
3.2 Confidence Intervals for One Population Mean

Let X be a population characteristic, with mean µ = E(X) and variance V (X) = σ2, whose pdf
depends on a parameter θ, f(x; θ). Let X1, X2, . . . , Xn be a sample drawn from the pdf of X .
The formulas for finding confidence intervals for the mean µ are based on the following results.

Proposition 3.1. Assume that X ∈ N(µ, σ) or that the sample size is large enough (n > 30). Then

a) Z =
X − µ

σ√
n

∈ N(0, 1) and b) T =
X − µ

s√
n

∈ T (n− 1).

CI for the mean, known variance

If either X ∈ N(µ, σ) or the sample is large enough (n > 30) and σ is known, then by Proposi-
tion 3.1, we can use the pivot

Z =
X − µ

σ√
n

∈ N(0, 1).

The procedure will go exactly as described in the previous section, with θ = µ, θ = X, σθ =
σ√
n

.

The 100(1− α)% CI for the mean is given by

µ ∈
[
X − z1−α

2

σ√
n
, X − zα

2

σ√
n

]
. (3.1)

Since N(0, 1) is symmetric (and one quantile is the negative of the other), we can write it in short
as

X ± zα
2

σ√
n

or X ∓ z1−α
2

σ√
n
. (3.2)

CI for the mean, unknown variance

In practice, it is somewhat unreasonable to expect to know the value of σ, if the value of µ is
unknown. We can find CI’s for the mean, without knowing the variance. If either X ∈ N(µ, σ) or
the sample is large enough (n > 30), then by Proposition 3.1, we can use the pivot

T =
X − µ

s√
n

∈ T (n− 1).
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The same computations as before will lead to the 100(1− α)% CI for the mean:

µ ∈
[
X − t1−α

2

s√
n
, X − tα

2

s√
n

]
. (3.3)

Notice that we change the notations for the quantiles, according to the pdf of the pivot (z for N(0, 1),
t for T (n− 1), etc.). Recall that the Student T (n− 1) is also symmetric, so again, we can write the
CI in short as

X ± tα
2

s√
n

or X ∓ t1−α
2

s√
n
. (3.4)

Remark 3.2. The parameter of a Student T distribution, ν, is generally called number of degrees

of freedom. One might wonder why in estimating the mean, this parameter is ν = n − 1 and not
ν = n, the sample size. The sample variables X1, . . . , Xn are independent, so it would seem that
there are ν = n degrees of freedom. But its meaning is the dimension of the vector used to estimate
the sample variance

s2 =
1

n− 1

n∑
k=1

(Xk −X)2,

where we use the vector X1−X, . . . , Xn−X . Notice that by subtracting the sample mean X from
each observation, there exists a linear relation among the elements, namely

n∑
k=1

(Xk −X) = 0,

so we lose 1 degree of freedom due to this constraint.
However, it should be noted that this issue is important only when the sample size is small

(n < 30), when there is significant difference in the values of the quantiles. When n is large, we
may use the quantiles for T (ν) with ν = n or ν = n− 1, since for both distributions, we have

T (n), T (n− 1)
n→∞−→ N(0, 1),

so both quantiles are approximately equal to the z quantiles.

Selecting the sample size

Notice that in the case of a Normal distribution of the pivot, the CI we find is symmetric and its
length is

2σθ · z1−α
2
.
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We can revert the problem and ask a very practical question: How large a sample should be
collected to provide a certain desired precision of our estimator? In other words, what sample size
n guarantees that the margin of a (1 − α)100% CI does not exceed a specified limit ∆? To answer
this question, we only need to solve the inequality

2σθ · z1−α
2

≤ ∆ (3.5)

in terms of n. Typically, parameters are estimated more accurately based on larger samples, so that
the standard error σθ and the margin are decreasing functions of the sample size n. Then, (3.5) will
be satisfied for sufficiently large n.

For example, when estimating the mean in the case of known variance, inequality (3.5) comes
down to

2
σ√
n
· z1−α

2
≤ ∆,

so we require

n ≥
(
2σ

∆
z1−α

2

)2

(3.6)

Example 3.3. Consider a sample of measurements

2.5, 7.4, 8.0, 4.5, 7.4, 9.2,

drawn from an approximately Normal distribution.
a) Find a 95% confidence interval for the population mean, if the measurement device guarantees a
standard deviation of σ = 2.2.
b) How many measurements should be taken in order for the length of the 95% confidence interval
for the mean to not exceed 1?
c) Without any information on the population variance, construct 95% two- and one-sided CI’s for
the mean of the population.

Solution. This sample has size n = 6 and sample mean X = 6.5. To attain a confidence level of
1− α = 0.95, we need α = 0.05 and α/2 = 0.025.
a) Since σ = 2.2 is known, we use formula (3.1). Hence, we need quantiles

z0.025 = −1.96, z0.975 = 1.96.
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We find the 95% CI for the mean[
X ± zα

2

σ√
n

]
= [4.74, 8.26].

That means that the mean µ of the population from which the sample was drawn is between 4.74

and 8.26 with probability 0.95.

b) Notice that the length of the CI found in part a) is ≈ 3.52, quite large (not much precision). If we
want to improve the accuracy of our estimate (shorten the length of the interval), we need to enlarge

the sample, take more measurements.
With σ = 2.2, z0.975 = 1.96 and ∆ = 1, we find from (3.6),

n ≥
(
2σ

∆
z1−α

2

)2

= 74.37,

so, a sample of size at least 75 will ensure the fact that the length of the 95% CI for the mean does
not exceed 1.

c) If σ is not known, we use s instead. We have s = 2.497 and the quantiles for the T (5) distribution

t1−α/2 = t0.975 = 2.57

t1−α = t0.95 = 2.02.

We find the two-sided CI to be

[X ∓ s√
n
t1−α/2] = [3.88, 9.12],

the lower CI
(−∞, X +

s√
n
· t1−α] = (−∞, 8.55]

and the upper CI
[X − s√

n
· t1−α,∞) = [4.45,∞).

4



3.3 Confidence Intervals for a Population Proportion

Recall (from Lecture 4) that a population proportion is

p = P (i ∈ A),

where A is a subpopulation.
Based on a random sample X1, . . . , Xn, we define the sample proportion as

p =
number of sampled items from A

n
.

Then

E (p) = p,

V (p) =
p(1− p)

n
=

pq

n
. (3.7)

Hence, by a CLT,

Z =
p− p√

pq

n

(3.8)

converges in distribution to a Standard Normal N(0, 1) variable, as n → ∞.

Now, as p is unknown, we estimate the standard error σp =
√

V (p) =

√
p(1− p)

n
by

sp =

√
p(1− p)

n
.

So, again, for large samples (n > 30), we can use

Z =
p− p√
p(1− p)

n

∈ N(0, 1)

as a pivot to construct a confidence interval for p.
For a given confidence level 1−α, with the same computations as before, we obtain a 100(1−α)%
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CI for the population proportion p as [
p± zα

2

√
p(1− p)

n

]
. (3.9)

Remark 3.4. With the same procedure as before, one-sided CI’s for a population proportion can be
also derived: (

−∞, p− zα

√
p(1− p)

n

]
and

[
p− z1−α

√
p(1− p)

n
,∞

)
.

Selecting the sample size

Just as we did for the population mean (in the case of known variance), we can derive a formula
for the sample size that will provide a certain precision of our interval estimator. The length of the
CI in (3.9) is

2

√
p(1− p)

n
z1−α

2
.

Notice that for any p ∈ (0, 1), we have

p(1− p) ≤ 1

4
.

Then to get a desired precision

2

√
p(1− p)

n
z1−α

2
≤ ∆,

we solve

2

√
p(1− p)

n
z1−α

2
≤ 2 · 1

2

1√
n
z1−α

2
≤ ∆,

for n. We get

n ≥
(z1−α

2

∆

)2

. (3.10)

Example 3.5. A company has to accept or reject a large shipment of items. For quality control
purposes, they collect a sample of 200 items and find 12 defective items in it.
a) Find a 99% confidence interval for the proportion of defective items in the whole shipment.
b) How many items should be tested to ensure a 99% confidence interval of length at most 0.05?
c) Find a 99% upper confidence interval for the proportion of defective items in the whole shipment.
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Solution. The sample is large enough and we have

p =
12

200
= 0.06.

For 1− α = 0.99, α = 0.01, α/2 = 0.005, the quantile is

z0.005 = −2.576.

Then the 99% confidence interval for the proportion of defective items is[
p± zα

2

√
p(1− p)

n

]
=

[
0.06± 2.576

√
0.06 · 0.94

200

]
= [0.017, 0.103] .

So, with 99% confidence, the percentage of defective items is between 1.7% and 10.3%.

b) The length of the 99% CI we found is 0.086. For a margin of ∆ ≤ 0.05 of the 99% CI, we need
a sample size of

n ≥
(z0.995

∆

)2

=

(
2.576

0.05

)2

= 2653.898 ≈ 2654.

c) We now use the quantile z0.99 = 2.326. The upper CI for p is

[
p− z0.99

√
p(1− p)

200
,∞

)
= [0.021,∞).

That means that with 99% confidence, the percentage of defective items is at least 2.1%.

3.4 Confidence Intervals for Comparing the Means of Two Populations

Assume we have two characteristics X(1) and X(2), relative to two populations, with means µ1 =

E(X(1)), µ2 = E(X(2)) and variances σ2
1 = V (X(1)), σ

2
2 = V (X(2)), respectively.

We draw from both populations random samples of sizes n1 and n2, respectively, that are inde-
pendent. Denote the two sets of random variables by X11, . . . , X1n1 and X21, . . . , X2n2 . Then we
have two sample means and two sample variances, given by

X1 =
1

n1

n1∑
i=1

X1i, X2 =
1

n2

n2∑
j=1

X2j
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and

s21 =
1

n1 − 1

n1∑
i=1

(
X1i −X1

)2
, s22 =

1

n2 − 1

n2∑
j=1

(
X2j −X2

)2
,

respectively. In addition, denote by

s2p =

n1∑
i=1

(
X1i −X1

)2
+

n2∑
j=1

(
X2j −X2

)2
n1 + n2 − 2

=
(n1 − 1)s21 + (n2 − 1)s22

n1 + n2 − 2

the pooled variance of the two samples, i.e. a variance that considers (“pools”) the sample data
from both samples.

Recall that when comparing the means of two populations, we estimate their difference. The
formulas for finding confidence intervals for the difference of means µ1 − µ2 are based on the
following results.

Proposition 3.6. Assume X(1) ∈ N(µ1, σ1) and X(2) ∈ N(µ2, σ2) or that the samples are large

enough (n1 + n2 > 40). Then

a) Z =
(X1 −X2)− (µ1 − µ2)√

σ2
1

n1

+
σ2
2

n2

∈ N(0, 1); b) T =
(X1 −X2)− (µ1 − µ2)

sp

√
1

n1

+
1

n2

∈ T (n1 + n2 − 2);

c) T ∗ =
(X1 −X2)− (µ1 − µ2)√

s21
n1

+
s22
n2

∈ T (n), where
1

n
=

c2

n1 − 1
+

(1− c)2

n2 − 1
and c =

s21
n1

s21
n1

+
s22
n2

.

CI for the difference of means

Case σ1, σ2 known

If either X(1) ∈ N(µ1, σ1), X(2) ∈ N(µ2, σ2) or the samples are large enough (n1 + n2 > 40)
and σ1, σ2 are known, then by Proposition 3.6, we can use the pivot

Z =
(X1 −X2)− (µ1 − µ2)√

σ2
1

n1

+
σ2
2

n2

∈ N(0, 1).
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With the same line of computations as before, we find a 100(1− α)% CI for µ1 − µ2 as

µ1 − µ2 ∈

X1 −X2 − z1−α
2

√
σ2
1

n1

+
σ2
2

n2

, X1 −X2 − zα
2

√
σ2
1

n1

+
σ2
2

n2

 , (3.11)

or, using symmetry, X1 −X2 ± zα
2

√
σ2
1

n1

+
σ2
2

n2

 . (3.12)

Case σ1 = σ2 unknown

Assume that either X(1) ∈ N(µ1, σ1), X(2) ∈ N(µ2, σ2) or the samples are large enough (n1 +

n2 > 40). The population variances are not known anymore, but they are known to be equal. Then
each is approximated by the pooled variance s2p. Then by Proposition 3.6, we use the pivot

T =
(X1 −X2)− (µ1 − µ2)

sp

√
1

n1

+
1

n2

∈ T (n1 + n2 − 2).

A 100(1− α)% CI for µ1 − µ2 is given by

µ1 − µ2 ∈
[
X1 −X2 − t1−α

2
sp

√
1

n1

+
1

n2

, X1 −X2 − tα
2
sp

√
1

n1

+
1

n2

]
, (3.13)

where the quantiles tα
2
, t1−α

2
refer to the T (n1 + n2 − 2) distribution. Again, by symmetry we can

write the CI in short as [
X1 −X2 ± tα

2
sp

√
1

n1

+
1

n2

]
. (3.14)

Case σ1, σ2 unknown

Assuming that either X(1) ∈ N(µ1, σ1), X(2) ∈ N(µ2, σ2) or the samples are large enough
(n1 + n2 > 40), by Proposition 3.6, we use the pivot

T ∗ =
(X1 −X2)− (µ1 − µ2)√

s21
n1

+
s22
n2

∈ T (n),
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where

1

n
=

c2

n1 − 1
+

(1− c)2

n2 − 1
and c =

s21
n1

s21
n1

+
s22
n2

. (3.15)

We find a 100(1− α)% CI for µ1 − µ2 as

µ1 − µ2 ∈

X1 −X2 − t1−α
2

√
s21
n1

+
s22
n2

, X1 −X2 − tα
2

√
s21
n1

+
s22
n2

 , (3.16)

or, by symmetry, X1 −X2 ± tα
2

√
s21
n1

+
s22
n2

 (3.17)

where the quantiles tα
2
, t1−α

2
refer to the T (n) distribution, with n given above.

Example 3.7. An account on server A is more expensive than an account on server B. However,
server A is faster. To see if it’s optimal to go with the faster but more expensive server, a manager
needs to know how much faster it is. A certain computer algorithm is executed 30 times on server
A and 20 times on server B with the results given below. Find a 95% confidence interval for the
difference µ1 − µ2 between the mean execution times on server A and server B.

Server A Server B

n1 = 30 n2 = 20

X1 = 6.7 min X2 = 7.5 min
s1 = 0.6 min s2 = 1.2 min

Solution. The samples are large enough (n1 + n2 = 50), that we can use Proposition 3.6. Nothing
is said about the population variances (that they might be known, or known to be equal). Also, the
second sample standard deviation is twice as large as the first one, therefore, equality of population
variances can hardly be assumed. We use the general case for unknown, unequal variances and use
formula (3.17).

We want confidence level 1 − α = 0.95, so α = 0.05 and α/2 = 0.025. The parameter n
in (3.15) is found to be n = 25.3989 ≈ 25. For the T (25) distribution, we find the quantile
t0.025 = −2.0595. Them the 95% CI for the difference of means is
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[
X1 −X2 ± tα

2

√
s21
n1

+
s22
n2

]
=

[
6.7− 7.5± 2.06

√
0.62

30
+

1.22

20

]
= [−0.8± 0.505],

so,

µ1 − µ2 ∈ [−1.305, −0.295]

with probability 0.95. Since all values in the CI are negative, with high probability, it seems that
µ1 − µ2 < 0, so indeed the first server seems to be faster, on average.

CI for the difference of means, paired data

In many applications, we want to compare the means of two populations, when two random samples
(one from each population) are available, which are not independent, where each observation in one
sample is naturally or by design paired with an observation in the other sample. As examples,
consider:
− comparing average values of the same measurements made using two different devices,
− compare the health of the same group of patients in response to a certain treatment,
− compare the behaviour of some equipment under different temperature/pressure conditions, etc.
These are usually cases best described as “before and after” situations.

In such cases, both samples have the same length, n: X11, . . . , X1n and X21, . . . , X2n. Then we
consider the sample of their differences, D1, . . . , Dn, where Di = X1i −X2i, i = 1, n.

For this sample, we have

Xd =
1

n

n∑
i=1

Di, the sample mean and

s2d =
1

n− 1

n∑
i=1

(
Di −Xd

)2
, the sample variance.

Then, it is known that when n is large enough (n > 30) or the two populations that the samples are
drawn from have approximately Normal distributions N(µ1, σ1), N(µ2, σ2), the statistic

Td =
Xd − (µ1 − µ2)

sd√
n

∈ T (n− 1).

Thus, we can use it as a pivot to construct a CI for the difference of means. The same line of
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computations as before will lead to the 100(1− α)% CI for the difference of means:

µ1 − µ2 ∈
[
Xd − t1−α

2

sd√
n
, Xd − tα

2

sd√
n

]
=

[
Xd ± tα

2

sd√
n

]
=

[
Xd ∓ t1−α

2

sd√
n

]
.(3.18)

Remark 3.8. We can find one-sided CI’s for the difference of means of paired data, using the same
procedures (and appropriate quantiles) that were described in Lecture 4.

4 Hypothesis Testing

In the previous sections we have considered the basic ideas of parameter estimation in some detail.
We attempted to approximate the value of some population parameter θ, based on a sample, without

having any predetermined notion concerning the actual value of this parameter. We simply tried
to ascertain its value, to the best of our ability, from the information given by a random sample.
In contrast, statistical hypothesis testing is a method of making statistical inferences on some
unknown population characteristic, when there is a preconceived notion concerning its value or its
properties.

Based on a random sample, we can use Statistics to verify a various number of statements, such
as:
− the average connection speed is as claimed by the internet service provider,
− the proportion of defective products is at most a certain percentage, as promised by the manufac-
turer,
− service times have a certain distribution, etc.

Testing statistical hypotheses has wide applications far beyond Mathematics or Computer Sci-
ence. These methods can be used to prove efficiency of a new medical treatment, safety of a new
automobile brand, innocence of a defendant, authorship of a document and so forth.

4.1 Basic Concepts

So, we will work with statistical hypotheses, about some characteristic X (relative to a population),
whose pdf f(x; θ) depends on the parameter θ, which is to be estimated.

The method(s) used to decide whether a hypothesis is true or not (in fact, to decide whether to
reject a hypothesis or not) make up the hypothesis test. To begin with, we need to state exactly

what we are testing. Any hypothesis test will involve two theories, two hypotheses,
− the null hypothesis, denoted by H0 and
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− the alternative (research) hypothesis, denoted by H1 (or Ha).
A null hypothesis is always an equality, showing absence of an effect or relation, some “normal”

situation or some usual statement that people have believed in for years. The alternative is the oppo-
site (in some way) of the null hypothesis, a “new” theory proposed by the researcher to “challenge”
the old one. In order to overturn the common belief and to reject the null hypothesis, significant ev-
idence is needed. Such evidence can only be provided by data. Only when such evidence is found,
and when it strongly supports the alternative H1, can the hypothesis H0 be rejected in favor of H1.
The purpose of each test is to determine whether the data provides sufficient evidence against H0

in favor of H1. This is similar to a criminal trial. The jury are required to determine if the presented
evidence against the defendant is sufficient and convincing. By default, i.e. the presumption of

innocence, insufficient evidence leads to acquittal.
To determine the truth value of a hypothesis, we use a sample function called

− the test statistic (TS).
The set of values of the test statistic for which we decide to reject H0 is called

− the rejection region (RR) or critical region (CR).
The purpose of the experiment is to decide if the evidence (the data from a sample) tends to

rebut the null hypothesis (if the value of the test statistic is in the rejection region) or not (if that
value falls outside the rejection region).

If the statistical hypothesis refers to the parameter(s) of the distribution of the characteristic X ,
then we have a parametric test, otherwise, a nonparametric test. For parametric tests, we will
consider that the target parameter

θ ∈ A = A0 ∪ A1, A0 ∩ A1 = ∅,

and then the two hypotheses will be set as

H0 : θ ∈ A0

H1 : θ ∈ A1.

If the set A0 consists of one single value, A0 = {θ0}, which completely specifies the population
distribution, then the hypothesis is called simple, otherwise, it is called a composite hypothesis
(and the same is true for A1 and the alternative hypothesis). The null hypothesis will always be
taken to be simple. Then the null hypothesis

H0 : θ = θ0

will have one of the alternatives
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H1 : θ < θ0 (left-tailed test), H1 : θ > θ0 (right-tailed test), H1 : θ ̸= θ0 (two-tailed test).

Remark 4.1. The first and one of the most important tasks in a hypothesis testing problem is to state
the relevant null and alternative hypotheses to be tested. The null hypothesis is taken to be a simple
hypothesis, but the appropriate alternate has to be understood from the context. We mentioned that
H1 is the opposite “in some way” of H0. Let us clarify this.
1. Consider a problem in which a medicine which is believed to have the side effect of increasing
the body temperature above normal, is tested. If the temperatures of a number of patients taking this
medicine are considered, then for the mean temperature the relevant hypotheses would be

H0 : µ = 37, H1 : µ > 37,

since an average lower than or equal to 37oC would mean the same thing in this context, the patients
are fine. A problem would be a mean temperature greater than 37oC. In this sense, H0 and H1 are
“opposites” of each other.
2. To verify that the average broadband internet connection speed is 100 Mbps, we test the hypothe-
ses

H0 : µ = 100, H1 : µ ̸= 100.

However, if we worry about a low connection speed only, we can conduct a one-sided test of

H0 : µ = 100, H1 : µ < 100.

Designing a hypothesis test means constructing the rejection region RR, such that for a given
α ∈ (0, 1), the conditional probability, conditioned by H0 being true, is

P (TS ∈ RR | H0) = α. (4.1)

For any given hypothesis testing problem, we have the following possibilities:

Decision Actual situation
H0 true H1 true

Reject H0 Type I error Right
(prob. α) decision

Not reject H0 Right Type II error
decision (prob. β)

Table 1: Decisions and errors
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In two of the cases, we make the right decision, in the other two, we make an error.
A type I error occurs when we reject a true null hypothesis and by (4.1), the probability of making
such an error is

P (type I error) = P ( reject H0 | H0) = P (TS ∈ RR | H0) = α. (4.2)

The value α is called significance level or risk probability.
A type II error happens when we fail to reject a false null hypothesis, its probability denoted by β,

P ( type II error) = P ( not reject H0 | H1) = P (TS /∈ RR | H1) = β. (4.3)

Remark 4.2.
1. The rejection region and hence, the hypothesis test, are not uniquely determined by (4.1), just
like confidence intervals.
2. Since both α and β represent risks of making an error, we would like to design tests such that
both of their values are small. Unfortunately, making one of them very small will result in the other
being unreasonably large. But, for almost all statistical tests, α and β will both decrease as the
sample size increases.
3. In general, α is preset and a procedure is given for finding an appropriate rejection region.

4.2 General Framework, Z-Tests

Just like with confidence intervals, we start with the case where the test statistic has a N(0, 1)

distribution, so we can better understand the ideas.
Let θ be a target parameter and let θ be an estimator for θ with standard error σθ and satisfying

E(θ) = θ, such that, under certain conditions, it is known that

Z =
θ − θ

σθ

(
=

θ − E(θ)

σ(θ)

)
(4.4)

has an approximately Standard Normal N(0, 1) distribution. We design a hypothesis testing proce-
dure for θ the following way: for a given level of significance α ∈ (0, 1), consider the hypotheses

H0 : θ = θ0,
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with one of the alternatives

H1 :


θ < θ0

θ > θ0

θ ̸= θ0.

(4.5)

We will use the test statistic TS = Z given by (4.4).
The observed value of the test statistic from the sample data is

TS0 = TS(θ = θ0). (4.6)

In our case, this is

Z0 = TS(θ = θ0) =
θ − θ0
σθ

.

How to design the rejection region RR? Let us start with the left-tailed case. We need to determine
the RR such that (4.1) holds. Intuitively, we reject H0 if the observed value of the test statistic is far

from the value specified in H0, “far” in the sense of the alternative H1, in this case far to the left of
θ0. So, we determine a rejection region of the form

RR = {Z0 | Z0 ≤ k1} = (−∞, k1].

We have

α = P (Z0 ∈ RR | H0) = P (Z0 ≤ k1 | θ = θ0) = P (Z0 ≤ k1 | Z0 ∈ N(0, 1)).

Now, we know that if Z0 ∈ N(0, 1), P (Z0 ≤ zα) = α, where zα is the quantile of order α for the
N(0, 1) distribution. Thus, we choose k1 = zα and

RRleft = {Z0 ≤ zα}. (4.7)

Similarly, for a right-tailed test, we want to find a rejection region of the form

RR = {Z0 | Z0 ≥ k2} = [k2,∞),

so that

α = P (Z0 ∈ RR | H0) = P (Z0 ≥ k2 | θ = θ0)

= P (Z0 ≥ k2 | Z0 ∈ N(0, 1)) = 1− P (Z0 < k2 | Z0 ∈ N(0, 1)).
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Since P (Z0 < z1−α) = 1 − α, then P (Z0 ≥ z1−α) = α and so we choose k2 = z1−α, the quantile
of order 1− α for the N(0, 1) distribution and

RRright = {Z0 ≥ z1−α}. (4.8)

Finally, for a two-tailed test, we reject the null hypothesis if the observed value of the test
statistic is far away from θ0 on either side. That is, the rejection region should be of the form
RR = {Z0 | Z0 ≤ k1 or Z0 ≥ k2} = (−∞, k1]∪[k2,∞). The rejection region should be chosen
such that

P (Z0 ≤ k1 or Z0 ≥ k2 | θ = θ0) = α,

or, equivalently,

P (k1 < Z0 < k2 | Z0 ∈ N(0, 1)) = 1− α.

We encountered such problems before in the previous sections, when finding (two-sided) confidence
intervals. As we did then, we will choose k1 = zα

2
and k2 = z1−α

2
, so

RRtwo = {Z0 ≤ zα
2

or Z0 ≥ z1−α
2
}, (4.9)

or, since the distribution of Z is symmetric and z1−α
2
> 0,

RRtwo = {Z0 ≤ −z1−α
2

or Z0 ≥ z1−α
2
} = {|Z0| ≥ z1−α

2
}. (4.10)

To summarize, the rejection regions for the three alternatives (4.5) are given by

RR :


{Z0 ≤ zα}
{Z0 ≥ z1−α}
{Z0 ≤ zα

2
or Z0 ≥ z1−α

2
} = {|Z0| ≥ z1−α

2
}.

(4.11)

Remark 4.3.
1. Since a test statistic Z ∈ N(0, 1) was used, these are commonly known as Z-tests.
2. We will derive hypothesis tests for common parameters (mean, proportion, difference of means,
ratio of variances). The test statistics and their distributions will change, but the ideas and the
principles will remain the same, as for the case we just described.
3. Notice from our derivation of the rejection region for a two-tailed test, that there is a strong
relationship between confidence intervals and rejection regions: The values θ0 of a target parameter
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θ in a 100(1− α)% CI (α ∈ (0, 1)), are precisely the values for which the test statistic falls outside

the RR, and hence, for which the null hypothesis θ = θ0 is not rejected at the significance level α.
We say that the 100(1− α)% two-sided CI consists of all the acceptable values of the parameter, at
the significance level α.
4. Caution! This is not saying that the rejection region is the complement of the confidence interval!
The RR contains values for the test statistic TS, while the CI consists of values of the parameter θ.

Example 4.4. The number of monthly sales at a firm is known to have a mean of 20 and a standard
deviation of 4 and all salary, tax and bonus figures are based on these values. However, in times of
economical recession, a sales manager fears that his employees do not average 20 sales per month,
but less, which could seriously hurt the company. For a number of 36 randomly selected salespeople,
it was found that in one month they averaged 19 sales. At the 5% significance level, does the data
confirm or contradict the manager’s suspicion?

Solution. The question is about the average number of sales per month, so the test is for the
population mean µ.
Since the sample size n = 36 > 30 and we know σ = 4, we can use a Z-test. The manager’s
suspicion is that the average is less than 20, which is supposed to be, so the two relevant hypotheses
in this case are

H0 : µ = 20

H1 : µ < 20,

a left-tailed test.
A type I error would mean concluding that the average number of monthly sales is less than 20,

when in fact, it is not; a type II error would be deciding that the average number of monthly sales is
20 (or higher), but it actually is not. We allow for the probability of a type I error (the significance
level) to be α = 0.05. The population standard deviation is known, σ = 4 and the sample mean is
X = 19. The observed value of the test statistic is

Z0 =
X − µ0

σ√
n

=
19− 20

4

6

= −1.5.

The rejection region is, by (4.11),

RR = (−∞, zα] = (−∞,−1.645].

Since Z0 /∈ RR, we do not reject H0. The evidence obtained from the data is not sufficient to reject
it. In the absence of sufficient evidence, by default, we accept the null hypothesis. So, at the 5%

significance level, the data does not confirm the manager’s suspicion.
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