫
1

1

x
dx = lnx

∣∣∣3
1
= ln 3− ln 1 = ln 3

and its approximation is
3∫

1

1

x
dx = 1.0986...

Example 2.2. Solve the equation
x2 = 3, x > 0.

Solution. The true solution is
x =

√
3,

with approximating value
x = 1.732...

Example 2.3. Consider the data

xi 1 2 3 4 5 6 7

yi 5 13 16 23 33 38 40

Discuss the nature of the relationship between x and y.

Solution. We plot the data (see Figure 3).
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Fig. 3: Scatterplot and linear function

Notice that a straight line “best” approximates the data. So based on these values, we seek a rela-
tionship between x and y of the form

f(x) = ax+ b.

In the next chapters, we will analyze several rigorous procedures for approximating scattered data.

From these examples, we see that a numerical problem is, in general, of the form

f(x) = y.

• If x and f are given, and we seek y, then this is called a direct problem or an evaluation
problem (Example 2.1).

• If y and f are given, and we want to find x, then it is called an inverse problem (Example
2.2).

• If x and y are given, and f must be determined, then we have an identifying problem (Ex-
ample 2.3).

For each type of problem, we obtain an approximating value, which is affected by errors, per-
turbations from the true value. The study of errors and their propagation is an important task in
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Numerical Analysis. In practical problems, it is important that the approximations obtained have
small (negligible) errors, that do not affect the overall precision of the numerical procedure.

2.2 Sources and Propagation of Errors

Let A : R → P(R) be a mapping that assigns a set A(x) ⊆ R to each real number x ∈ R.

Definition 2.4. Let x ∈ R. The number x∗ is called an approximation of x ∈ R, if x∗ ∈ A(x)

(notation x ≈ x∗). The mapping A is called an approximating procedure (method).

In practice, A(x) consists of numbers that vary “little” from x.
Let x ∈ R and x∗ ∈ A(x) be an approximation of the true (exact) value x.

Definition 2.5. The number

∆x = x− x∗ (2.1)

is called the error of the approximation x∗.

This quantity is also called the absolute error. If ∆x > 0, then x∗ is an under-approximation, and
if ∆x < 0, x∗ is an over-approximation.

For example, for the number π = 3.141592..., the number x∗ = 3.14 is an under-approximation,
while x∗ = 3.142 is an over-approximation.

Definition 2.6. The quantity

δx =
∆x

x
, x ̸= 0 (2.2)

is called relative error .

This gives the size of the error in proportion to the true value being approximated. From (2.2), we
get

∆x = xδx =⇒ x∗ − x = xδx,

or
x∗ = (1 + δx)x, (2.3)

which is widely used in applications.
Since in practice x is unknown, we use instead

δx =
∆x

x∗
. (2.4)

For the absolute and relative error, one can also use the notations ∆x∗ and δx∗.
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Sources of error

• Mathematical modeling of a physical problem. A mathematical model for a physical situation
is an attempt to give mathematical relationships between certain quantities of physical interest.
Because of the complexity of physical reality, a variety of simplifying assumptions are used
to construct a more tractable mathematical model. The resulting model has limitations on its
accuracy as a consequence of these assumptions, and these limitations may or may not be
troublesome, depending on the uses of the model.

• Blunders (human errors). In pre-computer times, chance arithmetic errors were always a se-
rious problem. With the introduction of digital computers, the type of blunder has changed.
Chance arithmetic errors (e.g., computer malfunctioning) are now relatively rare, and pro-
gramming errors are currently the main difficulty. Often a program error will be repeated
many times in the course of executing the program, and its existence becomes obvious be-
cause of absurd numerical output (although the source of the error may still be difficult to
find). This makes good program debugging very important, even though it may not seem very
rewarding immediately.

• Uncertainty in physical data. Most data from a physical experiment will contain error or
uncertainty within it. This must affect the accuracy of any calculations based on the data,
limiting the accuracy of the answers.

• Machine errors. This means the errors inherent in using the floating-point representation
of numbers. Specifically, we mean the rounding/chopping errors and the underflow/overflow
errors. The rounding/chopping errors are due to the finite length of the floating-point mantissa;
and these errors occur with all of the computer arithmetic operations.

• Mathematical truncation error. This name refers to the error of approximation in numeri-
cally solving a mathematical problem, and it is the error generally associated with the subject
of Numerical Analysis. It involves the approximation of infinite processes by finite ones,
replacing noncomputable problems with computable ones, etc.

2.3 Propagation of Errors

We distinguish two types of problems:
Case 1. Given the errors in the approximations of input data, find the errors in the output.

We start with the case of a function of two variables f : D → R, D = {(x, y)|x, y ∈ R}. Let
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(x∗, y∗) be the approximating values of (x, y). Their absolute errors are then

∆x = x− x∗ ⇒ x = x∗ +∆x,

∆y = y − y∗ ⇒ y = y∗ +∆y.

We want to compute the absolute error

∆f = f(x, y)− f(x∗, y∗) (2.5)

and the relative error δf .
We use Taylor’s formula in two variables (1.5), at x∗ and y∗. We have:

f(x∗ +∆x, y∗ +∆y) = f(x∗, y∗) + ∆xf ′
x(x

∗, y∗) + ∆yf ′
y(x

∗, y∗)

+
(∆x)2

2!
f ′′
x2(x∗, y∗) + 2

∆x∆y

2!
f ′′
xy(x

∗, y∗) (2.6)

+
(∆y)2

2!
f ′′
y2(x

∗, y∗) + . . . ,

or

∆f = ∆xf ′
x(x

∗, y∗) + ∆yf ′
y(x

∗, y∗)

+
1

2!

[
(∆x)2f ′′

x2(x∗, y∗) + 2∆x∆yf ′′
xy(x

∗, y∗) + (∆y)2f ′′
y2(x

∗, y∗)
]
+ . . . (2.7)

If ∆x and ∆y are small, then (∆x)2,∆x∆y and (∆y)2 can be neglected. Then we find the absolute
error of function f or the maximum absolute error:

∆f ≃ ∆xf ′
x(x

∗, y∗) + ∆yf ′
y(x

∗, y∗). (2.8)

In general, for a function of n variables, we have

∆f ≃ ∆x1f
′
x1
() + ∆x2f

′
x2
() + · · ·+∆xnf

′
xn
() =

n∑
i=1

∆xif
′
xi
(). (2.9)
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This is the propagated error. Then the relative error δf is

δf =
∆f

f
≃

n∑
i=1

∆xi

f ′
xi
()

f
=

n∑
i=1

∆xi
d

dxi

ln f()

=
n∑

i=1

xiδxi
d

dxi

ln f() =
n∑

i=1

xi

(
d

dxi

ln f()

)
δxi. (2.10)

Case 2. The inverse problem is to determine the precision needed in the input data that will
guarantee a (given, preset) accuracy in the output data.
To do this, we use the so-called principle of equal effects. This assumes that all terms f ′

xi
∆xi in

(2.9) have the same effect, i. e.

f ′
x1
∆x1 = f ′

x2
∆x2 = . . . = f ′

xn
∆xn.

Then (2.9) becomes
∆f ≃ n∆xif

′
xi
(),

from which it follows that the absolute error is

∆xi ≃ ∆f

nf ′
xi

(2.11)

and the relative error is given by

δxi ≃
δf

nxi
d

dxi

ln f

(2.12)

3 Floating-Point Representation of Numbers. Significant Digits

Definition 3.1. A number r written in base b (an even number) has the floating-point representation
as

r = ± r0r1 . . . rp · rp+1 . . . rk × be,

where r0, r1, . . . , rk form the mantissa (significand), e is the exponent and b is the base.

In order to have uniqueness of the representation, the floating-point numbers are normalized,
that is, we change the representation, not the value, such that r0 ̸= 0. The term floating-point

number will be used to mean a real number that can be exactly represented in this format.
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Definition 3.2. The significant digits of a floating-point number written in base b are any of the

digits 0, 1, 2, . . . , b − 1 in its representation that are non-zero, or located between non-zero digits,

or preceded by at least one non-zero digit.

So 0 can be a significant digit if it does more than just indicate the floating decimal point or fills
the places of unknown or omitted digits. The leftmost significant digit is called the most significant
digit.

For example,

• the number 7063 has all significant digits;

• the number 0.02340 − the last 4 digits are significant (the zeros in front of 2 merely indicate
the decimal point, and are, therefore, not significant);

• 1.230 × 103 = 1230 − zero is a significant digit, as it is preceded by a nonzero digit.

Consider the number r > 0 with the following representation in base 10:

r = r010
k + r110

k−1 + · · ·+ rn−110
k−n+1 + rn10

k−n + . . . .

Definition 3.3. The number

r∗ = r∗010
k + r∗110

k−1 + · · ·+ r∗n−110
k−n+1

approximates r correctly with n significant digits if

|∆r∗| ≤ 1

2
× 10k−n+1 (3.1)

Example 3.4. Find the number of significant digits with which e∗ = 2.718282 approximates cor-
rectly the number e = 2.71828182 . . . .

Solution. Let e∗ = 2.718282. This can be written as

e∗ = 2 · 100 + 7 · 10−1 + 1 · 10−2 + · · ·

So k = 0. Then

∆e∗ = e∗ − e = 0.00000018 = 0.18× 10−6 ≤ 1

2
× 10−6.
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Comparing it to (3.1), we get

10k−n+1 = 10−6 ⇒ 0− n+ 1 = −6 ⇒ n = 7.

Thus, the number e∗ = 2.718282 approximates correctly e = 2.71828182 . . . with 7 significant
digits.

The following relation exists between the number of significant digits and the relative error:

δr∗ ≤ 1

r∗0 × 10n−1
, (3.2)

where r∗ is the correct approximation with n significant digits, with the normalized representation

r∗ = r∗010
k + r∗110

k−1 + · · ·+ r∗n−110
k−n+1. (3.3)

This can be considered the maximum relative error.

4 Stability and Conditioning

A number of mathematical problems have solutions that are quite sensitive to small computational
errors, for example rounding errors. To deal with this phenomenon, we use the concepts of stability

and condition (conditioning) number.
Consider a general problem of the type

y = f(x), f : Rm → Rn.

We are interested in how “sensitive” is f to small perturbations of x, that is, do small perturbations of
x lead to small perturbations in y – which means the problem is stable, or not – unstable problem.
In the latter case, approximation is not very helpful. We would like to “measure” the degree of
sensitivity (how stable or unstable a problem is) by a single number, called the condition number
of f at x.

The function f is assumed to be evaluated exactly, with infinite precision, as we perturb x. The
condition number of f , therefore, is an inherent property of the map f and does not depend on any
algorithmic considerations concerning its implementation.
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Recall from the propagation of error formula (2.10) that when f : Rm → R, we found

δf ≈
m∑
i=1

xi

f ′
xi

f
δxi.

Now, for the general case f : Rm → Rn, x = [x1, . . . , xm]
T ∈ Rm, f(x) = (f1(x), . . . , fn(x))

T ∈
Rn, let

γij = (condijf)(x) =
xi
∂fj
∂xi

fj(x)
, i = 1,m, j = 1, n

and

Γ(x) =
[
γij

]
=



x1
∂f1
∂x1

f1(x)
. . .

xm
∂f1
∂xm

f1(x)
...

...

x1
∂fn
∂x1

fn(x)
. . .

xm
∂fn
∂xm

fn(x)


, (4.1)

called the conditioning matrix. Then, the condition number of f at x is defined by

(cond f)(x) = ||Γ(x)||, (4.2)

for a matrix norm || · ||. If f is a linear function, then

(cond f)(x) =
||x||

∣∣∣∣∣∣∂f
∂x

∣∣∣∣∣∣
||f(x)||

. (4.3)

Particular cases for m = n = 1

1. If x ̸= 0, f(x) ̸= 0, then

(cond f)(x) =

∣∣∣∣xf ′(x)

f(x)

∣∣∣∣ .
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2. If x = 0, f(x) ̸= 0, then we take only absolute error for x,

(cond f)(x) =

∣∣∣∣f ′(x)

f(x)

∣∣∣∣ .
3. If x ̸= 0, f(x) = 0, then we take only absolute error for f(x),

(cond f)(x) = |xf(x)| .

4. If x = f(x) = 0, then

(cond f)(x) = |f ′(x)| .

Ill-conditioned and ill-posed problems

If the condition number of a problem is large ((cond f)(x) ≫ 1), then even for small (relative)
errors in the input data, we can expect large errors in the output data. Such problems are called
ill-conditioned problems. There is no clear line between ill- and well-conditioned problems, it all
depends on precision specifications.

If the result of a mathematical problem depends in a discontinuous way on data that varies
continuously, then it is impossible to give an accurate numerical solution in a neighborhood of the
discontinuity. In such cases, the result can be significantly perturbed, even if the input data is exact
and we use high precision procedures. These problems are called ill-posed problems. An ill-posed
problem can appear if, for example, an integer result is computed from real data (which varies
continuously).

Example 4.1.
1. Number of distinct real roots of a polynomial. Let

p(x, c) = x3 − 2x2 + x+ c, c > − 4

27
.

The polynomial p can have one real root (if c > 0), two distinct real roots (for c = 0), or three (if
c < 0). Therefore, for values of c close to zero, the number of distinct real zeros of p is an ill-posed

problem.
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2. Recurrence relations. Let

In =

1∫
0

tn

t+ 5
dt, n ∈ N.

Individual values of this integral can be computed exactly or numerically, e.g. I0 = ln
6

5
, I100 ≈

0.0017. What about a recurrence relation?
Writing

tn

t+ 5
= tn−1 − 5

tn−1

t+ 5
or

tn

t+ 5
=

1

5

(
tn − 5

tn+1

t+ 5

)
,

we can find direct recurrence

In =
1

n
− 5In−1 = fn(I0),

or inverse recurrence

In =
1

5

(
1

n+ 1
− 5In+1

)
= gn(I100).

Then it can be shown that

(cond fn)(I0) = O (5n) and (cond gn)(I100) = O
(
5100−n

)
,

which means that direct recurrence is an ill-conditioned problem, whereas inverse recurrence is
well-conditioned.

Remark 4.2. In the next chapter, we will consider in greater detail the conditioning of algebraic
linear systems and matrices.

5 Divided and Finite Differences

These are expressions that are helpful in writing, computing and implementing various iterative
numerical procedures.
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5.1 Divided Differences

Definition 5.1. Let f : [a, b] → R be a differentiable function on [a, b], and xi ∈ [a, b], i = 0, n, be

n+ 1 distinct nodes. The quantity

f [x0, x1] =
f(x1)− f(x0)

x1 − x0

. (5.1)

is called the first-order divided difference of f at the nodes x0 and x1.

Remark 5.2.
1. An alternative notation is [x0, x1; f ].
2. The first-order divided difference of a function can be thought of as a discrete version of the
derivative.
3. If we consider f [x0] = f(x0) the divided difference of order 0 at x0, then (5.1) can be written as

f [x0, x1] =
f [x1]− f [x0]

x1 − x0

. (5.2)

We define higher-order divided differences recursively using lower-order ones.

Definition 5.3. The divided difference of order n of f at the distinct nodes x0, x1, . . . , xn is the

quantity

f [x0, x1, . . . , xn] =
f [x1, x2, . . . , xn]− f [x0, x1, . . . , xn−1]

xn − x0

. (5.3)

Remark 5.4.
1. The denominator in (5.3) is the difference between the nodes that are not common to the differ-
ences at the numerator.
2. For easy computation (and implementation) of divided differences, we generate the table of di-

vided differences, illustrated below for 4 nodes. The divided differences are obtained on the first
row.

x0 f [x0] −→ f [x0, x1] −→ f [x0, x1, x2] −→ f [x0, x1, x2, x3]

−→ −→ −→

x1 f [x1] −→ f [x1, x2] −→ f [x1, x2, x3]

−→ −→

x2 f [x2] −→ f [x2, x3]

−→

x3 f [x3]
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Example 5.5. Let f(x) = sin πx, and the nodes x0 = 0, x1 =
1

6
, x2 =

1

2
. Let us construct the

divided difference table.

Solution.

x0 = 0 f [x0] = 0 −→ f [x0, x1] =
1/2− 0

1/6− 0
= 3 −→ f [x0, x1, x2] =

3/2− 3

1/2− 0
= −3

−→ −→

x1 = 1/6 f [x1] = 1/2 −→ f [x1, x2] =
1− 1/2

1/2− 1/6
= 3/2

−→

x2 = 1/2 f [x2] = 1

Divided differences with multiple nodes

Divided differences with multiple nodes can be expressed in terms of the derivatives of the function
f , as follows

f [x0, x0] = lim
x1→x0

f [x0, x1] = lim
x1→x0

f(x1)− f(x0)

x1 − x0

= f ′(x0),

In general, the divided difference of order n at the node x0, of multiplicity n+ 1, is defined as

f [x0, x0, . . . , x0︸ ︷︷ ︸
n+1

] =
f (n)(x0)

n!
, (5.4)

and further, for mixed nodes (some simple, some multiple), we use definition 5.3.

Example 5.6. For a function f , construct the divided differences table for the double node x0 and
the simple node x1.

Solution. The new nodes are

z0 = x0, z1 = x0, and z2 = x1.
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The divided differences table:

z0 = x0 f [z0] = f(x0) −→ f ′(x0) −→

f(x1)− f(x0)

x1 − x0

− f ′(x0)

x1 − x0

−→ −→

z1 = x0 f [z1] = f(x0) −→ f(x1)− f(x0)

x1 − x0

−→

z2 = x1 f [z2] = f(x1)

Example 5.7. Let us see the divided differences table for 3 double nodes.

Solution. We have the nodes x0, x1, x2 and the values f(xi), f
′(xi), i = 0, 1, 2 . We define the

sequence of nodes z0, z1, . . . , z5 by

z2i = z2i+1 = xi, i = 0, 1, 2.

We build the divided difference table relative to the nodes zi, i = 0, 5.

Since z2i = z2i+1 = xi for every i = 0, 1, 2, f [z2i, z2i+1] = f [xi, xi] is a divided difference with
a double node and it is equal to f ′(xi); therefore we will use f ′(x0), f

′(x1), f
′(x2) instead of first

order divided differences f [z0, z1], f [z2, z3], f [z4, z5].

z0 = x0 f [z0] −→ f [z0, z1] = f ′(x0) −→ f [z0, z1, z2] . . .

−→ −→

z1 = x0 f [z1] −→ f [z1, z2] =
f(x1)− f(x0)

x1 − x0

−→ f [z1, z2, z3] . . .

−→ −→

z2 = x1 f [z2] −→ f [z2, z3] = f ′(x1) −→ f [z2, z3, z4] . . .

−→ −→

z3 = x1 f [z3] −→ f [z3, z4] =
f(x2)− f(x1)

x2 − x1

−→ f [z3, z4, z5] . . .

−→ −→

z4 = x2 f [z4] −→ f [z4, z5] = f ′(x2)

−→

z5 = x2 f [z5]
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