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Continuous Random Variables and Probability Density Function

5. Continuous Random Variables and Probability Density
Function

Recall the definition of a random variable:
Let (S,K,P) be a probability space. A random variable is a function
X : S → R satisfying the property that for every x ∈ R, the event

(X ≤ x) := {e ∈ S | X(e) ≤ x} ∈ K.

Then, for every random variable X (not necessarily discrete), we defined the
cumulative distribution function of X: the function F = FX : R → R, defined
by

FX(x) = P(X ≤ x).

Definition 5.1.

Let (S,K,P) be a probability space. A random variable X : S → R is a
continuous random variable, if the set of values X(S) is any (finite or
infinite) interval in R.
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Continuous Random Variables and Probability Density Function

Proposition 5.2.

Let X be a continuous random variable with cdf F : R → R. Then F is
absolutely continuous, i.e. there exists a real function f : R → R, such that

F(x) =

x∫
−∞

f (t) dt, (5.1)

for all x ∈ R.

Definition 5.3.

Let X be a continuous random variable. Then the function f from Proposition
5.2 is called the probability density function (pdf) of X.
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Remark 5.4.

So, we use “pdf” to describe any random variable, “probability distribution
function” for discrete random variables and “probability density function” for
the continuous case. The term “density” in the continuous case, extends in a
natural way the notion of “distribution” from the discrete case, with
summation being replaced by integration. Note that not all books or authors
make that distinction (e.g. in Matlab, they are all called “densities”).
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Recall the properties of a cdf (Theorem 2.4., Chapter 3, Lecture 4).

Theorem (Properties of a cdf).
Let X be a random variable with cdf F : R → R. Then F has the following properties:

a) If a < b are real numbers, then P(a < X ≤ b) = F(b)− F(a).

b) F is monotonely increasing, i.e. if a < b, then F(a) ≤ F(b).

c) F is right continuous, i.e. F(x + 0) = F(x), for every x ∈ R, where
F(x + 0) = lim

y↘x
F(y) is the limit from the right at x.

d) lim
x→−∞

F(x) = 0 and lim
x→∞

F(x) = 1.

e) For every x ∈ R, P(X < x) = F(x − 0) = lim
y↗x

F(y) and P(X = x) = F(x)− F(x − 0).

From them, some common properties of a density function can be derived.
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Theorem 5.5.

Let X be a continuous random variable with cdf F and density function f .
Then the following properties hold:

a) F′(x) = f (x), for all x ∈ R.
b) f (x) ≥ 0, for all x ∈ R.

c)
∫
R

f (t)dt = 1.

d) For every x ∈ R, P(X = x) = 0 and for every a, b ∈ R with a < b,

P(a < X ≤ b) = P(a < X ≤ b) = P(a < X < b) = P(a ≤ X ≤ b)

=

b∫
a

f (t) dt . (5.2)
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Proof.
a) This property follows directly from the definition of a continuous random

variable, by differentiating both sides of (5.1):

F(x) =

x∫
−∞

f (t) dt =⇒ F′(x) = f (x).

b) Recall from Theorem 2.4. that F is monotonely increasing. Thus, its
derivative is nonnegative, for every x ∈ R.

c) Recall that lim
x→∞

F(x) = 1 (Theorem 2.4.d)). So, we have

∫
R

f (t) dt =

∞∫
−∞

f (t) dt = lim
x→∞

x∫
−∞

f (t) dt = lim
x→∞

F(x) = 1.
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Proof.
d) To prove the first part, let x ∈ R be fixed and recall from Theorem 2.4.e)

that
P(X = x) = F(x)− F(x − 0).

But for a continuous random variable, F is absolutely continuous, so
continuous at every point, thus,

F(x) = F(x + 0) = F(x − 0).

Hence, P(X = x) = 0.

Now let a, b ∈ R with a < b. By Theorem 2.4.a), we have

P(a < X ≤ b) = F(b)− F(a) =

b∫
−∞

f (t) dt −
a∫

−∞

f (t) dt =

b∫
a

f (t) dt,

which, by the first part, is equal to all the other probabilities in (5.2).
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Remark 5.6.

So, probabilities involving continuous random variables can be computed by
integrating the density function over the given sets.

Furthermore, recall from Calculus that the integral
∫ b

a f (x)dx of a
non-negative function f equals the area below the curve y = f (x), above the
x-axis, between the vertical lines x = a and x = b.

Therefore, geometrically, probabilities are represented by areas (see Figure 1).
This aspect will be important later on. Also, by Theorem 5.5d), the total area
under the graph of a density function is equal to 1.
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Figure 1: Probability as area, for continuous random variables
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Common Continuous Distributions

6. Common Continuous Distributions

Uniform Distribution U(a, b)

A random variable X has a Uniform distribution ( unif ) with parameters
a, b ∈ R, a < b, if its pdf is

f (x) =


1

b − a
, if x ∈ [a, b]

0, if x /∈ [a, b].
(6.1)

Then, by (5.1), its cdf is

F(x) =

x∫
−∞

f (t)dt =


0, if x ≤ a

x − a
b − a

, if a < x ≤ b

1, if x ≥ b .

(6.2)
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Common Continuous Distributions

(a) Density Function (pdf) (b) Cumulative Distribution Function (cdf)

Figure 2: Uniform Distribution
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Common Continuous Distributions

Remark 6.1.

1. The Uniform distribution is used when a variable can take any value in a
given interval, equally probable. For example, locations of syntax errors in a
program, birthdays throughout a year, etc.

2. A special case is that of a Standard Uniform Distribution, where a = 0
and b = 1. The pdf and cdf are given by

fU(x) =
{

1, x ∈ [0, 1]
0, x /∈ [0, 1]

, FU(x) =


0, x ≤ 0
x, 0 < x ≤ 1
1, x ≥ 1 .

(6.3)

Standard Uniform variables play an important role in stochastic modeling; in
fact, any random variable, with any thinkable distribution (discrete or
continuous) can be generated from Standard Uniform variables.
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Common Continuous Distributions

Normal Distribution N(µ, σ)

The Normal distribution is, by far, the most important distribution, underlying
many of the modern statistical methods used in data analysis. It was first
described in the 1700’s by De Moivre, as a limiting case for the Binomial
distribution (when n, the number of trials, becomes infinite), but did not get
much attention.

 

Abraham de Moivre (1667 - 1754)
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Half a century later, both Laplace and Gauss (independently of each other)
rediscovered it in conjunction with the behavior of errors in astronomical
measurements. It is also referred to as the “Gaussian” distribution. 

 

 

 

 

 

 

 

 

 

 

 

Pierre-Simon de Laplace Carl Friedrich Gauss
(1749 - 1827) (1777 - 1855)
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A random variable X has a Normal distribution ( norm ) with parameters
µ ∈ R and σ > 0, if its pdf is

f (x) =
1

σ
√

2π
e
−
(x − µ)2

2σ2 , x ∈ R. (6.4)

The cdf of a Normal variable is then given by

F(x) =
1

σ
√

2π

x∫
−∞

e
−
(t − µ)2

2σ2 dt =
1√
2π

x−µ
σ∫

−∞

e
−

t2

2 dt. (6.5)
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Common Continuous Distributions

(a) Density Function (pdf) (b) Cumulative Distribution Function (cdf)

Figure 3: Normal Distribution

The graph of the Normal density is a symmetric, bell-shaped curve (known as
“Gauss’s bell” or “Gauss’s bell curve”) centered at the value of the first parameter µ,
as can be seen in Figure 3(a). The graph of the cdf of a Normally distributed random
variable is given in Figure 3(b) and this is approximately what the graph of the cdf of
any continuous random variable looks like.
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Remark 6.2.
1. There is an important particular case of a Normal distribution, namely
N(0, 1), called the Standard (or Reduced) Normal Distribution. A variable
having a Standard Normal distribution is usually denoted by Z. The density
and cdf of Z are given by

fZ(x) =
1√
2π

e
−

x2

2 , x ∈ R and FZ(x) =
1√
2π

x∫
−∞

e
−

t2

2 dt. (6.6)

The function FZ given in (6.6) is known as Laplace’s function (or the error
function) and its values can be found in tables or can be computed by most
mathematical software.

2. As noticed from (6.5) and (6.6), there is a relationship between the cdf of
any Normal N(µ, σ) variable X and that of a Standard Normal variable Z,
namely

FX(x) = FZ

(
x − µ

σ

)
.
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Common Continuous Distributions

Exponential Distribution Exp(λ)

A random variable X has an Exponential distribution ( exp ) with parameter
λ > 0, if its density function and cdf are given by

f (x) =

{
λe−λx, if x ≥ 0

0, if x < 0
and F(x) =

{
1 − e−λx, x ≥ 0

0, x < 0
, (6.7)

respectively. Their graphs are given in Figure 4.
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(a) Density Function (pdf) (b) Cumulative Distribution Function (cdf)

Figure 4: Exponential Distribution
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Common Continuous Distributions

Remark 6.3.

1. The Exponential distribution is often used to model time: lifetime, waiting
time, halftime, interarrival time, failure time, time between rare events, etc.

In a sequence of rare events (where the number of rare events has a Poisson
distribution), the time between two consecutive rare events (as well as the
time of the occurrence of the first rare event) is Exponential.

The parameter λ represents the frequency of rare events, measured in time−1

units.

2. A word of caution here: The parameter µ in Matlab (where the

Exponential pdf is defined as
1
µ

e−
1
µ

x
, x ≥ 0) is actually µ = 1/λ. It all comes

from the different interpretation of the “frequency”. For instance, if the
frequency is “2 per hour”, then λ = 2/hr, but this is equivalent to “ one every
half an hour”, so µ = 1/2 hours.

The parameter µ is measured in time units.
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Common Continuous Distributions

Remark 6.4.

1. The Exponential distribution is a special case of a more general
distribution, namely the Gamma(a, b), a, b > 0, distribution ( gam ). The
Gamma distribution models the total time of a multistage scheme.

2. If α ∈ N, then the sum of α independent Exp(λ) variables has a
Gamma(α, 1/λ) distribution.

Remark 6.5.

In Statistics, the most widely used distributions are the following:
− the Normal distribution, N(µ, σ), especially N(0, 1),
− the Student (T) distribution, T(n),
− the χ2 distribution, χ2(n),
− the Fisher (F) distribution, F(m, n).
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Continuous Random Vectors, Joint Density Function and Marginal
Densities

7. Continuous Random Vectors, Joint Density Function and
Marginal Densities

Again, we will restrict our study to the two-dimensional case.
Definition 7.1.
Let (S,K,P) be a probability space.

- A two-dimensional random vector is a function (X,Y) : S → R2

satisfying the condition

(X ≤ x,Y ≤ y) = {e ∈ S | X(e) ≤ x,Y(e) ≤ y} ∈ K, (7.1)

for all (x, y) ∈ R2.

- The function F : R2 → R defined by

F(x, y) = P(X ≤ x,Y ≤ y) (7.2)

is called the joint cumulative distribution function (joint cdf) of the
vector (X,Y).
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Continuous Random Vectors, Joint Density Function and Marginal
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The properties of the cdf of a random variable translate very naturally to a
random vector, as well.
Theorem 7.2.
Let (X,Y) be a random vector with joint cdf F : R2 → R and let
FX,FY : R → R be the cdf’s of X and Y , respectively. Then following
properties hold:

a) If ak < bk, k = 1, 2, then

P(a1 < X ≤ b1, a2 < Y ≤ b2) = F(b1, b2) − F(b1, a2)
− F(a1, b2) + F(a1, a2).

(7.3)

b) F is monotonically increasing in each variable.

c) F is right continuous in each variable.

d) lim
x,y→∞

F(x, y) = 1,

lim
y→−∞

F(x, y) = lim
x→−∞

F(x, y) = 0, ∀x, y ∈ R,

lim
y→∞

F(x, y) = FX(x), ∀x ∈ R, lim
x→∞

F(x, y) = FY(y), ∀y ∈ R.
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Continuous Random Vectors, Joint Density Function and Marginal
Densities

Proof.
We give a selected proof.

a) This proof is similar to the proof for random variables.

d) Let x ∈ R. We have

lim
y→∞

F(x, y) = P (X ≤ x,Y ≤ ∞) = P (X ≤ x) = FX(x)

and by symmetry, lim
x→∞

F(x, y) = FY(y), ∀y ∈ R. Then, it follows that

lim
x,y→∞

F(x, y) = lim
y→∞

FY(y) = lim
x→∞

FX(x) = 1.

For any x ∈ R,

lim
y→−∞

F(x, y) = P (X ≤ x,Y ≤ −∞) = P(∅) = 0

and by symmetry, lim
x→−∞

F(x, y) = 0, ∀y ∈ R, also.
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Definition 7.3.
Let (S,K,P) be a probability space. A random vector (X,Y) : S → R2 is a
continuous random vector, if the set of values (X,Y)(S) is a (finite or
infinite) continuous subset of R2.

Proposition 7.4.
Let (X,Y) be a continuous random vector with joint cdf F : R2 → R. Then F
is absolutely continuous, i.e. there exists a real function f : R2 → R, such that

F(x, y) =

x∫
−∞

y∫
−∞

f (u, v) du dv, ∀x, y ∈ R. (7.4)

Definition 7.5.
Let (X,Y) be a continuous random vector. Then the function f from
Proposition 7.4 is called the joint probability density function (joint pdf) of
(X,Y).

Lecture 5 26 / 31



Continuous Random Vectors, Joint Density Function and Marginal
Densities

Theorem 7.6.

Let (X,Y) be a continuous random vector with joint cdf F and joint density
function f . Let FX,FY : R → R be the cdf’s of X and Y and fX, fY : R → R be
the pdf’s of X and Y , respectively. Then the following properties hold:

a)
∂2F(x, y)
∂x∂y

= f (x, y), for all (x, y) ∈ R2.

b) f (x, y) ≥ 0, for all (x, y) ∈ R2.

c)
∫∫
R2

f (x, y) dxdy = 1.

d) For any domain D ⊆ R2,P
(
(X,Y) ∈ D

)
=

∫∫
D

f (x, y) dxdy.

e) fX(x) =
∫
R

f (x, y) dy, ∀x ∈ R and fY(y) =
∫
R

f (x, y) dx, ∀y ∈ R.
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Proof.
These properties follow easily from Proposition 7.4 and the properties of the
joint cdf stated in Theorem 7.2.

Remark 7.7.

When obtained from the joint pdf of the vector (X,Y), the pdf’s fX and fY are
called marginal densities.

Definition 7.8.

Two continuous random variables X and Y are independent if

f(X,Y)(x, y) = fX(x)fY(y), (7.5)

for all (x, y) ∈ R2.
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8. Functions of Continuous Random Variables

Proposition 8.1.

Let g : R → R be a strictly monotone and differentiable function, with
g′(x) ̸= 0,∀x ∈ R. Let X be a continuous random variable with pdf fX and let
Y = g(X). Then for y ∈ R, the pdf of Y is given by

fY(y) =


fX(g−1(y))
|g′(g−1(y))|

, if y ∈ g(R)

0, if y /∈ g(R) .

(8.1)

Proof.

Note that g being strictly monotone implies being injective. Then
g : R → g(R) is bijective and, hence, invertible. Thus, g−1 exists on g(R).
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Proof.

Case I. Assume g is strictly increasing. Then so is g−1, g′ > 0 and we have

FY(y) = P(Y ≤ y) = P(g(X) ≤ y)

=


P(X ≤ g−1(y)) = FX(g−1(y)), if y ∈ g(R)
0, if y < inf g(R)
1, if y > sup g(R)

.

Differentiate to obtain

fY(y) =
{

F′
X(g

−1(y)) · (g−1(y))′, if y ∈ g(R)
0, otherwise

=


fX(g−1(y))
g′(g−1(y))

, if y ∈ g(R)

0, otherwise

=


fX(g−1(y))
|g′(g−1(y))|

, y ∈ g(R)

0, y /∈ g(R)

.
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Proof.

Case II. If g is strictly decreasing, then so is g−1, g′ < 0 and we find that
FY(y) is

P(g(X) ≤ y) =


P(X ≥ g−1(y)) = 1 − FX(g−1(y)), if y ∈ g(R)
0, if y < inf g(R)
1, if y > sup g(R)

and

fY(y) =


− fX(g−1(y))

g′(g−1(y))
, if y ∈ g(R)

0, else

=


fX(g−1(y))
|g′(g−1(y))|

, y ∈ g(R)

0, y /∈ g(R)

.

Thus, in both cases, we have (8.1).
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