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Conditional Probability and Independent Events

4. Conditional Probability and Independent Events

Many times, we have to compute the probability of an event that depends on
another event to some extent, so the probability of that other event has to be
considered, too.

Definition 4.1.

Let (S,K,P) be a probability space and let B ∈ K be an event with P(B) > 0.
Then for every A ∈ K, the conditional probability of A given B (or the
probability of A conditioned by B) is defined by

P(A|B) =
P(A ∩ B)

P(B)
. (4.1)

Remark 4.2.

The conditioning event cannot be the impossible event, that would not make
sense. So, P(B) > 0 and the formula (4.1) is well defined.

Lecture 2 2 / 23



Conditional Probability and Independent Events

Example 4.3.

Ninety percent of flights depart on time. Eighty percent of flights arrive on
time. Seventy-five percent of flights depart and arrive on time.
a) You are meeting a flight that departed on time. What is the probability that
it will arrive on time?
b) You have met a flight, and it arrived on time. What is the probability that it
departed on time?

Solution. Denote the events
A: a flight arrives on time,
D: a flight departs on time.
Then P(A) = 0.8, P(D) = 0.9, P(A ∩ D) = 0.75. So,

a) P(A|D) =
P(A ∩ D)

P(D)
=

0.75
0.9

= 0.8333.

b) P(D|A) = P(A ∩ D)

P(A)
=

0.75
0.8

= 0.9375.
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Conditional Probability and Independent Events

An immediate consequence of Definition 4.1 is the following property:

Proposition 4.4.

Let A,B ∈ K with P(A)P(B) ̸= 0. Then

P(A ∩ B) = P(A)P(B|A) = P(B)P(A|B). (4.2)

This rule can be generalized to any number of events.

Proposition 4.5.
(The Multiplication Rule)
Let {Ai}i=1,n ⊆ K, with P (A1 ∩ A2 ∩ . . . ∩ An) ̸= 0. Then

P(A1 ∩ · · · ∩ An) = P(A1)P(A2|A1)P(A3|A1 ∩ A2) . . .P(An|A1 ∩ · · · ∩ An−1).

(4.3)
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Conditional Probability and Independent Events

Proof.
We start with the right hand side (RHS) of (4.3) and get to the left hand side
(LHS). By (4.1), we have

RHS = P(A1) ·
P(A1 ∩ A2)

P(A1)
· P(A1 ∩ A2 ∩ A3)

P(A1 ∩ A2)
· . . . · P (A1 ∩ A2 · · · ∩ An)

P (A1 ∩ A2 · · · ∩ An−1)
,

which, after cancellations, is P(A1 ∩ · · · ∩ An), the LHS of (4.3).
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Conditional Probability and Independent Events

Proposition 4.6.

The probability of the complementary event formula still holds for conditional
probabilities, i.e., if A,B ∈ K and P(B) ̸= 0, then

P(A|B) = 1 − P(A|B). (4.4)

Proof.
We use the definition of conditional probability (4.1) and other known
probability rules (from last time). We have

P(A|B) =
P(A ∩ B)

P(B)
=

P
(

B ∩ A
)

P(B)

=
P
(
B \ A

)
P(B)

=
P(B)− P(A ∩ B))

P(B)

= 1 − P(A ∩ B)
P(B)

= 1 − P(A|B).
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Conditional Probability and Independent Events

Proposition 4.7.

For every A,B ∈ K with 0 < P(A) < 1, we have

P(B) = P(A)P(B|A) + P
(
A
)

P
(
B|A
)
. (4.5)

Proof.

{A,A} form a partition of S, so

B = B ∩ S = B ∩
(
A ∪ A

)
= (B ∩ A) ∪

(
B ∩ A

)︸ ︷︷ ︸
m.e.

.

Note that B∩A and B∩A are also mutually exclusive, since A and A are. Then

P(B) = P (B ∩ A) + P
(
B ∩ A

)
(4.2)
= P(A)P(B|A) + P

(
A
)

P
(
B|A
)
.
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Conditional Probability and Independent Events

This result can also be generalized, for any partition of S.

Proposition 4.8 (The Total Probability Rule).

Let {Ai}i∈I be a partition of S and let A ∈ K. Then

P(A) =
∑
i∈I

P (Ai)P (A|Ai) . (4.6)

Proof.
Just as before, we have

A = A ∩ S = A ∩
(⋃

i∈I

Ai
)
=
⋃
i∈I

(A ∩ Ai︸ ︷︷ ︸
m.e.

),

P(A) =
∑
i∈I

P (A ∩ Ai)
(4.2)
=
∑
i∈I

P(Ai)P(A|Ai).
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Conditional Probability and Independent Events

Example 4.9.

A test for a certain viral infection is 95% reliable for infected patients (i.e. it
gives a correct positive result) and 99% reliable for not infected ones (i.e.
gives a correct negative result). It is known that 4% of the population is
infected with that virus.
a) How reliable is the test in general (i.e. what is the probability that it shows
a correct result)?
b) If a patient got a positive result, how likely is it that she truly is infected?

Solution. Denote the events
C: the test gives a correct result,
PR: the test gives a positive result,
V: a person has the virus (is infected).
What is given:

P(C|V) = P(PR|V) = 0.95,

P(C|V) = P(PR|V) = 0.99 and

P(V) = 0.04.
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Conditional Probability and Independent Events

a) What we want is P(C) (without any condition).
Notice that {V,V} form a partition of the sample space. By the Total
Probability Rule (4.6), we have

P(C) = P(C|V)P(V) + P(C|V)P(V)

= 0.95 × 0.04 + 0.99 × 0.96 = 0.9884.

So, in general, the test is 98.84% reliable.
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Conditional Probability and Independent Events

b) Here, we want P(V|PR), which is given by

P(V|PR) =
P(V ∩ PR)

P(PR)
.

The numerator is

P(V ∩ PR)
(4.2)
= P(V)P(PR|V) = 0.04 × 0.95 = 0.038.

For the denominator, we use (4.6) again, with the same partition {V,V}:

P(PR) = P(PR|V)P(V) + P(PR|V)P(V)

(4.4)
= P(PR|V)P(V) +

[
1 − P(PR|V)

]
P(V)

= 0.95 × 0.04 + 0.01 × 0.96 = 0.0476.

Thus, the probability that the patient is indeed infected after having a positive
test, is

P(V|PR) =
0.038
0.0476

= 0.7983.
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Conditional Probability and Independent Events

Closely related to conditional probability is the notion of independence of
events.

Definition 4.10.

Two events A,B ∈ K are said to be independent if

P(A ∩ B) = P(A)P(B). (4.7)

The events {An}n∈N ⊆ K are said to be (mutually) independent if

P(Ai1 ∩ · · · ∩ Aik) = P(Ai1) . . .P(Aik),

for any finite subset {i1, . . . , ik} ⊂ N.

Remark 4.11.

If the events A,B ∈ K are independent, then P(A|B) = P(A) and
P(B|A) = P(B). The converse is also true. This can also be considered the
definition of independent events.
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Conditional Probability and Independent Events

Example 4.12.

Refer again to Example 4.3. Are the events “departing on time” and “arriving
on time” independent?

Solution.
Recall P(A) = 0.8, P(D) = 0.9, P(A ∩ D) = 0.75. So,

0.75 = P(A ∩ D)̸=P(A)P(D) = 0.8 × 0.9 = 0.72,

Thus, no, they are not independent.
Also notice that

P(A|D) = 0.8333 ̸=0.8 = P(A) and P(D|A) = 0.9375̸=0.9 = P(D).

Further, we see that P(A|D) > P(A) and P(D|A) > P(D). In other words,
departing on time increases the probability of arriving on time, and having
arrived on time, it is more likely (probable) that the flight departed on time.

■
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Conditional Probability and Independent Events

Proposition 4.13.

If A = ∅ (the impossible event, P(A) = 0) or A = S (the certain event,
P(A) = 1) and B ∈ K is any event, then A and B are independent.

Proof.
For the impossible event, we have

P(A ∩ B) = P(∅ ∩ B) = P(∅) = 0 = P(A)P(B).

If A is the certain event, then

P(A ∩ B) = P(S ∩ B) = P(B) = P(A)P(B).
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Conditional Probability and Independent Events

Proposition 4.14.

Let A,B ∈ K be independent events. Then A and B are also independent.

Proof.
We simply check the condition for independence:

P
(
A∩B

)
= P(A \ B) = P(A)− P(A∩B)

= P(A)− P(A)P(B) = P(A)
(
1 − P(B)

)
= P(A)P

(
B
)
.

Remark 4.15.

1. A direct consequence of proposition 4.14 is that if A,B ∈ K are
independent, then so are A,B and A,B.
2. More generally, if A1,A2, ...,An ∈ K, n ∈ N are independent, then so are
A1,A2, ...,An and any combination of events and contrary events.
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Chapter 2. Classical Probabilistic Models

some experiments follow the same “patterns”, so they are said to be in
the same “class of experiments”;

for each such class, we design a probabilistic model, which depends on
certain parameters;

for each model, we find the corresponding general computational
formulas, which then are applied to each experiment from that class,
giving specific values to each parameter.

Sometimes, the easiest setup for describing a probabilistic model is to
consider one (or more) box(es) containing a number (known or unknown) of
balls, having a certain color distribution. The experiment consists of
extracting one (or more) ball(s) from the box(es) (with or without putting it
back) and noting its (their) color.
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There is one important distinction that must be made! For an experiment, we
can have
− sampling with replacement, meaning that once an object (a ball) is
selected (extracted), it is replaced (returned to the box), so it can be selected
again,
or
− sampling without replacement, which means that once an object is
selected, it is not replaced, so it cannot be selected again.
If nothing else is specified and it could be done either way, then the sampling
is considered to be done with replacement.
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Binomial Model

1. Binomial Model

This model is used when the trials of an experiment satisfy three conditions,
namely

(i) they are independent,

(ii) each trial has only two possible outcomes, which we refer to as “success”
(A) and “failure” (A) (i.e. the sample space for each trial is S = A ∪ A),

(iii) the probability of success p = P(A) is the same for each trial (we denote
by q = 1 − p = P(A) the probability of failure).

Trials of an experiment satisfying (i) − (iii) are known as Bernoulli trials.
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Binomial Model

 

Jacob Bernoulli (1655 - 1705)
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Binomial Model

Model: Given n Bernoulli trials with probability of success p, find the
probability P(n; k) of exactly k (0 ≤ k ≤ n) successes occurring.

Remark 1.1.

For the Binomial model, the parameters are n (number of trials) and p
(probability of success). These are the numbers that describe the model. The
number k is not a parameter of the model. It varies from 0 to n (all possible
numbers of successes in n trials), depending on which probability we are
interested in computing.

Proposition 1.2.

The probability P(n; k) in a Binomial model is given by

P(n; k) = Ck
npk(1 − p)n−k = Ck

npkqn−k, k = 0, 1, . . . , n. (1.8)
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Binomial Model

Remark 1.3.

1. The probability P(n; k) is the coefficient of xk in the Binomial expansion

(px + q)n =

n∑
k=0

Ck
npkqn−kxk =

n∑
k=0

P(n; k)xk,

hence the name of this model.

2. As a consequence (let x = 1 above),

n∑
k=0

P(n; k) = 1.

This also follows from the fact that the events {k successes occur}n
k=0 form a

partition of S.
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Binomial Model

Example 1.4.

A die is rolled 5 times. Find the probability of the events
a) A : getting three 6’s,
b) B : getting at least two even numbers.

Solution. Here a trial is a roll of the die. Therefore, n = 5.

a) For the first part, “success” means rolling a 6. Hence, p =
1
6

.

This is a Binomial model with parameters n = 5, p = 1/6 and we have

P(A) = P(5; 3) = C3
5

(
1
6

)3(5
6

)2

≈ 0.0322.
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Binomial Model

b) For part two, “success” means getting an even number, so p =
1
2

. This a

Binomial model with n = 5 and p = 1/2. To obtain at least 2 successes (out
of 5 trials), means to obtain 2, 3, 4 or 5 successes. These events are mutually
exclusive (one and only one at a time can happen), thus,

P(B) = P(5; 2) + P(5; 3) + P(5; 4) + P(5; 5).

However, in this case it is easier to compute the probability of the contrary
event, which is “at most 1 success”, since there are fewer cases (0 or 1). Thus,

P(B) = 1 − P(B) = 1 −
(

P(5; 0) + P(5; 1)
)

= 1 −

(
C0

5

(
1
2

)0(1
2

)5

+ C1
5

(
1
2

)1(1
2

)4
)

≈ 0.8125.

■
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