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3.3 Confidence Intervals for Comparing Means and Variances of Two
Populations

It will be necessary sometimes to compare characteristics of two populations.
For that, we will need results on sample functions referring to both
collections.

Assume we have two characteristics X(1) and X(2), relative to two populations,
with means µ1 = E(X(1)), µ2 = E(X(2)) and variances
σ2

1 = V(X(1)), σ
2
2 = V(X(2)), respectively.

We draw from both populations random samples of sizes n1 and n2,
respectively, that are independent. Denote the two sets of random variables
by

X11, . . . ,X1n1 and X21, . . . ,X2n2 .

Then we have two sample means and two sample variances, given by

X1 =
1
n1

n1∑
i=1

X1i, X2 =
1
n2

n2∑
j=1

X2j
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and

s2
1 =

1
n1 − 1

n1∑
i=1

(
X1i − X1

)2
, s2

2 =
1

n2 − 1

n2∑
j=1

(
X2j − X2

)2
,

respectively. In addition, denote by

s2
p =

n1∑
i=1

(
X1i − X1

)2
+

n2∑
j=1

(
X2j − X2

)2

n1 + n2 − 2
=

(n1 − 1)s2
1 + (n2 − 1)s2

2
n1 + n2 − 2

the pooled variance of the two samples, i.e. a variance that considers (pools)
the sample data from both samples.
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In inferential Statistics, when comparing the means of two populations, we
estimate their difference and when comparing the variances, we estimate their
ratio.

The formulas for finding confidence intervals for the difference of means

µ1 − µ2 and for the ratio of variances
σ2

1

σ2
2

are based on the following results

(which follow either from properties of random variables, or are the
consequence of some CLT).
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Proposition 3.1.

Assume X(1) ∈ N(µ1, σ1) and X(2) ∈ N(µ2, σ2). Then

a) Z =
(X1 − X2)− (µ1 − µ2)√

σ2
1

n1
+

σ2
2

n2

∈ N(0, 1);

b) T =
(X1 − X2)− (µ1 − µ2)

sp

√
1
n1

+ 1
n2

∈ T(n1 + n2 − 2);

c) T∗ =
(X1 − X2)− (µ1 − µ2)√

s2
1

n1
+

s2
2

n2

∈ T(n), where

1
n
=

c2

n1 − 1
+

(1 − c)2

n2 − 1
and c =

s2
1

n1

s2
1

n1
+

s2
2

n2

;

d) F =
s2

1/σ
2
1

s2
2/σ

2
2
∈ F(n1 − 1, n2 − 1).
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Proposition 3.2.

If the samples are large enough (n1 + n2 > 40), then parts a), b) and c) of
Proposition 3.1 still hold.

CI for the difference of means

Case σ1, σ2 known

If either X(1) ∈ N(µ1, σ1), X(2) ∈ N(µ2, σ2) or the samples are large enough
(n1 + n2 > 40) and σ1, σ2 are known, then by Propositions 3.1 and 3.2, we
can use the pivot

Z =
(X1 − X2)− (µ1 − µ2)√

σ2
1

n1
+

σ2
2

n2

∈ N(0, 1).
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With the same line of computations as before, we find a 100(1 − α)% CI for
µ1 − µ2 as

µ1 − µ2 ∈

X1 − X2 − z1−α
2

√
σ2

1
n1

+
σ2

2
n2

, X1 − X2 − zα
2

√
σ2

1
n1

+
σ2

2
n2

, (3.1)

or, using symmetry, X1 − X2 ± zα
2

√
σ2

1
n1

+
σ2

2
n2

 , (3.2)

where the quantiles zα
2
, z1−α

2
refer to the N(0, 1) distribution.
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Case σ1 = σ2 unknown
Assume that either X(1) ∈ N(µ1, σ1), X(2) ∈ N(µ2, σ2) or the samples are
large enough (n1 + n2 > 40). The population variances are not known
anymore, but they are known to be equal. Then each is approximated by the
pooled variance s2

p. Then by Propositions 3.1 and 3.2, we use the pivot

T =
(X1 − X2)− (µ1 − µ2)

sp

√
1
n1

+
1
n2

∈ T(n1 + n2 − 2).

A 100(1 − α)% CI for µ1 − µ2 is given by

µ1 − µ2 ∈

[
X1 − X2 − t1−α

2
sp

√
1
n1

+
1
n2

, X1 − X2 − tα
2

sp

√
1
n1

+
1
n2

]
,(3.3)

where the quantiles tα
2
, t1−α

2
refer to the T(n1 + n2 − 2) distribution. Again,

by symmetry we can write the CI in short as[
X1 − X2 ± tα

2
sp

√
1
n1

+
1
n2

]
. (3.4)
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Case σ1, σ2 unknown

Assuming that either X(1) ∈ N(µ1, σ1), X(2) ∈ N(µ2, σ2) or the samples are
large enough (n1 + n2 > 40), by Propositions 3.1 and 3.2, we use the pivot

T∗ =
(X1 − X2)− (µ1 − µ2)√

s2
1/n1 + s2

2/n2

∈ T(n),

where 1/n = c2/(n1 − 1) + (1 − c)2/(n2 − 1) and c =
s2

1/n1

s2
1/n1 + s2

2/n2
.

We find a 100(1 − α)% CI for µ1 − µ2 as

µ1 − µ2 ∈
[
X1 − X2 − t1−α

2

√
s2

1
n1

+
s2

2
n2

, X1 − X2 − tα
2

√
s2

1
n1

+
s2

2
n2

]
, (3.5)

or, by symmetry, [
X1 − X2 ± tα

2

√
s2

1
n1

+
s2

2
n2

]
(3.6)

where the quantile tα
2
, t1−α

2
refer to the T(n) distribution, with n given above.
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CI for the ratio of variances
Assume the two independent samples were drawn from populations with
approximately Normal distributions N(µ1, σ1) and N(µ2, σ2), respectively.
By Proposition 3.2, we use the pivot

F =
s2

1/σ
2
1

s2
2/σ

2
2
∈ F(n1 − 1, n2 − 1).

A 100(1 − α)% CI for σ2
1/σ

2
2 is given by

σ2
1

σ2
2

∈

[
1

f1−α
2

·
s2

1

s2
2
,

1
fα

2

·
s2

1

s2
2

]
(3.7)

and, from here, a 100(1 − α)% CI for σ1/σ2 is

σ1

σ2
∈

[√
1

f1−α
2

· s1

s2
,

√
1
fα

2

· s1

s2

]
, (3.8)

where the quantiles fα
2
, f1−α

2
refer to the F(n1 − 1, n2 − 1) distribution.
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Example 3.3.

An account on server A is more expensive than an account on server B.
However, server A is faster. To see if it’s optimal to go with the faster but
more expensive server, a manager needs to know how much faster it is. A
certain computer algorithm is executed 30 times on server A and 20 times on
server B with the following results:

Server A Server B
n1 = 30 n2 = 20
X1 = 6.7 min X2 = 7.5 min
s1 = 0.6 min s2 = 1.2 min

a) Construct a 95% confidence interval for the difference µ1 − µ2 between the
mean execution times on server A and server B.
b) Assuming that the observed times are approximately Normal, find a 95%
confidence interval for the ratio of the two population standard deviations.
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Solution.
a) The samples are large enough (n1 + n2 = 50), that we can use Proposition

3.2.

Nothing is said about the population variances (that they might be known, or
known to be equal). Also, the second sample standard deviation is twice as
large as the first one, therefore, equality of population variances can hardly be
assumed.
We use the general case for unknown, unequal variances.
We want confidence level 1 − α = 0.95, so α = 0.05 and α/2 = 0.025.
The parameter n in (3.6) is found to be

n = 25.3989 ≈ 25.

For the T(25) distribution, we find the quantile

t0.025 = −2.0595.
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Then the 95% CI for the difference of means isX1 − X2 ± tα
2

√
s2

1
n1

+
s2

2
n2

 =

6.7 − 7.5 ± 2.06

√
0.62

30
+

1.22

20


= [−0.8 ± 0.505],

so,

µ1 − µ2 ∈ [−1.305, −0.295]

with probability 0.95. Since all values in the CI are negative, with high
probability, it seems that µ1 − µ2 < 0, so indeed the first server seems to be
faster, on average.

b) Since now the times are assumed to be approximately Normal, we can use
formula (3.8). For the F(29, 19) distribution, the quantiles are

f0.025 = 0.4482, f0.975 = 2.4019.
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Now,

s1

s2
=

0.6
1.2

= 0.5,

s2
1

s2
2

=
0.36
1.44

= 0.25.

Then, the 95% CI for the ratio of variances is

σ2
1

σ2
2
∈

[
1

f1−α
2

·
s2

1

s2
2
,

1
fα

2

·
s2

1

s2
2

]
=

[
0.25

2.4019
,

0.25
0.4482

]
= [0.104, 0.558]

and the 95% CI for the ratio of standard deviations is

σ1

σ2
∈

[√
1

f1−α
2

· s1

s2
,

√
1
fα

2

· s1

s2

]
=

[
0.5√

2.4019
,

0.5√
0.4482

]
= [0.323, 0.747].

It seems that
σ2

1

σ2
2
< 1, with high probability, so σ1 < σ2.

■
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4. Hypothesis Testing

so far we attempted to approximate the value of some population
parameter θ, based on a sample, without having any predetermined
notion concerning the actual value of this parameter. We simply tried to
ascertain its value, to the best of our ability, from the information given
by a random sample.

in contrast, statistical hypothesis testing is a method of making
statistical inferences on some unknown population characteristic, when
there is a preconceived notion concerning its value or its properties.
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Based on a random sample, we can use Statistics to verify a various number
of statements, such as:
− the average connection speed is as claimed by the internet service provider,
− a system has not been infected,
− the proportion of defective products is at most a certain percentage, as
promised by the manufacturer,
− a hardware upgrade was efficient,
− service times have a certain distribution,
− the average number of customers has increased by a certain number this
year, etc.

Testing statistical hypotheses has wide applications far beyond Mathematics
or Computer Science. These methods can be used to prove efficiency of a new
medical treatment, safety of a new automobile brand, innocence of a
defendant, authorship of a document; to establish cause-and-effect
relationships; to identify factors that can significantly improve performance;
to detect information leaks; and so forth.
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4.1 Basic Concepts
So, we will work with statistical hypotheses, about some characteristic X
(relative to a population), whose pdf f (x; θ) depends on the parameter θ,
which is to be estimated.
The method(s) used to decide whether a hypothesis is true or not (in fact, to
decide whether to reject a hypothesis or not) make up the hypothesis test. To
begin with, we need to state exactly what we are testing. Any hypothesis test
will involve two theories, two hypotheses,
− the null hypothesis, denoted by H0 and
− the alternative (research) hypothesis, denoted by H1 (or Ha).
A null hypothesis is always an equality, showing absence of an effect or
relation, some “normal” usual statement that people have believed in for
years. The alternative is the opposite (in some way) of the null hypothesis, a
“new” theory proposed by the researcher to “challenge” the old one. In order
to overturn the common belief and to reject the null hypothesis, significant
evidence is needed. Such evidence can only be provided by data. Only when
such evidence is found, and when it strongly supports the alternative H1, can
the hypothesis H0 be rejected in favor of H1.

Lecture 10 17 / 33



The purpose of each test is to determine whether the data provides sufficient
evidence against H0 in favor of H1. This is similar to a criminal trial. The jury
are required to determine if the presented evidence against the defendant is
sufficient and convincing. By default, the presumption of innocence,
insufficient evidence leads to acquittal.

To determine the truth value of a hypothesis, we use a sample function called
− the test statistic (TS).
The set of values of the test statistic for which we decide to reject H0 is called
− the rejection region (RR) or critical region (CR).
The purpose of the experiment is to decide if the evidence (the data from a
sample) tends to rebut the null hypothesis (if the value of the test statistic is in
the rejection region) or not (if that value falls outside the rejection region).

If the statistical hypothesis refers to the parameter(s) of the distribution of the
characteristic X, then we have a parametric test, otherwise, a nonparametric
test.
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For parametric tests, we will consider that the target parameter

θ ∈ A = A0 ∪ A1, A0 ∩ A1 = ∅,

and then the two hypotheses will be set as

H0 : θ ∈ A0
H1 : θ ∈ A1.

If the set A0 consists of one single value, A0 = {θ0}, which completely
specifies the population distribution, then the hypothesis is called simple,
otherwise, it is called a composite hypothesis (and the same is true for A1 and
the alternative hypothesis). The null hypothesis will always be taken to be
simple. Then the null hypothesis

H0 : θ = θ0

will have one of the alternatives
H1 : θ < θ0 (left-tailed test),
H1 : θ > θ0 (right-tailed test),
H1 : θ ̸= θ0 (two-tailed test).
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Remark 4.1.
The first and one of the most important tasks in a hypothesis testing problem
is to state the relevant null and alternative hypotheses to be tested. The null
hypothesis is usually taken to be a simple hypothesis, but the appropriate
alternate has to be understood from the context. We mentioned that H1 is the
opposite “in some way” of H0. Let us clarify this.
1. Consider a problem in which a medicine which is believed to have the side
effect of increasing the body temperature above normal, is tested. If the
temperature values of a number of patients taking this medicine are
considered, then for the mean temperature the relevant hypotheses would be

H0 : µ = 37
H1 : µ > 37,

since an average lower than or equal to 37oC would mean the same thing in
this context, the patients are fine. A problem would be a mean temperature
greater than 37oC. In this sense, H0 and H1 are “opposites” of each other.
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Remark (Cont).
2. To verify that the average broadband internet connection speed is 100
Mbps, we test the hypothesis

H0 : µ = 100
H1 : µ ̸= 100.

However, if we worry about a low connection speed only, we can conduct a
one-sided test of

H0 : µ = 100
H1 : µ < 100.

In this case, we only measure the amount of evidence supporting the
one-sided alternative H1 : µ < 100. In the absence of such evidence, we
gladly accept the null hypothesis.
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Designing a hypothesis test means constructing the rejection region RR, such
that for a given α ∈ (0, 1), the conditional probability, conditioned by H0
being true,

P(TS ∈ RR | H0) = α. (4.1)

The value α is called significance level or risk probability.
For any given hypothesis testing problem, we have the following possibilities:

Decision Actual situation
H0 true H1 true

Reject H0 Type I error Right
(prob. α) decision

Not reject H0 Right Type II error
decision (prob. β)

Table 1: Decisions and errors
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In two of the cases, we make the right decision, in the other two, we make an
error.
A type I error occurs when we reject a true null hypothesis and by (4.1), the
probability of making such an error is the significance level

P(type I error) = P( reject H0 | H0) = P(TS ∈ RR | H0) = α, (4.2)

while a type II error happens when we fail to reject a false null hypothesis,
and its probability is denoted by β,

P( type II error) = P( not reject H0 | H1) = P(TS /∈ RR | H1) = β. (4.3)
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Remark 4.2.

1. The rejection region and hence, the hypothesis test, are not uniquely
determined by (4.1), as was the case with confidence intervals.

2. Since both α and β represent risks of making an error, we would like to
design tests such that both of their values are small. Unfortunately, making
one of them very small will result in the other being unreasonably large. But,
for almost all statistical tests, α and β will both decrease as the sample size
increases.

3. In general, α is preset and a procedure is given for finding an appropriate
rejection region.
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4.2 General Framework, Z-Tests
Just like with confidence intervals, we start with the case where the test
statistic has a N(0, 1) distribution, so we can better understand the ideas.
Let θ be a target parameter and let θ be an unbiased estimator for θ
(E(θ) = θ), with standard error σθ, such that, under certain conditions, it is
known that

Z =
θ − θ

σθ

(
=

θ − E(θ)
σ(θ)

)
(4.4)

has an approximately Standard Normal N(0, 1) distribution. We design a
hypothesis testing procedure for θ the following way: for a given level of
significance α ∈ (0, 1), consider the hypotheses

H0 : θ = θ0,

with one of the alternatives

H1 :


θ < θ0
θ > θ0
θ ̸= θ0.

(4.5)

Lecture 10 25 / 33



We will use the test statistic TS = Z =
θ − θ

σθ
given by (4.4).

The observed value of the test statistic from the sample data is

TS0 = TS(θ = θ0). (4.6)

In our case, this is

Z0 = TS(θ = θ0) =
θ − θ0

σθ
.

How to design the rejection region RR? Let us start with the left-tailed case.
We need to determine the RR such that (4.1) holds. Intuitively, we reject H0 if
the observed value of the test statistic is far from the value specified in H0,
“far” in the sense of the alternative H1, in this case far to the left of θ0. So, we
determine a rejection region of the form

RR = {Z0 | Z0 ≤ k1} = (−∞, k1].
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We have

α = P(Z0 ∈ RR | H0) = P(Z0 ≤ k1 | θ = θ0) = P(Z0 ≤ k1 | Z0 ∈ N(0, 1)).

Now, we know that if Z0 ∈ N(0, 1), P(Z0 ≤ zα) = α, where zα is the quantile
of order α for the N(0, 1) distribution. Thus, we choose k1 = zα and

RRleft = {Z0 ≤ zα}. (4.7)

Similarly, for a right-tailed test, we want to find a rejection region of the form

RR = {Z0 | Z0 ≥ k2} = [k2,∞),

so that

α = P(Z0 ∈ RR | H0) = P(Z0 ≥ k2 | θ = θ0)

= P(Z0 ≥ k2 | Z0 ∈ N(0, 1)) = 1 − P(Z0 < k2 | Z0 ∈ N(0, 1)).

Since P(Z0 < z1−α) = 1 − α, then P(Z0 ≥ z1−α) = α and so we choose
k2 = z1−α, the quantile of order 1 − α for the N(0, 1) distribution and

RRright = {Z0 ≥ z1−α}. (4.8)
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Finally, for a two-tailed test, we reject the null hypothesis if the observed
value of the test statistic is far away from θ0 on either side. That is, the
rejection region should be of the form

RR = {Z0 | Z0 ≤ k1 or Z0 ≥ k2} = (−∞, k1]∪[k2,∞).

The rejection region should be chosen such that

P(Z0 ≤ k1 or Z0 ≥ k2 | θ = θ0) = α,

or, equivalently,

P(k1 < Z0 < k2 | Z0 ∈ N(0, 1)) = 1 − α.

We encountered such problems before in the previous sections, when finding
(two-sided) confidence intervals. As we did then, we will choose k1 = zα

2
and

k2 = z1−α
2

, so
RRtwo = {Z0 ≤ zα

2
or Z0 ≥ z1−α

2
}, (4.9)

or, since the distribution of Z is symmetric and z1−α
2
> 0,

RRtwo = {Z0 ≤ −z1−α
2

or Z0 ≥ z1−α
2
} = {|Z0| ≥ z1−α

2
}.
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To summarize, the rejection regions for the three alternatives are given by

RR :


{Z0 ≤ zα}
{Z0 ≥ z1−α}
{Z0 ≤ zα

2
or Z0 ≥ z1−α

2
} = {|Z0| ≥ z1−α

2
}.

(4.10)

Remark 4.3.

1. Since a test statistic Z ∈ N(0, 1) was used, these are commonly known as
Z-tests.

2. We will derive hypothesis tests for all the common parameters (mean,
variance, difference of means, ratio of variances). The test statistics and their
distributions will change, but the ideas and the principles will remain the
same, as for the case we just described.
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Remark (Cont).
3. Notice from our derivation of the rejection region for a two-tailed test, that
there is a strong relationship between confidence intervals and rejection
regions: The values θ0 of a target parameter θ in a 100(1 − α)% CI
(α ∈ (0, 1)), are precisely the values for which the test statistic falls outside
the RR, and hence, for which the null hypothesis θ = θ0 is not rejected at the
significance level α. We say that the 100(1 − α)% two-sided CI consists of all
the acceptable values of the parameter, at the significance level α.

4. Caution! This is not saying that the rejection region is the complement of
the confidence interval! The RR contains values for the test statistic TS, while
the CI consists of values of the parameter θ.
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Example 4.4.
The number of monthly sales at a firm is known to have a mean of 20 and a
standard deviation of 4 and all salary, tax and bonus figures are based on these
values. However, in times of economical recession, a sales manager fears that
his employees do not average 20 sales per month, but less, which could
seriously hurt the company. For a number of 36 randomly selected
salespeople, it was found that in one month they averaged 19 sales. At the 5%
significance level, does the data confirm or contradict the manager’s
suspicion?

Solution.
Recall that for n large, we have that

Z =
X − µ
σ√
n

has an approximately N(0, 1) distribution. Since the sample size n = 36 > 30
and σ is known, we can use a Z-test.
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The test is on the average number of sales per month, so for the mean µ.
The manager’s suspicion is that the average is less than 20, which is supposed
to be, so the two relevant hypotheses for this problem are

H0 : µ = 20
H1 : µ < 20,

a left-tailed test.

A type I error would mean concluding that the average number of monthly
sales is less than 20, when in fact, it is not; a type II error would be deciding
that the average number of monthly sales is 20 (or higher), but it actually is
not.

We allow for the probability of a type I error (the significance level) to be
α = 0.05. The population standard deviation is known, σ = 4 and the sample
mean is X = 19.
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The value of the test statistic is

Z0 =
X − µ0

σ√
n

=
19 − 20

4
6

= −1.5.

The rejection region is, by (4.10),

RR = (−∞, zα] = (−∞,−1.645].

Since Z0 /∈ RR, we do not reject H0. The evidence obtained from the data is
not sufficient to reject it. In the absence of sufficient evidence, by default, we
accept the null hypothesis.

So, at the 5% significance level, the data does not confirm the manager’s
suspicion.

■
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