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PART I. PROBABILITY THEORY

Chapter 1. Probability Space

There are three approaches to the notion of probability:

• classical: intuitive, what most people are familiar with and think of when
they hear the word “probability”;

• geometrical: a natural extension of classical probability, for the case of
infinite numbers of cases;

• axiomatic: rigorous, mathematical, enables proving probability
formulas.
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Experiments and Events

1. Experiments and Events

- An experiment is any process or action whose outcome is not known (is
random).

- The sample space, denoted by S, is the set of all possible outcomes of an
experiment. Its elements are called elementary events (denoted by
ei, i ∈ N).

- An event is a collection of elementary events, i.e. it is a subset of S
(events are denoted by capital letters, Ai, i ∈ N).
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Experiments and Events

Since events are defined as sets, we can employ set theory in describing them.
• two special events associated with every experiment:

– the impossible event, denoted by ∅ (“never happens”);
– the sure (certain) event, denoted by S (“surely happens”).

• for each event A ⊆ S, we define the event A, the complementary event,
to mean that A occurs if and only if A does not occur; A = A;

• we say that event A implies (induces) event B, A ⊆ B, if every element
of A is also an element of B, or in other words, if the occurrence of A
induces (implies) the occurrence of B; A and B are equal (equivalent),
A = B, if A implies B and B implies A;
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Experiments and Events

• for any two events A,B ⊆ S, we define the following events:
– union of A and B,

A ∪ B = {e ∈ S | e ∈ A or e ∈ B},

the event that occurs if either A or B or both occur;
– intersection of A and B,

A ∩ B = {e ∈ S | e ∈ A and e ∈ B},

the event that occurs if both A and B occur;
– difference of A and B,

A \ B = {e ∈ S | e ∈ A and e /∈ B} = A ∩ B,

the event that occurs if A occurs and B does not;
– symmetric difference of A and B,

A∆B = (A \ B) ∪ (B \ A) = (A ∪ B) \ (A ∩ B),

the event that occurs if A or B occur, but not both.
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Experiments and Events

The operations of union, intersection and symmetric difference are

– commutative:

A ∪ B = B ∪ A, A ∩ B = B ∩ A, A∆B = B∆A;

– associative:

(A ∪ B) ∪ C = A ∪ (B ∪ C), (A ∩ B) ∩ C = A ∩ (B ∩ C),

(A∆B)∆C = A∆(B∆C);

– distributive:

(A ∪ B) ∩ C = (A ∩ C) ∪ (B ∩ C), (A ∩ B) ∪ C = (A ∪ C) ∩ (B ∪ C),

A ∩ (B∆C) = (A ∩ B)∆(A ∩ C).
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Experiments and Events

Definition 1.1.

Two events A and B are said to be mutually exclusive (disjoint,
incompatible) if A and B cannot occur at the same time, i.e. A ∩ B = ∅;

Three or more events are mutually exclusive if any two of them are, i.e.

Ai ∩ Aj = ∅, ∀i ̸= j;

A collection of events {Ai}i∈I from S is said to be (collectively)
exhaustive if ⋃

i∈I

Ai = S;

A collection of events {Ai}i∈I from S is said to be a partition of S if the
events are collectively exhaustive and mutually exclusive, i.e.⋃

i∈I

Ai = S, Ai ∩ Aj = ∅,∀i, j ∈ I, i ̸= j.
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Experiments and Events

Example 1.2.

Consider the experiment of rolling a die. Then the sample space is

S = {e1, e2, e3, e4, e5, e6},

where the elementary events (outcomes) are ei, i = 1, 6, with ei being the
event that the face i shows on the die.

Consider the following events:
A: face 1 shows,
B: face 2 shows,
C: an even number shows,
D: a prime number shows,
E: a composite number shows.
Then we have

A = {e1}, B = {e2}, C = {e2, e4, e6}, D = {e2, e3, e5}, E = {e4, e6}.
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Experiments and Events

We also have

B ⊆ C, A ∩ B = ∅, A ∩ D = ∅, A ∩ E = ∅, D ∩ E = ∅,

C ∩ D = B, A ∪ D ∪ E = S.

So, for example, events {A,B} and {A,D,E} are mutually exclusive. In fact,
these last three are also collectively exhaustive. Thus, events {A,D,E} form a
partition of S.

Proposition 1.3.

For every collection of events {Ai}i∈I , De Morgan’s laws hold:

a)
⋃
i∈I

Ai =
⋂
i∈I

Ai,

b)
⋂
i∈I

Ai =
⋃
i∈I

Ai.
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Sigma Fields, Probability and Rules of Probability

2. Sigma Fields, Probability and Rules of Probability

Definition 2.1.

A collection K of events from S is said to be a σ-field (σ-algebra) over S if it
satisfies the following conditions:

(i) K ̸= ∅;
(ii) if A ∈ K, then A ∈ K;

(iii) if An ∈ K for all n ∈ N, then
∞⋃

n=1

An ∈ K.

If K is a σ-field over the sample space S, then the pair (S,K) is called a
measurable space.

Example 2.2.

The power set P(S) = {S′|S′ ⊆ S} is a σ-field over S.
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Sigma Fields, Probability and Rules of Probability

Theorem 2.3.

Let K be a σ-field over S. Then the following properties hold:

a) ∅, S ∈ K.

b) for all A,B ∈ K, A ∩ B, A \ B, A∆B ∈ K.

c) if An ∈ K, for all n ∈ N, then
∞⋂

n=1

An ∈ K.
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Sigma Fields, Probability and Rules of Probability

Definition 2.4.

Let K be a σ-field over S. A mapping P : K → R is called probability if it
satisfies the following conditions:

(i) P(S) = 1;

(ii) P(A) ≥ 0, for all A ∈ K;

(iii) for any sequence {An}n∈N ⊆ K of mutually exclusive events,

P
( ∞⋃

n=1

An

)
=

∞∑
n=1

P(An), (2.1)

(P is σ-additive).

The triplet (S,K,P) is called a probability space.
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Sigma Fields, Probability and Rules of Probability

Theorem 2.5.

Let (S,K,P) be a probability space, and let A,B ∈ K. Then the following
properties hold:

a) P(A) = 1 − P(A) and 0 ≤ P(A) ≤ 1.

b) P(∅) = 0.

c) P(A \ B) = P(A)− P(A ∩ B).

d) If A ⊆ B, then P(A) ≤ P(B), i.e. P is monotonically increasing.

e) P(A ∪ B) = P(A) + P(B)− P(A ∩ B).
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Sigma Fields, Probability and Rules of Probability

Proof.

a) A,A ∈ K, A ∪ A = S and A,A are mutually exclusive. Then

1 = P(S) = P(A ∪ A)
(2.1)
= P(A) + P(A),

i.e. P(A) = 1 − P(A).

Since P(A) ≥ 0, it follows that P(A) ≤ 1, so 0 ≤ P(A) ≤ 1.

b) P(∅) = P(S) = 1 − P(S) = 0.

c) A = (A ∩ B) ∪ (A \ B) and A ∩ B, A \ B are mutually exclusive. Thus

P(A)
(2.1)
= P(A ∩ B) + P(A \ B),

so P(A \ B) = P(A)− P(A ∩ B).
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Sigma Fields, Probability and Rules of Probability

Proof.
d) Since A ⊆ B, A = A ∩ B. Then by c), we have

0 ≤ P(B \ A) = P(B)− P(A),

which means P(A) ≤ P(B).

e) We have A ∪ B = A ∪ (B \ (A ∩ B)) and A,B \ (A ∩ B) are mutually
exclusive. Then using part c),

P(A ∪ B)
(2.1)
= P(A) + P(B \ (A ∩ B))
c)
= P(A) + P(B)− P(B ∩ (A ∩ B))

= P(A) + P(B)− P(A ∩ B).

Part e) of Theorem 2.5 can be generalized to more than two events.
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Sigma Fields, Probability and Rules of Probability

Theorem 2.6.

Let (S,K,P) be a probability space and (An)n∈N ⊆ K a sequence of events.
Then Poincaré’s formula (the inclusion-exclusion principle) holds

P
( n⋃

i=1

Ai

)
=

n∑
i=1

P(Ai) −
∑

1≤i<j≤n

P(Ai ∩ Aj)

+
∑

1≤i<j<k≤n

P(Ai ∩ Aj ∩ Ak) (2.2)

+ . . . + (−1)n−1P(
n⋂

i=1

Ai),

for all n ∈ N. As a consequence,

P
( ∞⋃

n=1

An

)
≤

∞∑
n=1

P(An), i.e. P is subadditive.
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Sigma Fields, Probability and Rules of Probability

Example 2.7.

Let us write formula (2.2) for three events A,B,C ∈ K.

P(A ∪ B ∪ C) = P(A) + P(B) + P(C)

−
(

P(A ∩ B) + P(A ∩ C) + P(B ∩ C)

)
+ P(A ∩ B ∩ C).
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Classical Definition of Probability

3. Classical Definition of Probability

Intuitively, each event has an associated quantity which characterizes how
likely its occurrence is; this is called the probability of the event. The classical
definition of probability was given independently by B. Pascal and P. Fermat
in the 17th century.

 

 

 

 

 

 

 

 

 

 

 

 

Blaise Pascal (1623 - 1662) Pierre de Fermat (1607 - 1665)
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Classical Definition of Probability

Definition 3.1.

Consider an experiment whose outcomes are finite and equally likely. Then
the probability of the occurrence of the event A is given by

P(A) =
number of favorable outcomes for the occurrence of A
total number of possible outcomes of the experiment

not
=

Nf

Nt
.

(3.1)

Remark 3.2.

This approach can be used only when it is reasonable to assume that the
possible outcomes of an experiment are equally likely (fair die, fair coin).
Also, the two numbers have to be finite. When that is not the case,
geometrical probability is used, when some continuous measure of a set is
used (instead of the cardinality):

P(A) =
µ(A)
µ(S)

.
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Classical Definition of Probability

Remark 3.3.

This notion is closely related to that of relative frequency of an event A:
repeat an experiment a number of times N and count the number of times
event A occurs, NA. Then the relative frequency of the event A is defined by

fA =
NA

N
.

Such a number is often used as an approximation to the probability of A. This
is justified by the fact that

fA
N→∞−→ P(A).

The relative frequency is used in computer simulations of random phenomena.
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Classical Definition of Probability

Example 3.4.

Two dice are rolled. Find the probability of the events
A: a double appears;
B: the sum of the two numbers obtained is less than or equal to 5.

Solution. We begin by computing the denominator in formula (3.1), because
that number is common to both probabilities. The total number of possible
outcomes is the number of elements of the sample space. The sample space is

S = {eij | i, j = 1, 6},

where eij (identified by the pair (i, j), for simplicity) represents the event that
number i showed on the first die and number j on the second. Hence,

Nt = 36.

Lecture 1 21 / 22



Classical Definition of Probability

For event A, Nf = 6 (there are six doubles out of 36 possible outcomes), so

P(A) =
1
6
.

For event B, we count the number of favorable outcomes, i.e. the number of
pairs (i, j) for which i + j ≤ 5. We have

(1, 1) (1, 2) (1, 3) (1, 4)
(2, 2) (2, 3)

}
6 outcomes

By symmetry, we have 6 × 2 = 12, but two of the pairs were already
symmetric, so Nf = 12 − 2 = 10 cases. Thus,

P(B) =
5

18
.

■
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