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Hypergeometric Model

2. Hypergeometric Model

This is the version of the Binomial model, without replacement. That will
make a great difference, not only in the computational formulas, but in the
parameters of the model.

Model: There are N (N ∈ N) objects, n1 (n1 ≤ N) of which have a certain
trait (we could call that “success”). A number of n (n ≤ N) objects are
selected, one at a time, without replacement. Find the probability P(n; k) of
exactly k (0 ≤ k ≤ n) of the n objects selected, having that trait (i.e. k
successes).

In the other setup, the model could be described as: There are N (N ∈ N)
balls in a box, n1 (n1 ≤ N) of which are white, the rest of them (N − n1)
black. A number of n (n ≤ N) balls are extracted, one at a time, without
putting them back. Find the probability P(n; k) of exactly k (0 ≤ k ≤ n) white
balls being selected.
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Hypergeometric Model

Remark 2.1.

The parameters in a Hypergeometric model are N (total number of objects),
n1 (number of objects with a certain property) and n (number of trials). Again,
k is not a parameter of the model.

Proposition 2.2.

The probability P(n; k) in a Hypergeometric model is given by

P(n; k) =
Ck

n1
Cn−k

N−n1

Cn
N

, k = 0, 1, . . . , n. (2.1)
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Hypergeometric Model

Remark 2.3.

1. Intuitively, the probability P(n; k) in (2.1) can be computed using the
classical definition of probability:
The total number of possible outcomes for the experiment is Cn

N .
There are Ck

n1
ways of choosing the k objects from the first category and

Cn−k
N−n1

ways of choosing the remaining n − k objects from the rest (without
replacement), and the two actions are independent of each other, so the
number of favorable outcomes is Ck

n1
Cn−k

N−n1
.

2. As before,

n∑
k=0

P(n; k) = 1, i.e.
n∑

k=0

Ck
n1

Cn−k
N−n1

= Cn
N .
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Hypergeometric Model

Example 2.4.

There are 15 boys and 20 girls in a probability class. Ten people are selected
for a certain project. Find the probability that the group contains
a) an equal number of boys and girls (event A),
b) at least one girl (event B).

Solution. This is a Hypergeometric model with N = 35 and n = 10. If we
choose “success” to mean “selecting a girl” (case I), then n1 = 20, otherwise
(“success” = “choosing a boy”, case II) , n1 = 15.

a) For event A, an equal number of boys and girls out of 10 people, means 5
boys and 5 girls. Therefore,
In case I,

P(A) = P(10; 5) =
C5

20C5
15

C10
35

≈ 0.2536 .

In case II,

P(A) = P(10; 5) =
C5

15C5
20

C10
35

≈ 0.2536 .
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Hypergeometric Model

b) For event B, since the question is about the number of girls being
selected, it is easier to go with case I.
“At least one girl” means the number of girls could be 1 or 2 or ... or 10. Let
us look at the complementary event, which would be “at most 0 girls”, or “0
girls”. There are less numbers to consider, so it is easier to compute the
probability of the contrary event. Thus,

P(B) = 1 − P
(
B
)
= 1 − P(10; 0) = 1 −

C0
20C10

15

C10
35

= 1 −
C10

15

C10
35

≈ 0.9999.

If we consider case II, the event would be “at most 9 boys” and again it is
easier to compute the probability of the contrary event, i.e. “at least 10 boys”,
which means “10 boys”. So,

P(B) = 1 − P
(
B
)
= 1 − P(10; 10) = 1 −

C10
15C0

20

C10
35

≈ 0.9999.

Note: whichever we consider as “success”, of course the result should be the
same.
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Poisson Model

3. Poisson Model

This model is a generalization of the Binomial model, in the sense that it
allows the probability of success to vary at each trial. Everything else is the
same. So, instead of one probability of success p, we will have probabilities
of success p1, p2, . . . , pn, one for each of the n trials.

Model: Consider an experiment where in each trial there are two possible
outcomes, “success”, A, and “failure”, A. The probability of success in the ith
trial is pi (and, accordingly, the probability of failure is qi = 1 − pi). Find the
probability P(n; k) that in n independent such trials, exactly k (0 ≤ k ≤ n)
successes occur.

The parameters of a Poisson model are n and p1, p2, . . . , pn (not k).
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Poisson Model

Proposition 3.1.

The probability P(n; k) in a Poisson model is given by

P(n; k) =
∑

1≤i1<···<ik≤n

pi1 . . . pik qik+1 . . . qin , k = 0, 1, . . . , n, (3.1)

where ik+1, . . . , in ∈ {1, . . . , n} \ {i1, . . . , ik}.
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Poisson Model

Remark 3.2.

1. The number P(n; k) is the coefficient of xk in the polynomial expansion

(p1x + q1) . . . (pnx + qn) =

n∑
k=0

P(n; k)xk

and, for the Poisson model, this is the computational formula that we will use.

2. Again, as a consequence (let x = 1 above),

n∑
k=0

P(n; k) = 1.

3. If pi = p (and consequently, qi = q), ∀i = 1, n, then this becomes the
Binomial model and (3.1) is reduced to (1.7) in Lecture 2.
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Poisson Model

Example 3.3 (The Three Shooters Problem).

Three shooters aim at a target and they hit it (independently of each other)
with probabilities 0.4, 0.5 and 0.7, respectively. Each of them shoots once.
Find the probability p that the target is hit once.

Solution.
A trial is “a person shoots the target”. Define “success” as “the target is hit”.

Then we have a Poisson model with n = 3 independent trials and p1 = 0.4,
p2 = 0.5, p3 = 0.7.

We want the probability of 1 success occurring. Hence p = P(3; 1) and it is
equal to the coefficient of x in the polynomial

(0.4x + 0.6)(0.5x + 0.5)(0.7x + 0.3) = 0.14x3 + 0.41x2 + 0.36x + 0.09,

i.e.
p = 0.36.
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Pascal (Negative Binomial) Model

4. Pascal (Negative Binomial) Model

This model is a little different from the previous ones, in the sense that, we are
not only interested in number of successes and failures, but also how they
occur, i.e. in the rank of a success. Another novelty is that in this model we
have (theoretically) an infinite number of trials.

Model: Consider an infinite sequence of Bernoulli trials with probability of
success p (and probability of failure q = 1 − p) in each trial. Find the
probability P(n, k) of the nth success occurring after k failures
(n ∈ N, k ∈ N ∪ {0}).

Remark 4.1.

For the Pascal model, again the parameters are n (rank of the success we
want) and p (probability of success), but n has a different meaning than the
one in the Binomial model. Again k is not a parameter of the model, it varies
from 0 to ∞.
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Pascal (Negative Binomial) Model

Proposition 4.2.

The probability P(n, k) in a Negative Binomial model is given by

P(n, k) = Ck
n+k−1pnqk, k = 0, 1, . . . . (4.1)

Remark 4.3.

1. The probability P(n; k) is the coefficient of xk in the expansion(
p

1 − qx

)n

=
∞∑

k=0

P(n, k)xk, |qx| < 1,

hence the name.
2. As before,

∞∑
k=0

P(n, k) = 1.
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Geometric Model

5. Geometric Model

Although a particular case for the Pascal Model (case n = 1), the Geometric
model comes up in many applications and deserves a place of its own.

Model: Consider an infinite sequence of Bernoulli trials with probability of
success p (and probability of failure q = 1 − p) in each trial. Find the
probability pk that the first success occurs after k failures (k ∈ N ∪ {0}).

There is only one parameter for this model, p.

Proposition 5.1.

The probability pk in a Geometric model is given by

pk = pqk, k = 0, 1, . . . . (5.1)
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Geometric Model

Remark 5.2.

1. The number pk is the coefficient of xk in the Geometric expansion (series)

p
1 − qx

=

∞∑
k=0

pkxk, |qx| < 1,

hence the name.
2. Again,

∞∑
k=0

pk =

∞∑
k=0

pqk = 1,

(the Geometric series).
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Geometric Model

Remark 5.3.

In a Geometric model setup, one might count the number of trials (not just
failures) needed to get the 1st success. The model would then be: In an
infinite sequence of Bernoulli trials with probability of success p (and
probability of failure q = 1 − p), find the probability p̃k that it takes k trials to
get the first success (k ∈ N). Then that would be

p̃k = pqk−1, k = 1, 2, . . . .

Of course, if X is the number of failures and Y the number of trials, then we
simply have Y = X + 1 (the number of failures plus the one success).
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Geometric Model

Example 5.4.

When a die is rolled, find the probability of the following events:
a) A: the first 6 appears after exactly 5 throws;
b) B: the 3rd even appears after exactly 5 throws.

Solution.
a) For event A, success means that face 6 appears, hence p = 1/6. We want

the first success to occur after 5 failures, so this is a Geometric model. By
(5.1), we have

P(A) = p5 =
1
6

(
5
6

)5

≈ 0.067.

b) For event B, success means that an even number shows, so p = 1/2. This
fits the Pascal model with n = 3 and p = 1/2. The 3rd even appears after 5
throws (on the 6th throw), which means after 3 odds, i.e. after 3 failures.
Thus, using (4.1), we have

P(B) = P(3, 3) = C3
5

(
1
2

)3(1
2

)3

≈ 0.1562.
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Chapter 3. Random Variables and Random Vectors

to do a more rigorous study of random phenomena, we need to give them
a more general quantitative description;

that materializes in random variables, variables whose observed values
are determined by chance;

random variables are the fundamentals of modern Statistics;
they fall into one of two categories:

- discrete or
- continuous.
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Discrete Random Variables and Probability Distribution Function

1. Discrete Random Variables and Probability Distribution
Function

Definition 1.1.

Let (S,K,P) be a probability space. A random variable is a function
X : S → R satisfying the property that for every x ∈ R, the event

(X ≤ x) := {e ∈ S | X(e) ≤ x} ∈ K. (1.1)

Definition 1.2.

A random variable X : S → R is a discrete random variable if the set of
values that it takes, X(S), is at most countable (i.e., finite or countably infinite)
in R.
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Discrete Random Variables and Probability Distribution Function

Example 1.3.

Consider the experiment of rolling a die. Then the sample space is

S = {e1, . . . , e6},

where ei represents the event that face i shows on the die, i = 1, 6.
Let K = P(S) (all subsets of S) and P be given by classical probability.
Define X : S → R by

X(ei) = i, i = 1, . . . , 6.

Let us check that this is a discrete random variable.
For any x ∈ R, the event (set) (X ≤ x) ⊆ S, so it obviously belongs to K.
Thus X is a well-defined random variable (it satisfies (1.1)).
Since the set of values that it takes X(S) = {1, . . . , 6} is finite, X is also a
discrete random variable.
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Discrete Random Variables and Probability Distribution Function

Example 1.4 (The indicator of an event).

Consider a probability space (S,K,P) over the sample space S of some
experiment. For any event A ∈ K, define XA : S → R by

XA(e) =

{
0, e /∈ A (e ∈ A)
1, e ∈ A

(1.2)

First off, XA(S) = {0, 1}, which is obviously countable.
Let us check condition (1.1).

Let x < 0. Since all the values that XA takes are nonnegative, there is no
way that XA(e) could be ≤ x, i.e.

(XA ≤ x) = {e ∈ S | XA(e) ≤ x} = ∅ ∈ K,

since any σ-field contains the impossible event (empty set).
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Discrete Random Variables and Probability Distribution Function

If 0 ≤ x < 1, the event from (1.1) is

(XA ≤ x) = {e ∈ S | XA(e) ≤ x}
= {e ∈ S | XA(e) = 0}
= A ∈ K,

because A ∈ K.
Finally for x ≥ 1,

(XA ≤ x) = {e ∈ S | XA(e) ≤ x} = A ∪ A = S ∈ K,

again, by the properties of a σ-field.
So XA is a discrete random variable.

Remark 1.5.

A discrete random variable that takes only a finite set of values is called a
simple discrete random variable. All of the examples above are simple
discrete random variables.
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Discrete Random Variables and Probability Distribution Function

The previous example can easily be generalized to any countable partition of
the sample space S.

Example 1.6.

Let I be a countable set of indexes, {Ai}i∈I ⊆ K a partition of S and
{xi}i∈I ⊆ R a sequence of distinct real numbers. Define X : S → R by

X(e) =
∑
i∈I

xiXAi(e), (1.3)

where XAi is the indicator of Ai, i ∈ I. Then X is a discrete random variable
satisfying

X(e) = xi <=> e ∈ Ai, (1.4)

for all i ∈ I.
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Discrete Random Variables and Probability Distribution Function

This is more than just an example, relation (1.3) gives the general expression
of a discrete random variable.

Any discrete random variable can be written in the form (1.3).

Having the set of values that X takes, {xi}i∈I , X can be written as in (1.3),
with Ai = (X = xi).

This justifies the next definition. Instead of defining a discrete random
variable as a function X : S → R, we emphasize directly the values {xi}i∈I

that it takes and the probabilities of taking each value,
pi = P(Ai) = P(X = xi).
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Discrete Random Variables and Probability Distribution Function

Definition 1.7.

Let X : S → R be a discrete random variable. The probability distribution
function (pdf), or probability mass function (pmf) of X is an array of the
form

X
(

xi

pi

)
i∈I

, (1.5)

where xi ∈ R, i ∈ I, are the values that X takes and pi = P(X = xi) are the
probabilities that X takes each value xi.
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Discrete Random Variables and Probability Distribution Function

Remark 1.8.
1. All values xi, i ∈ I, in (1.5) are distinct. If some are equal, they only appear
once, with the added corresponding probability.
2. All probabilities pi ̸= 0, i ∈ I. If for some i ∈ I, pi = 0, then the
corresponding value xi is not included in the pdf (1.5).
3. If X is a discrete random variable with pdf (1.5), then∑

i∈I

pi = 1,

(a necessary and sufficient condition for such an array to represent a pdf of a
discrete random variable). Indeed, since the events {(X = xi)}i∈I form a
partition of S, we have∑

i∈I

pi =
∑
i∈I

P(X = xi) = P(S) = 1.

4. Henceforth, we will identify a discrete random variable with its pdf and use
(1.5) to describe it.

Lecture 3 25 / 26



Discrete Random Variables and Probability Distribution Function

Example 1.9.

The pdf of the random variable in Example 1.3 (rolling a die) is

X

(
1 2 3 4 5 6
1
6

1
6

1
6

1
6

1
6

1
6

)
.

Example 1.10.

The pdf of the random variable in Example 1.4 (the indicator of an event) is

XA

(
0 1

1 − p p

)
, p = P(A).
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