
Back to Chapter 4 (Inferential Statistics)

Short Review of Estimation Theory

• we refer to the parameter to be estimated as the target parameter and denote it by θ;

• we consider a characteristic X (relative to a population), whose pdf f(x; θ) depends on the
parameter θ, which is to be estimated. If X is discrete, then f represents the probability
distribution function, while if X is continuous, f is the probability density function;

• we consider a random sample of size n, i.e. sample variables X1, . . . , Xn, which are inde-
pendent and identically distributed (iid), having the same pdf as X .

Definition. A point estimator for (the estimation of) the target parameter θ is a sample function
(statistic)

θ = θ(X1, X2, . . . , Xn).

Other notations may be used, such as θ̂ or θ̃.

Definition. The sample mean is the sample function defined by

Xn =
1

n

n∑
i=1

Xi.

Proposition. Let X be a population characteristic with mean E(X) = µ and variance V (X) = σ2.

Then
E
(
X
)
= µ and V

(
X
)
=

σ2

n
.

Definition. The statistic

νk =
1

n

n∑
i=1

Xk
i

is called the sample moment of order k.

Proposition. Let X be a characteristic with the property that for k ∈ N, the theoretical moment
ν2k = ν2k(X) = E

(
X2k

)
exists. Then

E (νk) = νk and V (νk) =
1

n

(
ν2k − ν2

k

)
.
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Definition. The statistic

s2 =
1

n− 1

n∑
i=1

(Xi −X)2

is called the sample variance.
The statistic s =

√
s2 is called the sample standard deviation.

Proposition. Let X be a characteristic with variance V (X) = µ2 = σ2 and for which the theoretical
moment ν4 = E (X4) exists. Then

E
(
s2
)
= σ2 and V

(
s2
)
=

1

n(n− 1)

[
(n− 1)µ4 − (n− 3)σ4

]
.

5 Properties of Point Estimators

Many different point estimators may be obtained for the same target parameter. Some are considered
“good”, others “bad”, some “better” than others. We need some criteria to decide on one estimator
versus another.

5.1 Unbiased Estimators

For one thing, it is highly desirable that the sampling distribution of an estimator θ is “clustered”
around the target parameter. In simple terms, we expect that the value the point estimator provides
to be the actual value of the parameter it estimates. This justifies the following notion.

Definition 5.1. A point estimator θ is called an unbiased estimator for θ if

E(θ) = θ. (5.1)

The bias of θ is the value B = E(θ)− θ.

Unbiasedness means that in the long-run, collecting a large number of samples and computing
θ from each of them, on the average we hit the unknown parameter θ exactly. In other words, in a
long run, unbiased estimators neither underestimate nor overestimate the parameter.

Example 5.2.
1. Recall that for the sample mean, as a random variable, we have E(X) = µ. Thus the sample
mean is an unbiased estimator for the population mean.
2. More generally, the sample moment of order k, νk, is an unbiased estimator for the population
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moment of order k, νk = E(Xk), since E(νk) = νk.
3. The sample central moment of order 2 is not an unbiased estimator for the population central
moment of order 2 (or it is a biased estimator), since

E(µ2) =
n− 1

n
µ2 ̸= µ2 = σ2.

4. However, the sample variance

s2 =
1

n− 1

n∑
i=1

(Xi −X)2

is an unbiased estimator for the population variance, since E(s2) = σ2. That was the main reason
for the way the sample variance was defined.

Another desirable trait for a point estimator is that its values do not vary too much from the value
of the target parameter. So we need to evaluate variability of computed statistics and especially
parameter estimators. That can be accomplished by computing the following statistic.

Definition 5.3. The standard error of an estimator θ, denoted by σθ, is its standard deviation

σθ = σ(θ) = Std(θ) =

√
V (θ).

Both population and sample variances are measured in squared units. Therefore, it is convenient
to have standard deviations that are comparable with our variable of interest, X . As a measure
of variability, standard errors show precision and reliability of estimators. They show how much
estimators of the same target parameter θ can vary if they are computed from different samples.
Ideally, we would like to deal with unbiased or nearly unbiased estimators that have low standard
error.

In Table 1 we present some common unbiased estimators, their means and their standard errors.

Remark 5.4.
1. The expected values and the standard errors in Table 1 are valid regardless of the form of the
density function of the underlying population.
2. For large samples (as n, n1, n2 → ∞), all these estimators have probability densities that are
approximately Normal. The Central Limit Theorem and similar theorems justify these statements.
In practice, it was determined that “large” means n > 30 for one sample and n1 + n2 > 40 for two
samples.
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Target Param. Sample Size Pt. Estimator Mean St. Error
θ θ E(θ) σθ

µ n X µ
σ√
n

νk n νk νk

√
ν2k − ν2

k

n

p n p p

√
pq

n

µ1 − µ2 n1, n2 X1 −X2 µ1 − µ2

√
σ2
1

n1

+
σ2
2

n2

p1 − p2 n1, n2 p1 − p2 p1 − p2

√
p1q1
n1

+
p2q2
n2

Table 1: Common Unbiased Estimators

5.2 Absolutely Correct and Consistent Estimators

Recall that we seek unbiased (or nearly unbiased) estimators that have low standard error or at least,
“decreasing” standard error. There are several ways to interpret that.

One way is for the variance to decrease as the sample size increases.

Definition 5.5. An estimator θ = θ(X1, . . . , Xn) is called an absolutely correct estimator for θ, if

it satisfies the conditions

(i) E(θ) = θ,

(ii) lim
n→∞

V (θ) = 0.
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Remark 5.6. The sample mean X is an absolutely correct estimator for the theoretical mean µ =

E(X). More generally, the sample moment of order k, νk, is an absolutely correct estimator for
the population moment of order k, νk = E

(
Xk
)
. In fact, all the unbiased estimators in Table 1 are

absolutely correct.

Also, we would expect that as the sample size n increases, θ gets “closer” to θ, at least in a
probabilistic sense. That is the idea behind consistent estimators.

Definition 5.7. An estimator θ = θn, found from a sample of size n, is said to be a consistent
estimator for θ, if θn

p→ θ (θn converges in probability to θ), i.e. if for every ε > 0,

lim
n→∞

P
(
|θn − θ| < ε

)
= 1.

The property of consistency of a point estimator ensures the fact that the larger the sample size,
the better the estimate. The estimate “improves consistently” with increasing the sample size. The
following assertion is a direct consequence of Chebyshev’s inequality.

Proposition 5.8. An absolutely correct estimator is consistent.

Proof. Let θ be an absolutely correct estimator. By Chebyshev’s inequality, for every ε > 0,

P (|θ − E(θ)| ≥ ε) ≤ V (θ)

ε2
.

Since θ is absolutely correct, it is unbiased, E(θ) = θ, so we have

0 ≤ P (|θ − θ| ≥ ε) ≤ V (θ)

ε2
.

Let n → ∞ to get
lim
n→∞

P (|θ − θ| ≥ ε) = 0.

Taking the probability of the contrary event,

lim
n→∞

P (|θ − θ| < ε) = 1.

Thus, θ is a consistent estimator.

Remark 5.9. The sample moment of order k, νk, is a consistent estimator for the population moment
of order k, νk = E

(
Xk
)
, since it is absolutely correct. In particular, the sample mean X is a

consistent estimator for the theoretical mean µ = E(X).
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The notions of unbiasedness and consistency seem to be very close, however they are not equiv-
alent: Unbiasedness is a statement about the expected value of the sampling distribution of the
estimator. Consistency is a statement about “where the sampling distribution of the estimator is
going” as the sample size increases. Let us consider a few examples.

Example 5.10. Let X1, . . . , Xn be a random sample drawn from a N(µ, σ) population, with both
parameters µ ∈ R, σ > 0 unknown.

For estimating the mean µ, consider the estimator µ = X1. Obviously it is an unbiased estimator
for µ, since

E(X1) = E(X) = µ.

But, µ is not consistent, since its distribution does not become more concentrated around µ as the
sample size increases, it stays N(µ, σ), no matter how large the sample size gets.

Example 5.11. Let X1, . . . , Xn be a random sample drawn from a population with pdf

X

(
−a a

0.5 0.5

)
,

with a > 0 unknown.
Consider the estimator θ̂ = max{X1, . . . , Xn} for the estimation of a.

First, we compute the population mean and variance

E(X) = −a · 0.5 + a · 0.5 = 0,

V (X) = E
(
X2
)
− (E(X))2 = a2,

the last assertion following from the fact that X2 ≡ a2 (X2 takes a single value, namely a2, with
probability 1).

Let us find the pdf of θ̂. Obviously, θ̂ can only take the values a or −a. The only way that the
maximum of the Xi’s is −a is if all variables Xi take the value −a. That means that

P (θ̂ = −a) = P (X1 = −a) . . . P (Xn = −a) =
1

2n
and, consequently,

P (θ̂ = a) = 1− 1

2n
.

Thus, the pdf of θ̂ is

θ̂

 −a a
1

2n
1− 1

2n

 ,
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and its mean is
E(θ̂) = − a

2n
+ a

(
1− 1

2n

)
= a

(
1− 1

2n−1

)
< a.

So θ̂ is biased. However, it is a consistent estimator of a because the error probability
1

2n
converges

to 0 as the sample size increases, so the limit of the pdf of θ̂ as n → ∞ is the constant random

variable

(
a

1

)
.

5.3 Method of Moments

So far, we have discussed desirable properties of point estimators, how to distinguish “good” from
“bad” or “better” estimators, based on how reliable they are in approximating the value of a popu-
lation parameter. In all the procedures we analyzed and all the examples we discussed, the value of
a point estimator θ was given for a target parameter θ, based on sample variables X1, X2, . . . , Xn,
i.e. θ = θ(X1, X2, . . . , Xn). But how to actually find an estimator, an approximating value? Some-
times, such a value may be “guessed” from past experience or from observing many samples over
time. But, most of the time, we need mathematical ways of producing a point estimator, which can
then be analyzed from the various points of view discussed in the previous section.

There are several popular methods for pointwise estimation. In what follows, we present one of
the oldest and easiest methods for obtaining point estimators, first formalized by K. Pearson in the
late 1800’s, the method of moments.

Let us recall, for a population characteristic X , we define the moments of order k as

νk = E
(
Xk
)
=



∑
i∈I

xk
i pi, if X is discrete with pdf X

(
xi

pi

)
i∈I∫

R

xkf(x) dx, if X is continuous with pdf f : R → R.

(5.2)

For a sample drawn from the distribution of X , i.e. sample variables X1, . . . , Xn (iid), the
sample moments of order k are defined by

νk =
1

n

n∑
i=1

Xk
i . (5.3)
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Let us recall that

E(νk) = νk,

V (νk) =
1

n

(
ν2k − ν2

k

)
→ 0, as n → ∞, (5.4)

so the sample moment of order k is an absolutely correct (and, hence, a consistent) estimator for
the population moment of the same order.

That is precisely the idea of this method. Since our sample comes from a family of distributions
{f(θ)}, we choose such a member of this family whose properties are close to properties of our
data. Namely, we shall match the moments. As the theoretical (population) moments in (5.2)
contain the target parameters that are to be estimated, while the sample moments in (5.3) are all
known, computable from the sample data, simply set the two to be equal and solve the resulting
system. To estimate k parameters, equate the first k population and sample moments:

ν1 = ν1

. . . . . . . . .

νk = νk

(5.5)

The left-hand sides of these equations depend on the distribution parameters. The right-hand sides
can be computed from data. The method of moments estimator is the solution of this k×k system
of equations.

Remark 5.12. We state, without proof, the fact that an estimator θn obtained by the method of
moments is a consistent estimator.

Example 5.13. Consider a Poisson distribution of parameter λ > 0, unknown. Its pdf is

X

 k

λk

k!
e−λ


k=0,1,...

.

Let us estimate the parameter λ by the method of moments, based on a sample {X1, . . . , Xn}.
Solution. There is only one unknown parameter, hence we write one equation:

ν1 = ν1,
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where

ν1 = µ = λ is the mean of the Poisson distribution and

ν1 = X =
X1 + . . .+Xn

n
is the sample mean.

So, we are solving the simple equation

λ = X.

“Solving” it for λ, we obtain
λ = X,

the method of moments estimator of λ. So, for instance, if we have the sample

{7, 7, 11, 6, 5, 6, 7, 4},

based on that, we find the estimator

λ =
53

8
= 6.625.

Example 5.14. The following sample

{−1, 1, 1, 2,−1, 2, 1, 1, 1, 2}

was drawn from a distribution with pdf

X

 −1 1 2
1

4
θ 1− 1

2
θ

1

4
θ

 ,

with 0 < θ < 2, unknown. What is the method of moments estimator of θ?

Solution. Again, we have one unknown, so one equation

ν1 = ν1,
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where
ν1 = µ = −1 · 1

4
θ + 1 ·

(
1− 1

2
θ

)
+ 2 · 1

4
θ = 1− θ

4

is the population mean and

ν1 = X =
X1 + . . .+X10

10
=

9

10

is the sample mean. So, we have

1− θ

4
= X,

which yields the estimator

θ̂ = 4(1−X) =
2

5
= 0.4.

Example 5.15. Let us recall the example we used before (Example 4.4, Lecture 2), where to evaluate
the effectiveness of a processor, a sample of CPU times for n = 30 randomly chosen jobs (in
seconds) was considered:

70 36 43 69 82 48 34 62 35 15

59 139 46 37 42 30 55 56 36 82

38 89 54 25 35 24 22 9 56 19

The histogram we did suggested that the CPU times have a Gamma distribution with some unknown
parameters α > 0 and λ > 0. Let us use this sample to estimate them by the method of moments.

Solution. For the Gamma distribution with parameters α, λ > 0, it is known that the population
mean and variance are given by

µ = αλ,

σ2 = αλ2.

There are two unknown parameters, so we will need two equations to estimate them:{
ν1 = ν1

ν2 = ν2
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We have

ν1 = µ = αλ,

ν1 = X,

so, the first equation will be
αλ = X.

For the second equation, we need ν2 = E(X2). Recall the (more efficient) computational formula
for the variance:

V (X) = E(X2)−
(
E(X)

)2
.

From here, we find

E(X2) = V (X) +
(
E(X)

)2
= αλ2 + (αλ)2 = αλ2(1 + α).

For this sample, we found (in Lecture 3 ) that the sample mean and variance are

ν1 = X = 48.2333 and

s2 = 703.1506

The sample moment of order 2 is computed (from the sample data):

ν2 =
1

n

n∑
i=1

x2
i =

90185

30
= 3006.167.

So, we solve the system {
αλ = 48.2333

αλ2(1 + α) = 3006.167,

with solution {
α = 3.4227,

λ = 14.0922.

Alternatively, since we already had the variance (the population central moment of order 2)
computed, we could use that for our second equation. In other words, we consider the (population
and sample) moments of order 1 (for the first equation) and the (population and sample) central

moments of order 2 (for the second equation). We cam also compute the sample central moment of
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order 2, as

µ2 =
1

n

(
n∑

i=1

X2
i − nX

2

)
=

702 + . . .+ 192 − 30 · 48.23332

30
=

90185− 69794

30
= 679.7.

So, now we solve the system {
αλ = 48.2333

αλ2 = 679.7,

which has the solution {
α̂ = 3.4228,

λ̂ = 14.0919.

The two estimates are very close and we can use either.

Remark 5.16. Method of moments estimates are typically easy to compute. However, on rare
occasions, when k equations are not enough to estimate k parameters, higher moments (i.e. more
equations) can be considered. Also, as we have seen in Example 5.15, central (population and
sample) moments can be used, to make computations easier.

5.4 Estimation of Standard Errors

An important question when estimating parameters: How good are the estimators that we learned
in previous sections? Standard errors can serve as measures of their accuracy. To estimate them, we
derive an expression for the standard error and estimate all the unknown parameters in it.

Example 5.17. In Example 5.13, we estimated the parameter λ of a Poisson distribution by

λ = X,

using the method of moments. Let us estimate its standard error, based on the sample

{7, 7, 11, 6, 5, 6, 7, 4},

for which X = 6.625 and s = 2.0659.

Solution. Recall that for a Poisson(λ) distribution, the mean and the variance are

µ = σ2 = λ.
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Also, we know that V (X) =
V (X)

n
, hence,

Std(X) =

√
V (X) =

√
V (X)

n
=

σ√
n
.

So, there are (at least) two ways to estimate the standard error of λ.
On one hand, σ =

√
λ for the Poisson(λ) distribution, so we can estimate

σλ,1 =
σ√
n

=

√
λ

n
≈

√
λ

n
=

√
X

n
= 0.91.

On the other hand, we can use the sample standard deviation as an estimate for the population
one and get the estimate

σλ,2 =
σ√
n

≈ s√
n

= 0.7304.

Both estimates of the standard error σλ are rather small, so the estimator λ seems good.

Remark 5.18. Estimation of standard errors can become much harder for just slightly more complex
estimators. In some cases, a nice analytic formula for σθ may not exist. Then, other, more modern
methods must be employed, such as bootstrapping, a method based on computer simulations.
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