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Chapter 6. Statistical Inference

we are interested in studying a characteristic (a random variable) X,
relative to a population P of (known or unknown) size N;

we choose a random sample from which to make inferences about the
population of interest;

choose n objects from the population and actually study Xi, i = 1, n, the
characteristic of interest for the ith object selected;

since the n objects were randomly selected, it makes sense that for
i = 1, n, Xi is a random variable, one that has the same distribution (pdf)
as X, the characteristic relative to the entire population;

furthermore, these random variables are independent, since the value
assumed by one of them has no effect on the values assumed by the
others;

once the n objects have been selected, we will have n numerical values
available, x1, . . . , xn, the observed values of X1, . . . ,Xn.
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Sample Theory

1. Sample Theory

We want to give a more rigorous and precise definition of a random sample, in
the framework of random variables, one that can then employ probability
theory techniques for making inferences.

Definition 1.1.
A random sample of size n from the distribution of X, a characteristic
relative to a population P, is a collection of n independent random variables
X1, . . . ,Xn, having the same distribution as X. The variables X1, . . . ,Xn, are
called sample variables and their observed values x1, . . . , xn, are called
sample data.

The term random sample may refer to the objects selected, to the sample
variables, or to the sample data. It is usually clear from the context which
meaning is intended. In general, we use capital letters to denote sample
variables and corresponding lowercase letters for their values, the sample data.
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Sample Theory

We are able now to define sample functions, or statistics, in the more precise
context of random variables.

Definition 1.2.
A sample function or statistic is a random variable

Yn = hn(X1, . . . ,Xn),

where hn : Rn → R is a measurable function. The value of the sample
function Yn is yn = hn(x1, . . . , xn).

We will revisit now some sample numerical characteristics discussed in the
previous chapter and define them as sample functions. That means they will
have a pdf, a cdf, a mean value, variance, standard deviation, etc. A sample
function will, in general, be an approximation for the corresponding
population characteristic. In that context, the standard deviation of the sample
function is usually referred to as the standard error.

In what follows, {X1, . . . ,Xn} denotes a sample of size n drawn from the
distribution of some population characteristic X.
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Sample Theory

Definition 1.3.

The sample mean is the sample function defined by

X =
1
n

n∑
i=1

Xi, with value x =
1
n

n∑
i=1

xi. (1.1)

Now that the sample mean is defined as a random variable, we can discuss its
distribution and its numerical characteristics.

Proposition 1.4.

Let X be a characteristic with E(X) = µ and V(X) = σ2. Then

E
(
X
)
= µ and V

(
X
)
=

σ2

n
. (1.2)

Moreover, if X ∈ N(µ, σ), then X ∈ N
(
µ,

σ√
n

)
.
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Sample Theory

Proof.
Since X1, . . . ,Xn are identically distributed, with the same distribution as X,
E(Xi) = E(X) = µ and V(Xi) = V(X) = σ2, ∀i = 1, n. Then, by the usual
properties of expectation, we have

E
(
X
)
= E

(
1
n

n∑
i=1

Xi

)
=

1
n

n∑
i=1

E(Xi) =
1
n

nµ = µ.

Further, since X1, . . . ,Xn are also independent, by the properties of variance,
it follows that

V
(
X
)
= V

(
1
n

n∑
i=1

Xi

)
=

1
n2

n∑
i=1

V(Xi) =
1
n2 nσ2 =

σ2

n
.

The last part follows from the fact that X is a linear combination of
independent, Normally distributed random variables.
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Sample Theory

Remark 1.5.

As a consequence, the standard deviation of X is

Std(X) =

√
V(X) =

σ√
n
.

So, when estimating the population mean µ from a sample of size n by the
sample mean X, the standard error of the estimate is σ/

√
n, which oftentimes

is estimated by s/
√

n. Either way, notice that as n increases and tends to ∞,
the standard error decreases and approaches 0. That means that the larger the
sample on which we base our estimate, the more accurate the approximation.
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Sample Theory

Corollary 1.6.

Let X be a characteristic with E(X) = µ and V(X) = σ2 and for n ∈ N, let

Zn =
X − µ
σ√
n

.

Then the variable Zn converges in distribution to a Standard Normal variable,
as n → ∞, i.e. FZn

n→∞−→ FZ = Φ. Moreover, if X ∈ N(µ, σ), then the
statement is true for every n ∈ N.

Proof.
This is a direct consequence of the Central Limit Theorem (CLT).
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Sample Theory

Definition 1.7.

The statistic

νk =
1
n

n∑
i=1

Xk
i (1.3)

is called the sample moment of order k and its value is
1
n

n∑
i=1

xk
i .

The statistic

µk =
1
n

n∑
i=1

(Xi − X)k (1.4)

is called the sample central moment of order k, with value
1
n

n∑
i=1

(xi − x)k.
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Sample Theory

Remark 1.8.

Just like for theoretical (population) moments, we have

ν1 = X,

µ1 = 0,

µ2 = ν2 − ν2
1.

Next we discuss the distributions and characteristics of these new sample
functions.

Proposition 1.9.

Let X be a characteristic with the property that for k ∈ N, the theoretical
moment ν2k = ν2k(X) = E

(
X2k
)

exists. Then

E (νk) = νk and V (νk) =
1
n

(
ν2k − ν2

k
)
. (1.5)
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Sample Theory

Corollary 1.10.

Let X be a characteristic as in Proposition 1.9 and for n ∈ N, let

Zn =
νk − νk√
ν2k − ν2

k
n

.

Then Zn
d−→ Z, as n → ∞ .

Proposition 1.11.

Let X be a characteristic with V(X) = µ2 = σ2 and for which the theoretical
moment ν4 = E

(
X4
)

exists. Then

E (µ2) =
n − 1

n
σ2,

V (µ2) =
n − 1

n3

[
(n − 1)µ4 − (n − 3)σ4

]
. (1.6)
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Sample Theory

Remark 1.12.

Notice that the sample central moment of order 2 is the first statistic whose
expected value is not the corresponding population function, in this case the
theoretical variance. This is the motivation for the next definition.

Definition 1.13.

The statistic

s2 =
1

n − 1

n∑
i=1

(Xi − X)2 (1.7)

is called the sample variance and its value is
1

n − 1

n∑
i=1

(xi − x)2.

The statistic s =
√

s2 is called the sample standard deviation.

Lecture 9 12 / 35



Sample Theory

Remark 1.14.

With this definition, we have for the sample variance

E
(
s2) = E

(
n

n − 1
µ2

)
= µ2 = σ2. (1.8)

So, for the rest of this chapter, we will use these notations:
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Sample Theory

Function Population (theoretical) Sample

Mean µ = E(X) X =
1
n

n∑
i=1

Xi

Variance σ2 = V(X) s2 =
1

n − 1

n∑
i=1

(Xi − X)2

Standard deviation σ =
√

V(X) s =
√

s2

Moment of order k νk = E
(
Xk
)

νk =
1
n

n∑
i=1

Xk
i

Centr. mom. of order k µk = E
[
(X − E(X))k

]
µk =

1
n

n∑
i=1

(Xi − X)k

Table 1: Notations
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Estimation; Basic Notions

2. Estimation; Basic Notions

the parameter to be estimated is called the target parameter and it is
denoted it by θ;

two types of estimation will be considered: point estimate, when the
result of the estimation is one single value and interval estimate, when
the estimate is an interval enclosing the value of the target parameter;

in either case, the actual estimation is accomplished by an estimator, a
rule, a formula, or a procedure that leads us to the value of an estimate,
based on the data from a sample;

throughout this chapter, we consider a characteristic X (relative to a
population), whose pdf f (x; θ) depends on the parameter θ, which is to
be estimated;

as before, we consider a random sample of size n, i.e. sample variables
X1, . . . ,Xn, which are independent and identically distributed (iid),
having the same pdf as X.
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Estimation; Basic Notions

A point estimator for (the estimation of) the target parameter θ is a sample
function (statistic)

θ = θ(X1,X2, . . . ,Xn).

Other notations may be used, such as θ̂ or θ̃.

Each statistic is a random variable because it is computed from random data.
It has a so-called sampling distribution (a pdf). Each statistic estimates the
corresponding population parameter and adds certain information about the
distribution of X, the variable of interest. The value of the point estimator, the
point estimate, is the actual approximation of the unknown parameter.

Many different point estimators may be obtained for the same target
parameter. Some are considered “good”, others “not so good”, some “better”
than others. We need some criteria to decide on one estimator versus another.
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Estimation; Basic Notions

For one thing, it is highly desirable that the sampling distribution of an
estimator θ to be “clustered” around the target parameter. In simple terms, we
expect that the value the point estimator provides to be the actual value of the
parameter it estimates. This justifies the following notion.

Definition 2.1.

A point estimator θ is called an unbiased estimator for θ if

E(θ) = θ. (2.1)

The bias of θ is the value B = E(θ)− θ.

Unbiasedness means that in the long-run, collecting a large number of
samples and computing θ from each of them, on the average, we hit the
unknown parameter θ exactly. In other words, in a long run, unbiased
estimators neither underestimate, nor overestimate the parameter.
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Estimation; Basic Notions

Example 2.2.
1. Recall from Proposition 1.4 that for the sample mean, as a random variable,
we have E(X) = µ. Thus the sample mean is an unbiased estimator for the
population mean.
2. Also, by Proposition 1.9, the sample moment of order k is an unbiased
estimator for the theoretical moment of order k. 3. By Proposition Proposition
1.11, the sample central moment of order 2 is not an unbiased estimator for
the population central moment of order 2 (or it is a biased estimator), since

E(µ2) =
n − 2

n
µ2 ̸= µ2 = σ2.

3. However, the sample variance

s2 =
1

n − 1

n∑
i=1

(Xi − X)2

is an unbiased estimator for the population variance, since E(s2) = σ2. That
was the main reason for the way the sample variance was defined.
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Estimation; Basic Notions

Another desirable trait for a point estimator is that its values do not vary too
much from the value of the target parameter. So we need to evaluate
variability of computed statistics and especially parameter estimators. That
can be accomplished by computing the following statistic.

Definition 2.3.

The standard error of an estimator θ, denoted by σθ, is its standard deviation

σθ = σ(θ) = Std(θ) =
√

V(θ).

Both population and sample variances are measured in squared units.
Therefore, it is convenient to have standard deviations that are comparable
with our variable of interest, X. As a measure of variability, standard errors
show precision and reliability of estimators. They show how much estimators
of the same target parameter θ can vary if they are computed from different
samples. Ideally, we would like to deal with unbiased or nearly unbiased
estimators that have low standard error.
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Estimation by Confidence Intervals

3. Estimation by Confidence Intervals
3.1 Confidence Intervals, General Framework

Point estimators provide one single value, θ, to estimate the value of an
unknown parameter θ, but little measure of the accuracy of the estimate. In
contrast, an interval estimator specifies a range of values, within which the
parameter is estimated to lie. More specifically, the sample will be used to
produce two sample functions, θL(X1, . . . ,Xn) < θU(X1, . . . ,Xn), such that
for a given α ∈ (0, 1),

P(θL ≤ θ ≤ θU) = 1 − α. (3.1)

Then
− the range [θL, θU] is called a confidence interval (CI), more specifically, a
100(1 − α)% confidence interval,
− the values θL, θU are called (lower and upper) confidence limits,
− the quantity 1 − α is called confidence level or confidence coefficient and
− the value α is called significance level.
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Estimation by Confidence Intervals

Remark 3.1.

1. It may seem a little peculiar that we use 1 − α instead of simply α in (3.1),
since both values are in (0, 1), but the reasons are in close connection with
hypothesis testing and will be revealed in the next sections.

2. The condition (3.1) does not uniquely determine a 100(1 − α)% CI.

3. Evidently, the smaller α and the length of the interval θU − θL are, the
better the estimate for θ. Unfortunately, as we will see, as the confidence level
increases, so does the length of the CI, thus, reducing accuracy.

To produce a CI estimate for θ, we need a pivotal quantity, i.e. a statistic S
that satisfies two conditions:
− S = S(X1, . . . ,Xn; θ) is a function of the sample measurements and the
unknown parameter θ, this being the only unknown,
− the distribution of S is known and does not depend on θ.
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Estimation by Confidence Intervals

We will use the pivotal method to find 100(1 − α)% CI’s. We start with the
case where the pivot has a N(0, 1) distribution, so we can better understand
the ideas.

Let θ be a target parameter and let θ be an unbiased estimator for θ
(E(θ) = θ), with standard error σθ, such that, under certain conditions,

Z =
θ − θ

σθ

(
=

θ − E(θ)
σ(θ)

)
(3.2)

has an approximately Standard Normal N(0, 1) distribution.

We can use Z as a pivotal quantity to construct a 100(1 − α)% CI for
estimating θ. Since the pdf of Z is known, we can choose two values, ZL,ZU

such that for a given α ∈ (0, 1),

P(ZL ≤ Z ≤ ZU) = 1 − α. (3.3)
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Estimation by Confidence Intervals

How to choose them? Of course, there are infinitely many possibilities.

Recall quantiles. A quantile of a given order α ∈ (0, 1) for a random variable
X, is a value qα with the property that

F(qα) = P(X ≤ qα) = α,

i.e., that the area under the graph of the pdf, to the left of qα is α (Figure 1).

α

qα

f(pdf)

Figure 1: Quantile of order α ∈ (0, 1)
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Estimation by Confidence Intervals

Recall that for continuous random variables, the probability in (3.3) is an area,
namely the area under the graph of the pdf and above the x-axis, between the
values ZL and ZU . Basically, the values ZL and ZU should be chosen so that
that area is 1 − α. We will take advantage of the symmetry of the Standard
Normal pdf and choose the two values so that the area 1 − α is in “the
middle”. That means (since the total area under the graph is 1) the two
portions left on the two sides, both should have an area of α

2 , as seen in
Figure 2.

Since for ZL we want the area to its left to be α/2, we choose it to be the
quantile of order α/2 for Z,

ZL = zα/2.

For the value ZU , the area to its right should be α/2, which means the area to
the left is 1 − α/2. Thus, we choose

ZU = z1−α/2.
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Estimation by Confidence Intervals

Indeed, now we have

P(zα/2 ≤ Z ≤ z1−α/2) = 1 − α.

Figure 2: Confidence interval for the N(0, 1) distribution
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Estimation by Confidence Intervals

From here, we proceed to rewrite the inequality inside, until we get the limits
of the CI for θ. We have

1 − α = P
(

zα
2
≤ θ − θ

σθ
≤ z1−α

2

)
= P

(
σθ · zα

2
≤ θ − θ ≤ σθ · z1−α

2

)
= P

(
−σθ · z1−α

2
≤ θ − θ ≤ −σθ · zα

2

)
= P

(
θ − σθ · z1−α

2
≤ θ ≤ θ − σθ · zα

2

)
,

so the 100(1 − α)% CI for θ is given by[
θ − σθ · z1−α

2
, θ − σθ · zα

2

]
. (3.4)
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Estimation by Confidence Intervals

Remark 3.2.
1. Since the Standard Normal distribution is symmetric about the origin,
zα

2
= −z1−α

2
and the CI can be written as[

θ − σθ · z1−α
2
, θ + σθ · z1−α

2

]
or

[
θ + σθ · zα

2
, θ − σθ · zα

2

]
.

2. The CI we determined is a two-sided CI, because it gives bounds on both
sides. A two-sided CI is not always the most appropriate for the estimation of
a parameter θ. It may be more relevant to make a statement simply about how
large or how small the parameter might be, i.e. to find confidence intervals of
the form (−∞, θU] and [θL,∞), respectively, such that the probability that θ
is in the CI is 1 − α. These are called one-sided CI’s and they can be found
the same way, using quantiles of an appropriate order.

3. In what follows, for estimating various population parameters, the pivot
will be different, but the procedure of finding the CI will be the same, even
when the distribution of the pivot is not symmetric.
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Estimation by Confidence Intervals

3.2 Confidence Intervals for the Mean and Variance of One Population

Let X be a population characteristic, with mean µ = E(X) and variance
V(X) = σ2, whose pdf f (x; θ) depends on a parameter θ. Let X1,X2, . . . ,Xn

be a sample drawn from the pdf of X.

The formulas for finding confidence intervals for the mean µ and variance σ2

are based on the following results (which follow either from properties of
random variables, or are the consequence of some CLT).

Proposition 3.3.

Assume X ∈ N(µ, σ). Then

Z =
X − µ
σ√
n

∈ N(0, 1), T =
X − µ

s√
n

∈ T(n − 1) and

V =
1
σ2

n∑
i=1

(Xi − X)2 =
(n − 1) s2

σ2 ∈ χ2(n − 1).
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Estimation by Confidence Intervals

Proposition 3.4.

If the sample size is large enough (n > 30), then

Z =
X − µ
σ√
n

∈ N(0, 1) and T =
X − µ

s√
n

∈ T(n − 1).

CI for the mean, known variance

If either X ∈ N(µ, σ) or the sample is large enough (n > 30) and σ is known,
then by Propositions 3.3 and 3.4, we can use the pivot

Z =
X − µ
σ√
n

∈ N(0, 1).

The procedure will go exactly as described in the previous section, with
θ = µ, θ = X, σθ =

σ√
n

.
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Estimation by Confidence Intervals

The 100(1 − α)% CI for the mean is given by

µ ∈
[

X − z1−α
2

σ√
n
, X − zα

2

σ√
n

]
. (3.5)

Since N(0, 1) is symmetric (and one quantile is the negative of the other), we
can write it in short as

X ± zα
2

σ√
n

or X ∓ z1−α
2

σ√
n
. (3.6)

CI for the mean, unknown variance

In practice, it is somewhat unreasonable to expect to know the value of σ, if
the value of µ is unknown. We can find CI’s for the mean, without knowing
the variance. If either X ∈ N(µ, σ) or the sample is large enough (n > 30),
then by Propositions 3.3 and 3.4, we can use the pivot

T =
X − µ

s√
n

∈ T(n − 1).
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Estimation by Confidence Intervals

The same computations as before will lead to the 100(1 − α)% CI for the
mean:

µ ∈
[

X − t1−α
2

s√
n
, X − tα

2

s√
n

]
. (3.7)

Notice that we change the notations for the quantiles, according to the pdf of
the pivot (z for N(0, 1), t for T(n − 1), etc.). The Student T(n − 1) is also
symmetric (see Figure 3), so again, we can write the CI in short as

X ± tα
2

s√
n

or X ∓ t1−α
2

s√
n
. (3.8)

Figure 3: Confidence interval for the T distribution
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Estimation by Confidence Intervals

CI for the variance
By Proposition 3.3, if X ∈ N(µ, σ), then we can use the pivot

V =
(n − 1) s2

σ2 ∈ χ2(n − 1).

Let us see how to do that. Even though the χ2(n − 1) is not symmetric (see
Figure 4), so we cannot really talk about the “middle” for the area, we can still
use the quantiles as before. So, we have:

1 − α = P
(
χ2

α
2
≤ V ≤ χ2

1−α
2

)
= P

(
χ2

α
2
≤ (n − 1) s2

σ2 ≤ χ2
1−α

2

)
= P

(
1

χ2
1−α

2

≤ σ2

(n − 1) s2 ≤ 1
χ2

α
2

)

= P

(
(n − 1) s2

χ2
1−α

2

≤ σ2 ≤ (n − 1) s2

χ2
α
2

)
.
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Estimation by Confidence Intervals

Thus, a 100(1 − α)% CI for the variance is

σ2 ∈

[
(n − 1) s2

χ2
1−α

2

,
(n − 1) s2

χ2
α
2

]
(3.9)

and one for the standard deviation is

σ ∈

√√√√(n − 1) s2

χ2
1−α

2

,

√√√√(n − 1) s2

χ2
α
2

 (3.10)

Figure 4: Confidence Interval for the χ2 distribution
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Estimation by Confidence Intervals

Remark 3.5.

1. Remember, “χ2
α” is just a notation for the quantile of order α for the

χ2(n − 1) distribution, it does not mean you have to take the square of it!

2. Since the χ2(n − 1) is no longer symmetric, there is no relationship
between the two quantiles, we have to use both and there is no shorter writing
for the CI for the variance than the one in (3.9) (or (3.10) for the standard
deviation).

Example 3.6.

The time spent for finding a parking space downtown Cluj-Napoca during the
week was recorded for 64 drivers. The average and variance were found to be
15 minutes and 256 minutes, respectively. Find a 95% confidence interval for
the true average time spent to find a parking spot during the week in
downtown Cluj-Napoca.
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Estimation by Confidence Intervals

Solution. The population here is the set of times spent to find a parking space
downtown Cluj by all people who need to park downtown. We want to
estimate its average, so the mean µ.
For our sample, n = 64, X = 15 and s2 = 256.
To attain a confidence level of 1 − α = 0.95, we need α = 0.05 and
α/2 = 0.025.
Since σ is not known, we use formula (3.7) (or, actually, (3.8)). The quantiles
for the T(63) distribution are t0.025 = −1.9983, t0.975 = 1.9983 and the
95% CI for the mean is[

X ± tα
2

s√
n

]
= [11.0034, 18.9966].

So

µ ∈ [11.0034, 18.9966] ,

with probability 0.95. The interpretation is that 95% of the drivers spend, on
average, between 11.0034 and 18.9966 minutes trying to find a parking space
downtown Cluj-Napoca on weekdays.

■
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