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Quantiles

5. Quantiles

Quantiles generalize the idea of median, where the number 1/2 is replaced by
any probability.

Definition 5.1.

Let X be a random variable with cumulative distribution function F : R → R
and let α ∈ (0, 1). A quantile of order α is a number qα satisfying the
conditions

P(X < qα) ≤ α

P(X > qα) ≤ 1 − α, (5.1)

or, equivalently,
P(X < qα) ≤ α ≤ P(X ≤ qα),

i.e.
F(qα − 0) ≤ α ≤ F(qα). (5.2)
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Quantiles

To interpret (5.1), a quantile is a number with the property that it exceeds at
most 100α% of the data, and is exceeded by at most 100(1 − α)% of the data.

Of all quantiles, the most important are:
The median, the number M = q1/2; there are at most 50% of the data to the
left of the median and at most 50% to its right.
The quartiles are the numbers

Q1 = q1/4, Q2 = M = q1/2, Q3 = q3/4.

Remark 5.2.
1. Quantiles are useful in statistical analysis of data. The median roughly
locates the “middle” of a set of data, while the quartiles approximately locate
every 25 % of a set of data. These will be discussed again in the next chapter.

2. If X is discrete, then a quantile can take an infinite number of values, if the
line y = α and the curve y = F(x) have in common a segment line (see Figure
1).
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Quantiles
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Figure 1: Quantiles for discrete variables
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Quantiles

The case when X is continuous is more interesting and the one we will use in
Statistics.

If X is continuous, then for each α ∈ (0, 1), there is a unique quantile qα,
given by

F(qα) = α,

since F is a continuous function and F(qα − 0) = α = F(qα).

In this case, for F : R → R there always exists A ⊂ R such that F : A → [0, 1]
is both injective and surjective, hence invertible (see Figure 2). Thus, in this
case the unique quantile qα is found by

qα = F−1(α). (5.3)
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Quantiles
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Figure 2: Quantiles for continuous variables
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Quantiles

Now, as an interpretation, let us recall that for continuous random variables,
the cdf is expressed as an integral, which means as an area. So we have

α = F(qα) =

qα∫
−∞

f (x) dx,

which is the area below the graph of the pdf f , to the left of qα (see Figure 3).

α

qα

f(pdf)

Figure 3: Quantile of order α ∈ (0, 1)
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Covariance and Correlation Coefficient

6. Covariance and Correlation Coefficient

So far we have discussed numerical characteristics associated with one
random variable. But oftentimes it is important to know if there is some kind
of relationship between two (or more) random variables. So we need to define
numerical characteristics that somehow measure that relationship.

Definition 6.1.

Let X and Y be random variables. The covariance of X and Y is the number

cov(X,Y) = E
(
(X − E(X)) · (Y − E(Y))

)
, (6.1)

if it exists. The correlation coefficient of X and Y is the number

ρ(X,Y) =
cov(X,Y)√
V(X)V(Y)

=
cov(X,Y)
σ(X)σ(Y)

, (6.2)

if cov(X,Y),V(X),V(Y) exist and V(X) ̸= 0,V(Y) ̸= 0.
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Covariance and Correlation Coefficient

Notice the similarity between the definition of the covariance and that of the
variance. The covariance measures the variation of two random variables with
respect to each other. Just like with variance, large values (in absolute value)
of the covariance show a strong relationship between X and Y , while small
absolute values suggest a weak relationship. Unlike variance, covariance can
also be negative. A negative value means that as the values of one variable
increase, the values of the other decrease (see Figure 4).

Figure 4: Covariance
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Covariance and Correlation Coefficient

The covariance has the following properties:

Theorem 6.2.

Let X, Y and Z be random variables. Then the following properties hold:

a) cov(X,X) = V(X).

b) cov(X,Y) = E(XY)− E(X)E(Y).

c) If X and Y are independent, then cov(X,Y) = ρ(X,Y) = 0 (we say that
X and Y are uncorrelated).

d) V(aX + bY) = a2V(X) + b2V(Y) + 2ab cov(X,Y), for all a, b ∈ R.

e) cov(X + Y,Z) = cov(X,Z) + cov(Y,Z).
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Covariance and Correlation Coefficient

Proof.
a) This follows directly from definition.

b) A straightforward computation leads to

cov(X,Y) = E
(
(X − E(X)) · (Y − E(Y))

)
= E

(
XY − E(X)Y − E(Y)X + E(X)E(Y)

)
= E(XY)− E(X)E(Y)− E(X)E(Y) + E(X)E(Y)

= E(XY)− E(X)E(Y).

c) This follows from b), keeping in mind that X and Y are independent, so
E(XY) = E(X)E(Y).
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Covariance and Correlation Coefficient

Proof.
d)

V(aX + bY) = E
[(

aX + bY − aE(X)− bE(Y)
)2]

= E
[(

a
(
X − E(X)

)
+ b

(
Y − E(Y)

))2]
= E

[
a2
(

X − E(X)
)2

+ 2ab
(

X − E(X)
)(

Y − E(Y)
)

+ b2
(

Y − E(Y)
)2]

= a2V(X) + b2V(Y) + 2ab cov(X,Y).

e)

cov(X + Y,Z) = E
(
(X + Y − E(X)− E(Y))(Z − E(Z))

)
= E

(
(X − E(X))(Z − E(Z)) + (Y − E(Y))(Z − E(Z))

)
= cov(X,Z) + cov(Y,Z).
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Covariance and Correlation Coefficient

Remark 6.3.

1. Property d) of Theorem 6.2 can be generalized to any number of variables:

V
( n∑

i=1

aiXi

)
=

n∑
i=1

a2
i V(Xi) + 2

∑
1≤i<j≤n

aiaj cov(Xi,Xj).

2. A consequence of a) and e) of Theorem 6.2 is the following property:

cov(aX + b,X) = aV(X), for all a, b ∈ R.

3. The converse of Theorem 6.2c) is not true. Independence is a much
stronger condition.
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Covariance and Correlation Coefficient

Theorem 6.4.

Let X and Y be random variables. Then the following properties hold:

a) |ρ(X,Y)| ≤ 1, i.e. −1 ≤ ρ(X,Y) ≤ 1.

b) |ρ(X,Y)| = 1 if and only if there exist a, b ∈ R, a ̸= 0, such that
Y = aX + b.
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Covariance and Correlation Coefficient

Remark 6.5.
As Theorem 6.4 states, the correlation coefficient ρ(X,Y) measures the linear
“trend” between the variables X and Y .
When ρ = ±1, there is perfect linear correlation, so all the points (X,Y) are
on a straight line (see Figure 5). The closer its value is to ±1, the “more
linear” the relationship between X and Y is.
This notion will be revisited in the next chapter.

Figure 5: Perfect correlation
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Inequalities

7. Inequalities
Inequalities can be useful in estimation theory, for approximating
probabilities or numerical characteristics associated with a random variable.

Proposition 7.1 (Hölder’s Inequality).

Let X and Y be random variables and p, q > 1 with
1
p
+

1
q
= 1. Then

E(|XY|) ≤ (E(|X|p))
1
p · (E(|Y|q))

1
q . (7.1)

Remark 7.2.

1. One important particular case of Hölder’s inequality is for p = q = 2,

E(|XY|) ≤
√

E(X2) ·
√

E(Y2), (7.2)

known as Schwarz’s inequality.
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Inequalities

Remark (Cont).
2. A particular case of the above inequality is for Y = 1,

E(|X|) ≤
√

E(X2), (7.3)

known as Cauchy-Buniakowsky’s inequality.

Proposition 7.3 (Minkowsky’s Inequality).

Let X and Y be random variables and let p > 1. Then

(E(|X + Y|p))
1
p ≤ (E(|X|p))

1
p + (E(|Y|p))

1
p . (7.4)

Proposition 7.4 (Lyapunov’s Inequality).

Let X be a random variable, let 0 < a < b and c ∈ R. Then

(E(|X − c |a))
1
a ≤

(
E(|X − c |b)

) 1
b . (7.5)
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Inequalities

The next two inequalities are specific to random variables and are due to A. A.
Markov and P. L. Chebyshev. These inequalities have many applications in
statistical analysis.

 

 

 

 

 

 

 

 

Andrey Andreyevich Markov Pafnuty Lvovich Chebyshev
(1856 - 1922) (1821 - 1894)
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Inequalities

Proposition 7.5 (Markov’s Inequality).
Let X be a random variable and let a > 0. Then

P
(
|X| ≥ a

)
≤ 1

a
E(|X|). (7.6)

Proof.
Let A =

{
e ∈ S

∣∣ |X(e)| ≥ a
}

, with the indicator function

IA(e) =

{
0, |X(e)| < a
1, |X(e)| ≥ a

.

Then

a IA(e) =

{
0, |X(e)| < a
a, |X(e)| ≥ a

.
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Inequalities

Proof.
Now, if |X(e)| < a, then

aIA(e) = 0 ≤ |X(e)|

and if |X(e)| ≥ a, then
aIA(e) = a ≤ |X(e)|.

So, either way,
aIA(e) ≤ |X(e)|, ∀e ∈ S.

That means, as random variables,

aIA ≤ |X|,

which means the same thing is true for their expected values,

E(aIA) ≤ E(|X|).
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Inequalities

Proof.

E(aIA) ≤ E(|X|).

The pdf of aIA is

aIA

(
0 a

1 − P
(
|X| ≥ a

)
P
(
|X| ≥ a

) )
,

so
E(aIA) = aP

(
|X| ≥ a

)
.

Thus,
aP

(
|X| ≥ a

)
≤ E

(
|X|

)
,

i.e.
P
(
|X| ≥ a

)
≤ 1

a
E
(
|X|

)
.
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Inequalities

Proposition 7.6 (Chebyshev’s Inequality).

Let X be a random variable and let ε > 0. Then

P
(
|X − E(X)| ≥ ε

)
≤ 1

ε2 V(X), (7.7)

or, equivalently,

P
(
|X − E(X)| < ε

)
≥ 1 − 1

ε2 V(X), (7.8)

Proof.

Apply Markov’s inequality (7.6) to
(

X − E(X)
)2

and a = ε2, to get

P
(
(X − E(X))2 ≥ ε2

)
≤ 1

ε2 E
(
(X − E(X))2

)
,
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Inequalities

Proof.
i.e.

P
(
|X − E(X)| ≥ ε

)
≤ 1

ε2 V(X),

and, equivalently,

1 − P
(
|X − E(X)| < ε

)
≤ 1

ε2 V(X),

P
(
|X − E(X)| < ε

)
≥ 1 − 1

ε2 V(X).
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Inequalities

Example 7.7.
Suppose the number of errors in a new software, X, has expectation
E(X) = 20. Find a bound for the probability that there are at least 30 errors, if
the standard deviation is
a) σ(X) = 2;
b) σ(X) = 5.

Solution. According to Chebyshev’s inequality, (7.7), we have

P
(
|X − 20| ≥ ε

)
≤ (σ(X))2

ε2 .

So,

P(X ≥ 30) = P
(
X − 20 ≥ 10

)
≤ P

(
(X − 20 ≥ 10)∪(X − 20 ≤ −10)

)
= P

(
|X − 20| ≥ 10

)
≤ (σ(X))2

100
.
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Inequalities

a) If σ(X) = 2, we can estimate that

P(X ≥ 30) ≤ 4
100

= 0.04.

b) However, for a larger standard deviation of σ(X) = 5, the estimation is

P(X ≥ 30) ≤ 25
100

= 0.25.

■
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Central Limit Theorem

8. Central Limit Theorem
Central Limit Theorems are also results that can help approximate
characteristics of random variables. First, a little bit of preparation.

Given the special nature of random variables, as opposed to numerical
variables, there are various types of convergence that can be defined for
sequences of such variables, having to do with probability-related notions
(convergence in probability, in mean, in distribution, convergence almost
surely, etc.)

Definition 8.1.
Let {Xn}n∈N be a sequence of random variables with cumulative distribution
functions Fn = FXn , n ∈ N and let X be a random variable with cdf F = FX .
Then Xn converges in distribution to X, denoted by Xn

d→ X, if

lim
n→∞

Fn(x) = F(x), (8.1)

for every x ∈ R, a point of continuity of F.
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Central Limit Theorem

Remark 8.2.

Convergence in distribution is especially important, because the cdf of a
random variable is used to compute probabilities.

Knowing the limiting cdf of a sequence of random variables makes possible
the computation of probabilities (and other characteristics) in the “long run”.
So such results can be helpful in estimating characteristics of random
variables as n gets larger.

A statement about the limit in distribution of a sequence of random variables
is called a limit theorem.

If the limit variable has a Normal distribution, then such a result is called a
central limit theorem.

So, there are many such results, the name “Central Limit Theorem” is just
generic.
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Central Limit Theorem

We want to discuss a central limit theorem that applies to the following case:

Suppose X1,X2, . . . , Xn are independent, identically distributed (iid)
random variables (this is a case that will be used oftenly in Statistics). Having
the same pdf, they have the same expectation µ = E(Xi) and the same
standard deviation σ = Std(Xi) =

√
V(Xi).

We are interested in the random variable

Sn = X1 + . . .+ Xn.

This case appears in many applications and in many statistical procedures. We
see right away that

E(Sn) = nµ,

V(Sn) = nσ2.

How does Sn behave for large n?
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Central Limit Theorem

The pure sum Sn diverges. In fact, this should be anticipated because

V(Sn) = nσ2 → ∞,

so the variability of Sn grows unboundedly, as n goes to infinity.

The average Sn/n converges. Indeed, in this case, we have

V(Sn/n) =
1
n2 V(Sn) =

σ2

n
→ 0,

so the variability of Sn/n vanishes as n → ∞.

An interesting case is the variable Sn/
√

n,

E(Sn/
√

n) =
√

nµ,

V(Sn/
√

n) = σ2,

which neither diverges, nor converges.
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Central Limit Theorem

In fact, it behaves like some random variable. The following theorem (CLT)
states that this variable has approximately Normal distribution for large n. In
fact, the result is for its reduced (standardized) variable

Sn/
√

n − E
(

Sn/
√

n
)

Std
(

Sn/
√

n
) =

Sn − nµ
σ
√

n
.

Theorem 8.3.
Let X1,X2, . . . ,Xn be independent, identically distributed random variables
with expectation µ = E(Xi) and standard deviation σ = σ(Xi) and let

Sn = X1 + . . .+ Xn. (8.2)

Then, as n → ∞, the reduced sum

Zn =
Sn − nµ
σ
√

n
d→ Z ∈ N(0, 1). (8.3)
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Central Limit Theorem

Remark 8.4.

1. Relation (8.3) means that

FZn → FN(0,1), i.e.,

P(Zn ≤ x) → P(Z ≤ x), ∀x ∈ R, as n → ∞.

2. This result can be very helpful, since FN(0,1)(x) = Φ(x) is Laplace’s
function (see equation (6.6) in Lecture 5), whose values are known.

3. The CLT can be used as an approximation tool for n “large”. In practice, it
has been determined that that means n > 30.
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Central Limit Theorem

Example 8.5.

A disk has free space of 330 megabytes. Is it likely to be sufficient for 300
independent images, if each image has expected size of 1 megabyte with a
standard deviation of 0.5 megabytes?

Solution.
For each i = 1, 2, . . . , n (i.e. for each image), let Xi denote the space it takes,
in megabytes.

Then the total space taken by all 300 images will be the sum

Sn = X1 + X2 + · · ·+ Xn

and there will be sufficient space on the disk if

Sn ≤ 330.

■
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Central Limit Theorem

We have n = 300, µ = 1, σ = 0.5.
The number of images n is large enough, so the CLT applies to their total size
Sn. Then

P(sufficient space) = P(Sn ≤ 330)

= P
(

Sn − nµ
σ
√

n
≤ 330 − nµ

σ
√

n

)
= P

(
Zn ≤ 330 − 300 · 1

0.5 · 10
√

3

)
= P(Zn ≤ 3.46)

CLT
≈ P(Z ≤ 3.46) = Φ(3.46) = 0.9997,

a very high probability, hence, the available disk space is very likely to be
sufficient.

■

Lecture 7 33 / 33


	Quantiles
	Covariance and Correlation Coefficient
	Inequalities
	Central Limit Theorem

