
3.4 Quantiles

Let X be a random variable with cdf F : R → R and α ∈ (0, 1). A quantile of order α is a number
qα satisfying the condition P (X < qα) ≤ α ≤ P (X ≤ qα), or, equivalently,

F (qα − 0) ≤ α ≤ F (qα). (3.1)

If X is continuous, then for each α ∈ (0, 1), there is a unique quantile qα (see Figure 1), given by

F (qα) = α,

or equivalently,
qα = F−1(α).

α

qα

f(pdf)

Fig. 1: Quantiles

3.5 Covariance and Correlation Coefficient

So far we have discussed numerical characteristics associated with one random variable. But often-
times it is important to know if there is some kind of relationship between two (or more) random
variables. So we need to define numerical characteristics that somehow measure that relationship.

Definition 3.1. Let X and Y be random variables. The covariance of X and Y is the number

cov(X, Y ) = E
(
(X − E(X)) · (Y − E(Y ))

)
, (3.2)
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if it exists. The correlation coefficient of X and Y is the number

ρ(X, Y ) =
cov(X, Y )√
V (X)V (Y )

=
cov(X, Y )

σ(X)σ(Y )
, (3.3)

if cov(X, Y ), V (X), V (Y ) exist and V (X) ̸= 0, V (Y ) ̸= 0.

Notice the similarity between the definition of the covariance and that of the variance. The
covariance measures the variation of two random variables with respect to each other. Just like with
variance, large values (in absolute value) of the covariance show a strong relationship between X

and Y, while small absolute values suggest a weak relationship. Unlike variance, covariance can
also be negative. A negative value means that as the values of one variable increase, the values of
the other decrease (see Figure 2).

Fig. 2: Covariance

The covariance and correlation coefficient have the following properties:

• cov(X,X) = V (X);

• cov(X, Y ) = E(XY )− E(X)E(Y ) (a more efficient computational formula);

• If X and Y are independent, then cov(X, Y ) = ρ(X, Y ) = 0 (we say that X and Y are
uncorrelated);

• V (aX + bY ) = a2V (X) + b2V (Y ) + 2ab cov(X, Y ), for all a, b ∈ R;

• cov(X + Y, Z) = cov(X,Z) + cov(Y, Z);

• |ρ(X, Y )| ≤ 1, i.e. −1 ≤ ρ(X, Y ) ≤ 1;
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• |ρ(X, Y )| = 1 if and only if there exist a, b ∈ R, a ̸= 0, such that Y = aX + b.

The correlation coefficient ρ(X, Y ) measures the linear “trend” between the variables X and Y .
When ρ = ±1, there is “perfect linear correlation”, so all the points (X, Y ) are on a straight line
(see Figure 3). The closer its value is to ±1, the “more linear” the relationship between X and Y

is. This notion will be revisited in the next chapter.

Fig. 3: Perfect correlation
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Chapter 2. Introduction to Statistics

1 History of Statistics

Statistics is a branch of Mathematics that deals with the collection, analysis, display and interpre-
tation of numerical data.

Descriptive Statistics includes the collection, presentation and description of numerical data. It
is what most people think of when they hear the word “Statistics”.

Inferential Statistics consists of the techniques of interpretation, of modeling the results from
descriptive Statistics and then using them to make inferences (predictions, approximations).

Historically, descriptive Statistics was developed first, dealing with the “raw” data that people
had to handle every day. As that task became increasingly difficult, a scientific and more rigorous
approach of Statistics was needed. The transition to inferential Statistics started at the beginning of
last century, with the heavier employment of probabilistic methods.

As a discipline, Statistics has mostly developed in the past century. Probability theory - the
mathematical foundation for Statistics - was developed in the 17th to 19th centuries based on work
by Thomas Bayes, Pierre-Simon Laplace, and Carl Gauss. In contrast to the somewhat theoretical
nature of probability, Statistics is an applied science concerned with analysis and modeling of data.
Modern Statistics as a rigorous scientific discipline traces its roots back to the late 1800’s and Francis
Galton and Karl Pearson. R. A. Fisher, in the early 20th century, was a leading pioneer of modern
Statistics, introducing key ideas of experimental design and maximum likelihood estimation.

A new trend in modern Statistics is Exploratory Data Analysis (EDA). This new area of Statis-
tics was promoted by John Tukey beginning in the 1970’s. He proposed a reformation of Statistics,
where statistical inference is just one component of data analysis. He encouraged statisticians to
explore the data, often using statistical graphics and other data visualization methods, and possibly
formulate hypotheses that could lead to new data collection and experiments. His conjecture was
that a statistical model may or may not be used, but primarily EDA is for seeing what the data
can tell us beyond the formal modeling and thereby somehow contrasts traditional hypothesis test-
ing. The engineering and computer science communities quickly embraced this new approach of
analyzing data sets. With the ready availability of computing power and expressive data analysis
software, EDA has evolved constantly in recent decades, by means of the rapid development of new
technology, access to more and bigger data, and the greater use of quantitative analysis in a variety
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of disciplines.
As a consequence, new disciplines in Statistics were established, such as Robust statistics and

Nonparametric tests, which do not rely so heavily on theoretical assumptions and are not so easily
affected by outliers.

2 Basic Concepts. Terminology

• A population is a set of individuals, objects, items or measurements of interest, whose prop-
erties are to be analyzed. In order to form a population, a set must have a common feature.
The population of interest must be carefully defined and is considered so when its membership
list is specified.

• A subset of the population (a set of observed units collected from the population) is called a
sample, or a selection.

• A characteristic or variable is a certain feature of interest of the elements of a population
or a sample, that is about to be analyzed statistically. Characteristics can be quantitative

(numerical) or qualitative (categorical, a certain trait). From the probabilistic point of view, a
numerical characteristic is a random variable.

• A numerical characteristic is called a parameter, if it refers to an entire population and a
statistic or sample function, if it refers just to a sample. Populations are characterized by
parameters - usually unknown, which are to be estimated based on statistics - known from
the sample(s) collected (see Figure 4).

• The outcomes of an experiment yield a set of data, i.e. the values that a variable takes for all
the elements of a population or a sample.

• Depending on the goal of a data analysis project, the data gathered can be of several types:

– discrete, data that can take on only a discrete set of values (data that can be counted);

– continuous, data that can take on any value in an (possibly infinite) interval (data that
can be measured);

– categorical, data that can take on only a specific set of values representing a set of
possible categories;

– binary, a special case of categorical data with just two categories of values (0/1, yes/no,
true/false);

5



Fig. 4: Population parameters and sample statistics

– ordinal, categorical data that has an explicit ordering.

• Data can also be classified as

– rectangular, data in the form of a two-dimensional matrix with rows indicating records
(cases) and columns indicating features (variables), like a table or spreadsheet; used in
a cross-sectional study, which captures a snapshot of a group at a point in time;

– non-rectangular data or time series; used in a longitudinal study, which observes a
group repeatedly over a period of time.

• Any data analysis project has 5 important steps:

1. Determining and declaring the objective(s).

2. Collecting the data (Descriptive Statistics).

3. Cleaning (wrangling) and organizing the data. Data wrangling is the process of remov-
ing errors and combining complex data sets to make them more accessible and easier to
analyze (Descriptive Statistics).

4. Analyzing the data (Inferential Statistics and Exploratory Data Analysis).

5. Interpreting and sharing the results.
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3 Data Collection

3.1 Sampling

An important first step in any statistical analysis is the sampling technique, i.e. the collection of
methods and procedures used to gather data. There are several ways of collecting data: If every
element of a population is selected, then a census is compiled. However, this technique is hardly
ever used these days, because it can be expensive, time consuming or just plain impossible. Instead,
only a sample is selected, which is analyzed and based on the findings, inferences (estimates)
are made about the entire population, as well as measurements of the degree of accuracy of the
estimates.

A sample is chosen based on a sampling design, the process used to collect sample data. If
elements are chosen on the basis of being “typical”, then we have a judgment sample, whereas if
they are selected based on probability rules, we have a probability sample. Statistical inference
requires probability samples. The most familiar probability sample is a random sample, in which
each possible sample of a certain size has the same chance of being selected and every element in the
population has an equal probability of being chosen. A random sample must also be representative
for the population it was drawn from (the structure of the sample must be similar to the structure of
the population).

Other types of samples may be considered:

• systematic sample

• stratified sample

• quota sample

• cluster sample

Throughout the remaining chapters, we will only consider simple random sampling, i.e. a
sampling design where units are collected from the entire population independently of each other, all
being equally likely to be sampled. Observations collected by means of a simple random sampling
design are iid (independent, identically distributed) random variables.

Another important technique is data mining, which, in data science is defined as “the nontriv-
ial process of identifying valid, novel, potentially useful, and ultimately understandable patterns in
data”. Today’s technologies have enabled the automated extraction of hidden predictive information
from databases, along with a confluence of various other fields like artificial intelligence, machine
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learning, database management, pattern recognition, and data visualization. With data mining, an
individual applies various methods of Statistics, data analysis and machine learning to explore and
analyze large data sets, to extract new and useful information. Also, using data mining, an organi-
zation may discover actionable insights from their existing data.

3.2 Sampling and Non-Sampling Errors

Sometimes discrepancies occur between a sample and its underlying population.
Sampling errors are caused simply by the fact that only a portion of the entire population is ob-
served. For most statistical procedures, sampling errors decrease (and converge to zero) if the
sample size is appropriately increased.
Non-sampling errors are produced by inappropriate sampling designs or wrong statistical tech-
niques. No statistical procedures can save a poorly collected sample!

Example 3.1. A survey among passengers of some airline is conducted in the following way. A
sample of random flights is selected from a list, and ten passengers on each of these flights are also
randomly chosen. Each sampled passenger is asked to fill a questionnaire. Is this a representative
sample? Suppose Mr. X flies only once a year, whereas Ms. Y has business trips twice a month.
Obviously, Ms. Y has a much higher chance to be sampled than Mr. X. Unequal probabilities have
to be taken into account, otherwise a non-sampling error will inevitably occur.

Example 3.2. (U. S. A. Presidential Election of 1936). A popular weekly magazine, The Literary

Digest, correctly predicted the winners of 1920, 1924, 1928, and 1932 U. S. Presidential elections.
However, it failed to do so in 1936! Based on a survey of ten million people, it predicted an
overwhelming victory of Republican Governor Alfred Landon. Instead, the Democrat Franklin
Delano Roosevelt received 98.49% of the electoral vote, won 46 out of 48 states, and was re-elected.
This was the largest share of the Electoral College since 1820, the second-largest number of raw
electoral votes ever received by a candidate, and the largest ever for a Democrat! So, what went
wrong in that survey? At least two main issues with their sampling practice caused this prediction
error. First, the sample was based on the population of subscribers of The Literary Digest that was
dominated by Republicans. Second, responses were voluntary, and 77% of mailed questionnaires
were not returned, introducing further bias.
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4 Graphical Display of Data

“A picture is worth a thousand words!”
Once the sample data is collected, it must be represented in a relevant, “easy to read” way, one that
hopefully reveals important features, patterns of behavior, connections, etc.

Circle graphs (“pie” charts) and bar graphs are popular ways of displaying data, that use the
proportions of each type of data and represent them as percentages.

Example 4.1. Suppose that a software company is having 25 items on sale, 5 of which are learning
programs (L), 8 are antivirus programs (AV), 3 are games (G) and the rest (9) are miscellaneous
(M).

Pie charts are shown in Figure 5 and bar graphs in Figure 6.

Frequency Distribution Tables

Once collected, the raw data must be “organized” in a relevant and meaningful manner. One way
to do that is to write it in a frequency distribution table, which contains the values xi, i = 1, k,
sorted in increasing order, together with their (absolute) frequencies, fi, i = 1, k, i.e. the number
of times each value occurs in the sample data, as seen in Table 1.

Value Frequency
x1 f1
x2 f2
...

...
xk fk

Table 1: Frequency Distribution Table

If needed, the table can also contain the relative frequencies

rfi =
fi
N
, ∀i = 1, k,

usually expressed as percentages, the cumulative frequencies

Fi =
i∑

j=1

fj, ∀i = 1, k,
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Fig. 5: Pie Charts
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Fig. 6: Bar graphs

or relative cumulative frequencies

rFi =
1

N

i∑
j=1

fj, ∀i = 1, k,

where N =
k∑

i=1

fi is the sample size.

However, when the data volume is large and the values are non-repetitive, the frequency dis-
tribution is not of much help. Every value is listed with a frequency of 1. In this case, it is better
to group the data into classes and construct a grouped frequency distribution table. So, first we
decide on a reasonable number of classes n, small enough to make our work with the data easier,
but still large enough to not lose the relevance of the data. Then for each class i = 1, n, we have
− the class limits ci−1, ci,
− the class mark xi =

ci−1 + ci
2

, the midpoint of the interval, as an identifier for the class,
− the class width (length) li = ci − ci−1,
− the class frequency fi, the sum of the frequencies of all observations x in that class.

Notice that we used the same notation xi for primary data and for class marks. This is by choice,
since in the case of grouped data, the class mark plays the role of a “representative” for that class and
the class frequency is taken as being the frequency of that one value. The double notation should not
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cause confusion throughout the text, since N is the sample size, so x1, . . . , xN denotes the primary
data, while n is the number of classes and thus,(

xi

fi

)
i=1,n

denotes the grouped frequency distribution of the data.

The grouped frequency distribution table will look similar to the one in Table 1, only it will
contain classes instead of individual values, each with their corresponding features.

Remark 4.2.
1. Relative or cumulative frequencies can also be computed for grouped data, as well, using the
same formulas as for ungrouped data.
2. In general, the classes are taken to be of the same length l.
3. When all classes have the same length, the number of classes, n, and the class length l determine
each other (if one is known, so is the other).

Determining the number of classes
There isn’t an “optimal” way of choosing the number of classes (bins) to group data. But in general,

• there should not be too few or too many classes;

• their number may increase with the sample size;

• they should be chosen to make the frequency distribution table (and then, further, its visual
counterparts, the histogram, the frequency polygon, the stem-and-leaf plot) informative, so
that we can notice patterns, shapes, outliers, etc.

We can start with n = 10 classes (most software have that as the implicit number), see what infor-
mation we get and then decide whether to increase or decrease the number of bins.

There is, also, a customary procedure (empirical formula) of determining the number of classes,
known as Sturges’ rule

n = 1 +
10

3
log10N, (4.4)

where N is the sample size. Then it follows that

l =
xmax − xmin

n
.
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Once we determined n and l, we have

ci = xmin + i · l, i = 0, n.

Example 4.3. To evaluate effectiveness of a processor for a certain type of tasks, the random vari-
able X , the CPU time of a job, is studied. The following data represent the CPU times (in seconds)
for n = 30 randomly chosen jobs:

70 36 43 69 82 48 34 62 35 15

59 139 46 37 42 30 55 56 36 82

38 89 54 25 35 24 22 9 56 19

Let us analyze these data. First, we sort them in increasing order:

9 15 19 22 24 25 30 34 35 35

36 36 37 38 42 43 46 48 54 55

56 56 59 62 69 70 82 82 89 139

There are N = 30 observations, with xmin = 9 and xmax = 139.

Since there are very few repetitions, the ungrouped frequency distribution table doesn’t tell us much
(see Table 2).
Let us group the data into classes of the same length.

With n = 10 bins, we have a class width of l = 13, whereas with Sturges’ rule, we get n =

5.9237 ≈ 6, l ≈ 21.7.

The grouped frequency tables are shown in Tables 3 and 4. We have also included the relative
and cumulative frequencies.

Remark 4.4. Due to rounding errors, the length of the last class may be slightly different than the
rest of them, even when we group data into classes of the same width.

Histograms and Frequency Polygons

When data is grouped into classes, the best way to visualize the frequency distribution is by con-
structing a histogram ( hist/histogram ). A histogram is a type of bar graph, where classes are
represented by rectangles whose bases are the class lengths and whose heights are chosen so that
the areas of the rectangles are proportional to the class frequencies. If the classes have all the same
length, then the heights will be proportional to the class frequencies.
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Value Frequency
9 1

15 1
19 1
22 1
24 1
25 1
30 1
34 1
35 2
36 2
37 1
38 1
42 1
43 1
46 1
48 1
54 1
55 1
56 2
59 1
62 1
69 1
70 1
82 2
89 1

139 1

Table 2: Frequency Distribution Table for Example 4.3

No Class Mark Freq. C. Freq. R. Freq. R. C. Freq.
1 [9, 22] 15.5 4 4 13% 13%
2 (22, 35] 28.5 6 10 20% 33%
3 (35, 48] 41.5 8 18 27% 60%
4 (48, 61] 54.5 5 23 17% 77%
5 (61, 74] 67.5 3 26 10% 87%
6 (74, 87] 80.5 2 28 7% 94%
7 (87, 100] 93.5 1 29 3% 97%
8 (100, 113] 106.5 0 29 0% 97%
9 (113, 126] 119.5 0 29 0% 97%

10 (126, 139] 132.5 1 30 3% 100%

Table 3: Example 4.3, Grouped frequency distribution table with n = 10 classes
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No Class Mark Freq. C. Freq. R. Freq. R. C. Freq.
1 [9, 30.7) 19.85 7 7 23% 23%
2 [30.7, 52.4) 41.55 11 18 37% 60%
3 [52.4, 74.1) 63.25 8 26 27% 87%
4 [74.1, 95.8) 84.95 3 29 10% 97%
5 [95.8, 117.5) 106.65 0 29 0% 97%
6 [117.5, 139) 128.35 1 30 3% 100%

Table 4: Example 4.3, Grouped frequency distribution table with n = 6 classes

A histogram shows the shape of a pdf (probability distribution/density function) or pmf (proba-
bility mass function) of data, checks for homogeneity, and suggests possible outliers.

A frequency histogram consists of columns, one for each class (bin), whose height is deter-
mined by the number of observations in the bin.

A relative frequency histogram has the same shape but a different vertical scale. Its column
heights represent the proportion of all data that appeared in each bin.

If relative frequencies are considered (so the proportionality factor is N, the total number of
observations), then the total areas of all rectangles will be equal to 1. For a large volume of data
grouped into a reasonably large number of classes, the histogram gives a rough approximation of
the density function (pdf) of the population from which the sample data was drawn.

An alternative in that sense (the sense of roughly approximating the shape of the density func-
tion) to histograms are frequency polygons, obtained by joining the points with coordinates (xi, fi),

i = 1, n (x−coordinates are the class marks and y−coordinates are the class frequencies).

Example 4.4. Consider the data from Example 4.3, the CPU times for N = 30 randomly chosen
jobs.

We constructed the grouped frequency distribution tables for these data for n = 10 and for n = 6

classes. Figure 7 shows the corresponding histogram and frequency polygon for grouped data ((a)
and (b)). Also in Fig. 7, we show histograms for n = 4 and n = 12 bins, respectively. It is obvious
that n = 4 is too small and n = 12 is too large for the number of bins. The values n = 6 and n = 10

seem to be the best (in terms of the information they provide), especially n = 10.
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(c) n = 4 bins
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Fig. 7: Histograms and Frequency Polygons, Example 4.4
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Fig. 8: Approximation of the pdf, Example 4.4

For 10 classes, let us take a closer look, see Figure 8. What information can we draw from these
histograms?

• the continuous distribution (continuous because time varies continuously) of the CPU times
is not symmetric, it is skewed to the right, as we see 5 columns to the right of the highest
column and only 2 columns to the left;

• the value 139 stands alone suggesting that it is in fact an outlier;

• a Gamma family of distributions seems appropriate for CPU times, see the dashed curve in
Figure 8;

• there is no indication of heterogeneity; all data points except x = 139 form a rather homoge-
neous group that fits the sketched Gamma curve.
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