
3 Sample Theory

In inferential Statistics, we will have the following situation: we are interested in studying a char-
acteristic (a random variable) X, relative to a population P of (known or unknown) size N . The
difficulty or even the impossibility of studying the entire population, as well as the merits of choos-
ing and studying a random sample from which to make inferences about the population of interest,
have already been discussed in the previous sections. Now, we want to give a more rigorous and
precise definition of a random sample, in the framework of random variables, one that can then
employ probability theory techniques for making inferences.

3.1 Random Samples and Sample Functions

We choose n objects from the population and actually study Xi, i = 1, n, the characteristic of
interest for the ith object selected. Since the n objects were randomly selected, it makes sense that
for i = 1, n, Xi is a random variable, one that has the same distribution (pdf) as X , the characteristic
relative to the entire population. Furthermore, these random variables are independent, since the
value assumed by one of them has no effect on the values assumed by the others. Once the n objects
have been selected, we will have n numerical values available, x1, . . . , xn, the observed values of
the sample variables X1, . . . , Xn.

Definition 3.1. A random sample of size n from the distribution of X , a characteristic relative to

a population P, is a collection of n independent random variables X1, . . . , Xn, having the same

distribution as X. The variables X1, . . . , Xn, are called sample variables and their observed values

x1, . . . , xn, are called sample data.

Remark 3.2. The term random sample may refer to the objects selected, to the sample variables, or
to the sample data. It is usually clear from the context which meaning is intended. In general, we
use capital letters to denote sample variables and corresponding lowercase letters for their observed
values, the sample data.

We are able now to define sample functions, or statistics, in the more precise context of random
variables.

Definition 3.3. A sample function or statistic is a random variable

Yn = hn(X1, . . . , Xn),
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where hn : Rn → R is a measurable function. The value of the sample function Yn is yn =

hn(x1, . . . , xn).

We will revisit now some sample numerical characteristics discussed in the previous sections and
define them as sample functions. That means they will have a pdf, a cdf, a mean value, variance,
standard deviation, etc. A sample function will, in general, be an approximation for the corre-
sponding population characteristic. In that context, the standard deviation of the sample function is
usually referred to as the standard error.

In what follows, {X1, . . . , Xn} denotes a sample of size n drawn from the distribution of some
population characteristic X .

3.2 Sample Mean

Definition 3.4. The sample mean is the sample function defined by

Xn =
1

n

n∑
i=1

Xi (3.1)

and its value is xn =
1

n

n∑
i=1

xi.

Now that the sample mean is defined as a random variable, we can discuss its numerical charac-
teristics.

Proposition 3.5. Let X be a population characteristic with mean E(X) = µ and variance V (X) =

σ2. Then

E
(
X
)
= µ and V

(
X
)
=

σ2

n
. (3.2)

Proof. Since X1, . . . , Xn are identically distributed, with the same distribution as X , E(Xi) =

E(X) = µ and V (Xi) = V (X) = σ2, ∀i = 1, n. Then, by the usual properties of expectation, we
have

E
(
X
)
= E

(
1

n

n∑
i=1

Xi

)
=

1

n

n∑
i=1

E(Xi) =
1

n
nµ = µ.

Further, since X1, . . . , Xn are also independent, by the properties of variance, it follows that

V
(
X
)
= V

(
1

n

n∑
i=1

Xi

)
=

1

n2

n∑
i=1

V (Xi) =
1

n2
nσ2 =

σ2

n
.

2



Remark 3.6. As a consequence, the standard deviation of X is

Std(X) =

√
V (X) =

σ√
n
.

So, when estimating the population mean µ from a sample of size n by the sample mean X , the
standard error of the estimate is σ/

√
n, which oftentimes is estimated by s/

√
n. Either way, notice

that as n increases and tends to ∞, the standard error decreases and approaches 0. That means that
the larger the sample on which we base our estimate, the more accurate the approximation.

3.3 Sample Moments and Sample Variance

Definition 3.7. The statistic

νk =
1

n

n∑
i=1

Xk
i (3.3)

is called the sample moment of order k and its value is
1

n

n∑
i=1

xk
i .

The statistic

µk =
1

n

n∑
i=1

(Xi −X)k (3.4)

is called the sample central moment of order k and its value is
1

n

n∑
i=1

(xi − x)k.

Remark 3.8. Just like for theoretical (population) moments, we have

ν1 = X,

µ1 = 0,

µ2 = ν2 − ν2
1.

Next we discuss the characteristics of these new sample functions.

Proposition 3.9. Let X be a characteristic with the property that for k ∈ N, the theoretical moment

ν2k = ν2k(X) = E
(
X2k

)
exists. Then

E (νk) = νk and V (νk) =
1

n

(
ν2k − ν2

k

)
. (3.5)

Proof. First off, the condition that ν2k exists for X ensures the fact that all theoretical moments of

3



X of order up to k also exist. The rest follows as before. We have

E (νk) =
1

n

n∑
i=1

E(Xk
i ) =

1

n

n∑
i=1

E(Xk) =
1

n
nνk = νk

and

V (νk) =
1

n2

n∑
i=1

V (Xk
i ) =

1

n2

n∑
i=1

V (Xk)

=
1

n2
n
(
ν2k − ν2

k

)
=

1

n

(
ν2k − ν2

k

)
.

Proposition 3.10. Let X be a characteristic with variance V (X) = µ2 = σ2 and for which the

theoretical moment ν4 = E (X4) exists. Then

E (µ2) =
n− 1

n
σ2, (3.6)

V (µ2) =
n− 1

n3

[
(n− 1)µ4 − (n− 3)σ4

]
.

Remark 3.11. Notice that the sample central moment of order 2 is the first statistic whose expected
value is not the corresponding population function, in this case the theoretical variance. This is the
motivation for the next definition.

Definition 3.12. The statistic

s2 =
1

n− 1

n∑
i=1

(Xi −X)2 (3.7)

is called the sample variance and its value is
1

n− 1

n∑
i=1

(xi − x)2.

The statistic s =
√
s2 is called the sample standard deviation.

Remark 3.13. Notice that the sample central moment of order 2 is no longer equal to the sample
variance, as we are used. In fact, we have

s2 =
n

n− 1
µ2.

Then, by Proposition 3.10, we have for the sample variance

E
(
s2
)

= µ2 = σ2, (3.8)

4



V
(
s2
)

=
1

n(n− 1)

[
(n− 1)µ4 − (n− 3)σ4

]
and, again, the estimation of σ2 by s2 (or of σ by s) has a standard error that decreases as the sample
size increases:

Std(s2) =

√
1

n(n− 1)

(
(n− 1)µ4 − (n− 3)σ4

)
−→ 0, as n → ∞.

3.4 Sample Proportions

Definition 3.14. Assume a subpopulation A of a population consists of items that have a certain

attribute. The population proportion is then the probability

p = P (i ∈ A), (3.9)

i.e. the probability for a randomly selected item i to have this attribute.

The sample proportion is

p =
number of sampled items from A

n
, (3.10)

where n is the sample size.

Proposition 3.15. Let p be a population proportion. Then

E (p) = p, V (p) =
p(1− p)

n
=

pq

n
and σ (p) =

√
pq

n
, (3.11)

where q = 1− p.

Proof. We use the indicator random variable

Xi =

{
1, i ∈ A

0, i /∈ A
.

Then Xi ∈ Bern(p) and, so, we know that E(Xi) = p and V (Xi) = pq, for every i = 1, . . . , n.

But notice that p =
1

n

n∑
i=1

Xi, i.e. the sample mean of the sample X1, . . . , Xn. Thus, by Proposition
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3.5, we have

E (p) = p,

V (p) =
pq

n
,

σ (p) =

√
pq

n
.

3.5 Sample Functions for Comparing Two Populations

It will be necessary sometimes to compare characteristics of two populations. For that, we will need
results on sample functions referring to both collections. Assume we have two characteristics X(1)

and X(2), relative to two populations. We draw from both populations independent random samples
of sizes n1 and n2, respectively. Denote the two sets of random variables by

X11, . . . , X1n1 and X21, . . . , X2n2 .

Then we have two sample means and two sample variances, given by

X1 =
1

n1

n1∑
i=1

X1i, X2 =
1

n2

n2∑
j=1

X2j

and

s21 =
1

n1 − 1

n1∑
i=1

(
X1i −X1

)2
, s22 =

1

n2 − 1

n2∑
j=1

(
X2j −X2

)2
,

respectively. In addition, denote by

s2p =

n1∑
i=1

(
X1i −X1

)2
+

n2∑
j=1

(
X2j −X2

)2
n1 + n2 − 2

=
(n1 − 1)s21 + (n2 − 1)s22

n1 + n2 − 2

the pooled variance of the two samples, i.e. a variance that considers (pools) the data from both
samples.

In inferential Statistics, when comparing the means of two populations, we will look at their
difference and try to estimate it. Regarding that, we have the following result.
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Proposition 3.16. Let X(1), X(2) be two population characteristics with means E(X(i)) = µi and

variances V (X(i)) = σ2
i , i = 1, 2. Then

E
(
X1 −X2

)
= µ1 − µ2,

V
(
X1 −X2

)
=

σ2
1

n1

+
σ2
2

n2

. (3.12)

In a similar fashion, we can compare two population proportions. Again, the random variable of
interest is their difference.

Proposition 3.17. Assume we have two population proportions p1 and p2. From each population we

draw independent samples of size n1 and n2, respectively, which yield the population proportions

p1 and p2. Then

E (p1 − p2) = p1 − p2,

V (p1 − p2) =
p1q1
n1

+
p2q2
n2

, (3.13)

with qi = 1− p1, i = 1, 2.
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Summary of Notations

Notations of the sample functions and their corresponding population characteristics.

Function Population (theoretical) Sample

Mean µ = E(X) X =
1

n

n∑
i=1

Xi

Variance σ2 = V (X) s2 =
1

n− 1

n∑
i=1

(Xi −X)2

Standard deviation σ =
√

V (X) s =
√
s2

Moment of order k νk = E
(
Xk
)

νk =
1

n

n∑
i=1

Xk
i

Central moment of order k µk = E
[
(X − E(X))k

]
µk =

1

n

n∑
i=1

(Xi −X)k

Proportion p = P (i ∈ A) p =
number of Xi from A

n

Table 1: Notations
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Chapter 4. Inferential Statistics

Populations are characterized by parameters. The goal of Inferential Statistics is to make infer-
ences (estimates) about one or more population parameters on the basis of a sample.

1 Estimation; Basic Notions

We will refer to the parameter to be estimated as the target parameter and denote it by θ.
Two types of estimation will be considered: point estimate, when the result of the estimation is one
single value and interval estimate, when the estimate is an interval enclosing the value of the target
parameter. In either case, the actual estimation is accomplished by an estimator, a rule, a formula,
or a procedure that leads us to the value of an estimate, based on the data from a sample.

In this chapter, we discuss how

• to estimate parameters of the distribution. The methods in the previous chapter mostly con-
cern measure of location (mean, median, quantiles) and variability (variance, standard devia-
tion, interquartile range). As we know, this does not cover all possible parameters, and thus,
we still lack a general methodology of estimation.

• to construct confidence intervals. Any estimator, computed from a collected random sample
instead of the whole population, is understood as only an approximation of the corresponding
parameter. Instead of one estimator that is subject to a sampling error, it is often more rea-
sonable to produce an interval that will contain the true population parameter with a certain
known high probability.

• to test hypotheses. That is, we shall use the collected sample to verify statements and claims
about the population. As a result of each test, a statement is either rejected on basis of the
observed data or accepted (not rejected). Sampling error in this analysis results in a possibility
of wrongfully accepting or rejecting the hypothesis; however, we can design tests to control
the probability of such errors.

Results of such statistical analysis are used for making decisions under uncertainty, developing
optimal strategies, forecasting, evaluating and controlling performance and so on.

Throughout this chapter, we consider a characteristic X (relative to a population), whose pdf
f(x; θ) depends on the parameter θ, which is to be estimated. If X is discrete, then f represents the
probability distribution function, while if X is continuous, f is the probability density function.
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As before, we consider a random sample of size n, i.e. sample variables X1, . . . , Xn, which are
independent and identically distributed (iid), having the same pdf as X . The notations introduced
in the previous chapter for some sample functions still stand.

Definition 1.1. A point estimator for (the estimation of) the target parameter θ is a sample function

(statistic)

θ = θ(X1, X2, . . . , Xn).

Other notations may be used, such as θ̂ or θ̃.

Each statistic is a random variable because it is computed from random data. It has a so-called
sampling distribution. Each statistic estimates the corresponding population parameter and adds
certain information about the distribution of X , the variable of interest. The value of the point
estimator, the point estimate, is the actual approximation of the unknown parameter.

2 The Normal, Student (T) and Fisher (F) Distributions

2.1 Normal Distribution N(µ, σ)

The Normal distribution is, by far, the most important distribution, underlying many of the modern
statistical methods used in data analysis. It was first described in the late 1700’s by De Moivre, as a
limiting case for the Binomial distribution (when n, the number of trials, becomes infinite), but did
not get much attention. Half a century later, both Laplace and Gauss (independently of each other)
rediscovered it in conjunction with the behavior of errors in astronomical measurements. It is also
referred to as the “Gaussian” distribution.

A random variable X has a Normal distribution ( norm ) with parameters µ ∈ R and σ > 0, if
its pdf is

f(x) =
1

σ
√
2π

e
−
(x− µ)2

2σ2 , x ∈ R. (2.1)

The cdf of a Normal variable is then given by

F (x) =
1

σ
√
2π

x∫
−∞

e
−
(t− µ)2

2σ2 dt =
1√
2π

x−µ
σ∫

−∞

e
−
t2

2 dt. (2.2)

10



µ

1

σ

√

2 π

1

σ

√

2 πe

0 µ − σ µ + σ

(a) Density Function (pdf)

µ

1

2

1

0

(b) Cumulative Distribution Function (cdf)

Fig. 1: Normal Distribution

The graph of the Normal density is a symmetric, bell-shaped curve (known as “Gauss’s bell” or
“Gauss’s bell curve”) centered at the value of the first parameter µ, as can be seen in Figure 1(a).
The graph of the cdf of a Normally distributed random variable is given in Figure 1(b) and this is
approximately what the graph of the cdf of any continuous random variable looks like.

Remark 2.1.
1. There is an important particular case of a Normal distribution, namely N(0, 1), called the Stan-
dard (or Reduced) Normal Distribution. A variable having a Standard Normal distribution is
usually denoted by Z. The density and cdf of Z are given by

fZ(x) =
1√
2π

e
−
x2

2 , x ∈ R and FZ(x) =
1√
2π

x∫
−∞

e
−
t2

2 dt. (2.3)

The function FZ given in (2.3) is known as Laplace’s function (or the error function) and its values
can be found in tables or can be computed by most mathematical software.
3. As noticed from (2.2) and (2.3), there is a relationship between the cdf of any Normal N(µ, σ)
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variable X and that of a Standard Normal variable Z, namely

FX(x) = FZ

(
x− µ

σ

)
.

Asymptotic Normality

By the Central Limit Theorem, the sum of observations, and therefore, the sample mean have ap-
proximately Normal distribution if they are computed from a large sample. That is, the distribution
of X is approximately N

(
µ,

σ√
n

)
and that of

Z =
X − µ

σ√
n

(which is the reduced variable of X) is approximately Standard Normal (N(0, 1)) as n → ∞. This
property is called asymptotic normality. The same is true for other statistics, e.g. the difference of
means:

Z =
X1 −X2 − (µ1 − µ2)√

σ2
1/n1 + σ2

2/n2

−→ N(0, 1), as n1, n2 → ∞.

Quantiles

In many inferential statistical procedures, we will need to use quantiles. Recall that a quantile of a
given order α ∈ (0, 1) for a random variable X with cdf F , is a value qα with the property that

F (qα) = P (X ≤ qα) = α, qα = F−1(α),

i.e., that the area under the graph of the pdf, to the left of qα is α (see Figure 2).

α

qα

f(pdf)

Fig. 2: Quantile of order α ∈ (0, 1)
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For symmetric distributions, the symmetry is reflected in the computation of quantiles. By sym-
metry, we have

P (X ≤ −qα)
sym
= P (X ≥ qα) = 1− P (X ≤ qα)

= 1− α = P (X ≤ q1−α),

therefore,

q1−α = −qα, ∀α ∈ (0, 1). (2.4)

This is certainly the case for the Standard Normal distribution (see Figure 3):

z1−α = −zα, ∀α ∈ (0, 1).

1− α

z(α/2) z(1−α/2)0

fZ(Z ∈ N (0, 1))

Fig. 3: Quantiles for the N(0, 1) distribution

2.2 Student (T) Distribution

The Student (T) distribution appeared as a necessity, when the sample size was small and asymp-
totic normality could not be used. It was developed in the early 1900’s by W. S. Gosset under the
pseudonym “Student”. It has one parameter, denoted by n or ν or simply, df and it stands for “num-
ber of degrees of freedom”. The T -distribution is symmetric and bell-shaped, like the Normal one,
only it is narrower. Since it is symmetric, its quantiles also satisfy relation (2.4) (see Figure 4):

t1−α = −tα, ∀α ∈ (0, 1).
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1− α

t(α/2) t(1−α/2)0

fT

Fig. 4: Student T Distribution pdf and quantiles

2.3 Fisher (F) Distribution

In many cases, two population variances need to be compared. Such inference is used for the
comparison of accuracy, stability, uncertainty, or risks arising in two populations.

Comparison of variances can be accomplished using the Fisher-Snedecor (F) distribution.
This distribution was first considered in 1918 by a famous English statistician and biologist, Sir
Ronald Fisher (1890-1962) and developed and formalized in 1934 by an American mathematician
George Snedecor (1881-1974). A random variable X follows a Fisher (F) distribution with param-
eters m,n ∈ N (degrees of freedom), if its density function is

f(x) =
1

β(m
2
, n
2
)

(m
n

)m
2
x

m
2
−1
(
1 +

m

n
x
)−m+n

2
, x > 0,

where β(a, b) =
1∫
0

xa−1(1 − x)b−1dx, a, b > 0, is Euler’s Beta function. Its density has a right-

skewed shape (see Figure 5). Since this is asymmetric, we no longer have relation (2.4) between its
quantiles. However, there is an important property of the F distribution:

Proposition 2.2. If the variable X has a F (m,n) distribution, then its reciprocal
1

X
has a F (n,m)

distribution. As a consequence, the following relation holds for F -quantiles:

f1−α,m,n =
1

fα,n,m
, ∀α ∈ (0, 1), (2.5)

where the quantile f1−α,m,n refers to the F (m,n) distribution and fα,n,m is for F (n,m).
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0

1− α

f
α/2 f1−α/2

F distribution pdf

Fig. 5: Fisher (F) Distribution pdf and quantiles

3 Estimation by Confidence Intervals

3.1 Basic Concepts; General Framework

Unlike point estimators (that provide one single value), an interval estimator specifies a range

of values, within which the parameter is estimated to lie. More specifically, the sample will be
used to produce two sample functions, θL(X1, . . . , Xn) < θU(X1, . . . , Xn), with values θL =

θL(x1, . . . , xn), θU = θU(x1, . . . , xn), respectively, such that for a given α ∈ (0, 1),

P (θL ≤ θ ≤ θU) = 1− α. (3.1)

Then
− the range (θL, θU) is called a confidence interval (CI), more specifically, a 100(1 − α)% confi-
dence interval,
− the values θL, θU are called (lower and upper) confidence limits,
− the quantity 1− α is called confidence level or confidence coefficient and
− the value α is called significance level.

Remark 3.1.
1. It may seem a little peculiar that we use 1− α instead of simply α in (3.1), since both values are
in (0, 1), but the reasons are in close connection with hypothesis testing and will be revealed in the
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next sections.
2. The condition (3.1) does not uniquely determine a 100(1− α)% CI.
3. Evidently, the smaller α and the length of the interval θU − θL are, the better the estimate for
θ. Unfortunately, as the confidence level increases, so does the length of the CI, thus, reducing
accuracy.

To produce a CI estimate for θ, we need a pivotal quantity, i.e. a statistic S that satisfies two
conditions:
− S = S(X1, . . . , Xn; θ) is a function of the sample measurements and the unknown parameter θ,
this being the only unknown,
− the distribution of S is known and does not depend on θ.

We will use the pivotal method to find 100(1 − α)% CI’s. Depending on which population
parameter we wish to estimate, the expression and the pdf of the pivot will change, but the principles
will stay the same. So, we start with the case where the pivot has a (possibly asymptotically) N(0, 1)

distribution, so we can better understand the ideas.
Let θ be a target parameter and let θ be a point estimator for θ such that E(θ) = θ (that means

an unbiased estimator), with standard error σθ, such that, under certain conditions, it is known that

Z =
θ − θ

σθ

(
=

θ − E(θ)

σ(θ)

)
(3.2)

has an approximately Standard Normal N(0, 1) distribution. We can use Z as a pivotal quantity
to construct a 100(1 − α)% CI for estimating θ. Since the pdf of Z is known, we can choose two
values, ZL, ZU such that for a given α ∈ (0, 1),

P (ZL ≤ Z ≤ ZU) = 1− α. (3.3)

How to choose them? Of course, there are infinitely many possibilities. Recall that for continuous
random variables, the probability in (3.3) represents an area, namely the area under the graph of the
pdf and above the x-axis, between the values ZL and ZU . Basically, the values ZL and ZU should be
chosen so that that area is 1 − α. We will take advantage of the symmetry of the Standard Normal
pdf and choose the two values so that the area 1− α is in “the middle”. That means (since the total
area under the graph is 1) the two portions left on the two sides, both should have an area of

α

2
, as

seen in Figure 3.
Since for ZL we want the area to its left to be α/2, we choose it to be the quantile of order α/2
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for Z,
ZL = zα/2.

For the value ZU , the area to its right should be α/2, which means the area to the left is 1 − α/2.
Thus, we choose

ZU = z1−α/2.

Indeed, now we have
P (zα/2 ≤ Z ≤ z1−α/2) = 1− α,

as in (3.3).
From here, we proceed to rewrite the inequality inside, until we get the limits of the CI for θ.

We have

1− α = P

(
zα

2
≤ θ − θ

σθ

≤ z1−α
2

)
= P

(
σθ · zα

2
≤ θ − θ ≤ σθ · z1−α

2

)
= P

(
−σθ · z1−α

2
≤ θ − θ ≤ −σθ · zα

2

)
= P

(
θ − σθ · z1−α

2
≤ θ ≤ θ − σθ · zα

2

)
,

so the 100(1− α)% CI for θ is given by

[
θ − σθ · z1−α

2
, θ − σθ · zα

2

]
. (3.4)

Remark 3.2.
1. By the symmetry of N(0, 1) (and, hence, (2.4)) the CI can be written in short as

[
θ − σθ · z1−α

2
, θ + σθ · z1−α

2

]
or

[
θ + σθ · zα

2
, θ − σθ · zα

2

]
.

2. As mentioned earlier, for estimating various population parameters, the pivot will be different,
but the procedure of finding the CI will be the same, even when the distribution of the pivot is not

symmetric.

One-sided confidence intervals

The CI we determined is a two-sided CI, because it gives bounds on both sides. A two-sided CI is
not always the most appropriate for the estimation of a parameter θ. It may be more relevant to make
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a statement simply about how large or how small the parameter might be, i.e. to find confidence
intervals of the form (−∞, θU ] and [θL,∞), respectively, such that the probability that θ is in the
CI is 1− α. These are called one-sided confidence intervals and they can be found the same way,
using quantiles of an appropriate order.

• Lower confidence interval for θ
We want to find θU such that P (θ ≤ θU) = 1− α. We have, successively.

1− α = P (θ ≤ θU) = P (−θ ≥ −θU)

= P
(θ − θ

σθ

≥ θ − θU
σθ

)
= P

(
Z ≥ θ − θU

σθ

)
.

But we know that P (Z ≥ zα) = 1− α, so, by equating
θ − θU
σθ

= zα, we get θU = θ − σθ · zα and

the lower CI (
−∞, θ − σθ · zα

]
=
(
−∞, θ + σθ · z1−α

]
,

the last equality coming from the symmetry of the quantiles z1−α = −zα.

• Upper confidence interval for θ
Similarly, to find θL such that P (θ ≥ θL) = 1− α, we use

1− α = P (θ ≥ θL) = P (−θ ≤ −θL)

= P
(θ − θ

σθ

≤ θ − θL
σθ

)
= P

(
Z ≤ θ − θL

σθ

)
= P (Z ≤ z1−α),

so the upper CI is [
θ − σθ · z1−α,∞

)
=
[
θ + σθ · zα,∞

)
.
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