
Chapter 5. Correlation and Regression

1 Basic Concepts

In the previous chapter, we were concerned about the distribution of one random variable, its pa-
rameters, expectation, variance, median, symmetry, skewness, etc., but many variables observed
in real life are related. A very important part of Statistics is describing relations among two (or
more) variables, whether or not they are independent, and if they are not, what is the nature of
their dependence. One of the most fundamental concepts in statistical research is the concept of
correlation.

Correlation is a measure of the relationship between one dependent variable and one or more
independent variables. If two variables are correlated, this means that one can use information about
one variable to predict the values of the other variable.

Definition 1.1.
The independent variables X(1), . . . , X(k) are called predictors and are used to predict the values

and behavior of some other variable Y .

The dependent variable Y is called response and is a variable of interest that we predict based on

one or several predictors.

Regression is the method or statistical procedure that is used to establish the relationship between

response and predictor variables.

Establishing and testing such a relation enables us:
− to understand interactions, causes, and effects among variables;
− to predict unobserved variables based on the observed ones;
− to determine which variables significantly affect the variable of interest.

Consider several situations when we can predict a dependent variable of interest from indepen-
dent predictors.

Example 1.2 (World Population). According to the International Data Base of the U.S. Census
Bureau, population of the world grows according to Table 1. How can we use these data to predict
the world population in years 2025 and 2030?

Figure 1 shows that the population (response) is tightly related to the year (predictor). It in-
creases every year, and its growth is almost linear. If we estimate the regression function relating
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Year Pop. (mln. people) Year Pop.(mln.people) Year Pop.(mln.people)
1950 2558 1975 4089 2000 6090
1955 2782 1980 4451 2005 6474
1960 3043 1985 4855 2010 6970
1965 3350 1990 5287 2015 7405
1970 3712 1995 5700 2020 7821

Table 1: World Population 1950-2020
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Fig. 1: World population and regression forecast

our response and our predictor (see the dotted line on Figure 1) and extend its graph to the year
2030, the forecast is ready.

A straight line that fits the observed data for years 1950 − 2020 predicts a population of 8.06
billion in 2025 and 8.444 billion in 2030. It also shows that between 2020 and 2025, the world
population reaches the historical mark of 8 billion (which actually happened last year ...). How
accurate is the forecast obtained in this example? The observed population during 1950 − 2020

appears rather close to the estimated regression line in Figure 1. It is reasonable to hope that it will
continue to do so through 2030.

Example 1.3 (House Prices). Seventy house sale prices in a certain county (in the USA) are depicted
in Figure 2 along with the house area.

First, we see a clear relation between these two variables, and in general, bigger houses are more
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Fig. 2: House prices

expensive. However, the trend no longer seems linear.
Second, there is a large amount of variability around this trend. Indeed, area is not the only

factor determining the house price. Houses with the same area may still be priced differently. Then,
how can we estimate the price of a 3200-square-foot house? We can estimate the general trend
(the dotted line in Figure 2) and plug 3200 into the resulting formula, but due to obviously high
variability, our estimation will not be as accurate as in Example 1.2.

To improve our estimation in the last example, we may take other factors into account: location,
the number of bedrooms and bathrooms, the backyard area, the average income of the neighborhood,
etc. If all the added variables are relevant for pricing a house, our model will have a closer fit and
will provide more accurate predictions.

2 Univariate Regression, Curves of Regression

First we focus on univariate regression, predicting response Y based on one predictor X .
So, we have two vectors X and Y of the same length. We can get a first idea of the relationship

between the two, by plotting them in a scattergram, or scatterplot, which is a plot of the points
with coordinates (xi, yi), xi ∈ X, yi ∈ Y, i = 1, l. Denote by N = 2l, the entire data size. If
N is large, we can group the data into n2 classes and denote by (xi, yj) the class mark and by fij

the absolute frequency of the class (i, j), i, j = 1, n (just as in the one-dimensional case). Then we
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represent the two-dimensional characteristic (X, Y ) in a correlation table, or contingency table, as
shown in Table 2.

X \ Y y1 . . . yj . . . yn
x1 f11 . . . f1j . . . f1n f1.
...

...
...

...
...

xi fi1 . . . fij . . . fin fi.
...

...
...

...
...

xn fn1 . . . fnj . . . fnn fn.
f.1 . . . f.j . . . f.n f.. = N.

Table 2: Correlation Table

We have
n∑

j=1

fij = fi.,
n∑

i=1

fij = f.j,
n∑

i=1

fi. =
n∑

j=1

f.j = f.. = N = 2l.

Now we can define numerical characteristics associated with (X, Y ).

Definition 2.1. Let (X, Y ) be a two-dimensional characteristic whose distribution is given by Table

2 and let k1, k2 ∈ N.

(1) The (initial) moment of order (k1, k2) of (X, Y ) is the value

νk1k2 =
1

N

l∑
i,j=1

xk1
i yk2j , νk1k2 =

1

N

n∑
i,j=1

fijx
k1
i yk2j , (2.1)

for primary and for grouped data, respectively.

(2) The central moment of order (k1, k2) of (X, Y ) is the value

µk1k2 =
1

N

l∑
i,j=1

(xi − x)k1(yj − y)k2 , µk1k2 =
1

N

n∑
i,j=1

fij(xi − x)k1(yj − y)k2 , (2.2)

for primary and for grouped data, where x = ν10 and y = ν01 are the means of X and Y ,

respectively.

Remark 2.2. Just as the means of the two characteristics X and Y can be expressed as moments of
(X, Y ), so can their variances:

σ2
X = µ20 = ν20 − ν2

10,

σ2
Y = µ02 = ν02 − ν2

01.
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Definition 2.3. Let (X, Y ) be a two-dimensional characteristic whose distribution is given by Table

2.

(1) The covariance ( cov ) of (X, Y ) is the value

cov(X, Y ) = µ11 =
1

N

l∑
i,j=1

(xi−x)(yj−y), cov(X, Y ) = µ11 =
1

N

n∑
i,j=1

fij(xi−x)(yj−y),

(2.3)
for primary and for grouped data

(2) The correlation coefficient ( corrcoef ) of (X, Y ) is the value

ρ = ρXY =
cov(X, Y )√
µ20

√
µ02

=
µ11

σXσY

. (2.4)

As we know from random variables, the covariance gives a rough idea of the relationship be-
tween X and Y. If X and Y are independent (so there is no relationship, no correlation between
them), then the covariance is 0. If large values of X are associated with large values of Y, then the
covariance will have a positive value, if, on the contrary, large values of X are associated with small
values of Y, then the covariance will have a negative value. Also, an easier computational formula
for the covariance is

cov(X, Y ) = ν11 − x · y.

The correlation coefficient is then

ρ =
ν11 − x · y
σXσY

and it satisfies the inequality
−1 ≤ ρ ≤ 1. (2.5)

By its variation between −1 and 1, its value measures the linear relationship between X and Y.

If ρXY = 1, there is a perfect positive correlation between X and Y , if ρXY = −1, there is a
perfect negative correlation between X and Y . In both cases, the linearity is “perfect”, i.e there
exist a, b ∈ R, a ̸= 0, such that Y = aX + b. If ρXY = 0, then there is no linear correlation
between X and Y , they are said to be (linearly) uncorrelated. However, in this case, they may not
be independent, some other type of relationship (not linear) may exist between them.

In what follows, for the simplicity of writing, we assume the data

X = (x1, . . . , xn), Y = (y1, . . . , yn)
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is ungrouped and use the corresponding formulas (2.1)−(2.3).

Definition 2.4. The sample variances of X and Y are given by

s2x =
1

n− 1

n∑
i=1

(xi − x)2, s2y =
1

n− 1

n∑
i=1

(yi − y)2 (2.6)

and the covariance of (X, Y ) is

sxy =
1

n− 1

n∑
i=1

(xi − x)(yi − y). (2.7)

Also, to make the subsequent computations and writing easier, we define the sums of squares
and cross-products:

Sxx =
n∑

i=1

(xi − x)2 =
n∑

i=1

xi(xi − x),

Syy =
n∑

i=1

(yi − y)2 =
n∑

i=1

yi(yi − y), (2.8)

Sxy =
n∑

i=1

(xi − x)(yi − y) =
n∑

i=1

xi(yi − y) =
n∑

i=1

yi(xi − x).

The formulas on the right-hand sides of (2.8) follow because
n∑

i=1

(xi − x) =
n∑

i=1

(yi − y) = 0. Then

s2x =
Sxx

n− 1
, s2y =

Syy

n− 1
, sxy =

Sxy

n− 1
.

Notice that the formula for the correlation coefficient does not change, regardless of whether the
sums are divided by n or by n− 1.

ρ =
Sxy√

Sxx

√
Syy

=
sxy
sxsy

.

To find a relationship between X and Y, we may go the following path: knowing the value
of one of the characteristics, try to find a probable, an “expected” value for the other. If the two
characteristics are related in any way, then there should be a pattern developing, i.e., the expected
value of one of them, conditioned by the other one taking a certain value, should be a function of
that value that the other variable assumes. In other words, we should consider conditional means,
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defined similarly to regular means, only taking into account the condition.

Definition 2.5.
The conditional mean of Y , given X = xi, is the value

yi = y(xi) = E(Y |X = xi), i = 1, n (2.9)

and the curve y = G(x) formed by the points with coordinates (xi, yi), i = 1, n, is called the curve
of regression of Y on X .

The conditional mean of X , given Y = yj, is the value

xj = x(yj) = E(X|Y = yj), j = 1, n (2.10)

and the curve x = H(y) formed by the points with coordinates (yj, xj), j = 1, n, is called the curve
of regression of X on Y .

Remark 2.6. The curve of regression of a response Y with respect to the predictor X is then the
mean value of Y , y(x), given X = x. The curve of regression is determined so that it approximates
best the scatterplot of (X, Y ).

3 Least Squares Estimation

3.1 Least Squares Method

One of the most popular ways of finding curves of regression is the least squares method.
Assume the curve of regression of Y on X is of the form

y = y(x) = G(x; β0, . . . , βk).

We are looking for a function Ĝ(x) that passes as close as possible to the observed data points. This
is achieved by minimizing distances between observed data points

y1, . . . , yn

and fitted values, i.e. the corresponding points on the fitted regression line

ŷ1 = Ĝ(x1), . . . , ŷn = Ĝ(xn)

(see Figure 3). These differences are called residuals:
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Fig. 3: Least squares estimation of the regression line

ei = yi − ŷi, i = 1, . . . , n.

Method of least squares finds a regression function Ĝ(x) that minimizes the sum of squared
residuals

n∑
i=1

e2i =
n∑

i=1

(yi − ŷi)
2 .

Hence, we determine the unknown parameters β0, . . ., βs so that the sum of squares error

S = SSERR =
n∑

i=1

(
yi − Ĝ(xi; β0, . . . , βs)

)2
is minimum.
We find the point of minimum (b0, . . . , bs) =

(
β̂0, . . . , β̂s

)
of S by solving the system

∂S

∂βr

= 0, r = 0, s,

i.e.

−2
n∑

i=1

(
yi − Ĝ(xi; β0, . . . , βs)

)∂Ĝ(xi; β0, . . . , βs)

∂βr

= 0, (3.1)

for every r = 0, s. These are called normal equations.
Then the equation of the curve of regression of Y on X is

y = Ĝ (x; b0, . . . , bs) .

Function Ĝ is usually sought in a convenient (from the computational point of view) form:
linear, quadratic, logarithmic, etc. The simplest form is linear.
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3.2 Linear Regression

Let us consider the case of linear regression and find the equation of the line of regression of Y with
respect to X .

We are finding a curve

y = Ĝ(x) = β1x+ β0.

The coefficients β1 and β0 are called slope and intercept, respectively. The sum of squared residuals
is then

S(β0, β1) =
n∑

i=1

(
yi − β1xi − β0

)2
,

for which we find the minimum. We have to solve the 2× 2 system

∂S(β0, β1)

∂β1

= 0

∂S(β0, β1)

∂β0

= 0,

i.e.

−2
n∑

i=1

(
yi − β1xi − β0

)
xi = 0

−2
n∑

i=1

(
yi − β1xi − β0

)
= 0,

which becomes 

(
n∑

i=1

x2
i

)
β1 +

(
n∑

i=1

xi

)
β0 =

n∑
i=1

xiyj

(
n∑

i=1

xi

)
β1 +

(
n∑

i=1

1

)
β0 =

n∑
i=1

yj

and after dividing both equations by n,{
ν20β1 + ν10β0 = ν11

ν10β1 + ν00β0 = ν01.

Its solution is
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b1 = β̂1 =
ν11 − ν10ν01

ν20 − ν2
10

=
ν11 − x · y

σ2
X

=
ν11 − x · y
σXσY

· σY

σX

= ρ
σY

σX

= ρ
sy
sx

,

b0 = β̂0 = ν01 − ν10b1 = y − b1 · x.

So the equation of the line of regression of Y on X is

y − y = ρ
sy
sx

(x− x) (3.2)

and, by analogy, the equation of the line of regression of X on Y is

x− x = ρ
sx
sy

(y − y) . (3.3)

Example 3.1. Let us consider the world population data in Example 1.2 and find the equation of
the line of regression.

Solution. For the world population (1950− 2020) data, we find

x = 1985, y = 4991.5

sx = 24.5, sy = 1884.6

ρ = 0.9972

b1 = 76.72, b0 = −147300.5

and the equation of the line of regression

y = 76.72x− 147300.5.

With this, we were able to forecast the values of 8.0604 billion for the year 2025 and 8.444 billion
for 2030. Also, based on this model, the predicted population for 2024 is 7.9808 billion people.

Remark 3.2.
1. The point of intersection of the two lines of regression (3.2) and (3.3) is (x, y) . This is called the
centroid of the distribution of the characteristic (X, Y ).

2. The slope aY |X = ρ
sy
sx

of the line of regression of Y on X is called the coefficient of regression

of Y on X . Similarly, aX|Y = ρ
sx
sy

is the coefficient of regression of X on Y and we have the

relation
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ρ2 = aY |X aX|Y .

3. For the angle α between the two lines of regression, we have

tanα =
1− ρ2

ρ2
· sxsy
s2x + s2y

.

So, if | ρ | = 1, then α = 0, i.e. the two lines coincide. If | ρ | = 0 (for instance, if X and Y are
independent), then α =

π

2
, i.e. the two lines are perpendicular.

(a) ρ = 0.95 (b) ρ = −0.28

(c) ρ = 0 (d) ρ = 0

Fig. 4: Scattergram, Lines of Regression and Centroid
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Example 3.3. Let us examine the situations graphed in Figure 4.

• In Figure 4(a) ρ = 0.95, positive and very close to 1, suggesting a strong positive linear
trend. Indeed, most of the points are on or very close to the line of regression of Y on X. The
positivity indicates that large values of X are associated with large values of Y. Also, since
the correlation coefficient is so close to 1, the two lines of regression almost coincide.

• In Figure 4(b) ρ = −0.28, negative and fairly small, close to 0. If a relationship exists between
X and Y, it does not seem to be linear. In fact, they are very close to being independent,
since the points are scattered around the plane, no pattern being visible. The two lines of
regression are very distinct and both have negative slopes, suggesting that large values of X
are associated with small values of Y .

• In Figure 4(c) ρ = 0, so the two characteristics are uncorrelated, no linear relationship exists
between them. However they are not independent, they were chosen so that Y = −X2 +

sin

(
1

X

)
. Notice also, that the two lines of regression are perpendicular.

• Finally, in Figure 4(d) ρ = 0, again, so no linear relationship exists. In fact the two character-
istics are independent, which is suggested by their random scatter inside the plane.

3.3 Polynomial Univariate Regression

We have seen that linear regression with one predictor does not always produce the best approxi-
mation and, hence, the best tool for forecasting. What can be done about that? One thing would be
considering polynomials of higher degree.

Example 3.4 (U.S. Population). One can often reduce variability around the trend and do more
accurate analysis by adding nonlinear terms into the regression model. In Example 3.1 we predicted
the world population for years 2025–2030 based on the linear model

y = 76.72x− 147300.5

and we saw that this model has a pretty good fit.

However, a linear model does a poor prediction of the U.S. population between 1790 and 2010

(see Figure 5(a)). The population growth over a longer period of time is clearly nonlinear. On the
other hand, a quadratic model in Figure 5(b) gives an amazingly excellent fit! It seems to account
for everything except a temporary decrease in the rate of growth during World War II (1939–1945).

For this model, we assume
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y = β2x
2 + β1x+ β0, or

population = β2 · (year)2 + β1 · (year) + β0.

This equation seems to give a more reliable fit. The coefficients β0, β1 and β2 can be found, as
before, using the method of least squares.

Fig. 5: U.S. population in 1790− 2010 (mln. people)

Remark 3.5. Other types of curves of regression that are fairly frequently used are
− exponential regression y = abx,

− logarithmic regression y = a log x+ b,

− logistic regression y =
1

ae−x + b
,

− hyperbolic regression y =
a

x
+ b.

Overfitting a model

Among all possible straight lines, the method of least squares chooses one line that is closest to
the observed data. Still, there are some residuals and some positive sum of squared residuals. The
straight line has not accounted for all 100% of variation among the fitted values. Then, in Example
3.4 we considered a quadratic regression function Ĝ, which was a much better fit. So, it seems
that going to higher degree polynomials, we can always find a regression function Ĝ that passes
through all the observed points without any error. Then, the sum of squared errors S will truly be
minimized!
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However, trying to fit the data perfectly is a rather dangerous habit. Although we can achieve an
excellent fit to the observed data, it never guarantees a good prediction. The model will be overfitted,
too much attached to the given data. Using it to predict unobserved responses is very questionable
(see Figure 6). Moreover, it will often result in large variances of the fitted values and therefore,
unstable regression estimates.

Fig. 6: Regression-based prediction, overfitting

4 ANOVA and R-square

4.1 ANOVA - Preliminaries

Analysis of variance (ANOVA) explores variation among the observed responses. A portion of this
variation can be explained by predictors. The rest is attributed to “error”.

Let us recall Example 1.3 about house prices. We see on Figure 2 that there exists some variation
among the house sale prices. Why are the houses priced differently? Obviously, the price depends
on the house area, and bigger houses tend to be more expensive. So, to some extent, variation among
prices is explained by variation among house areas. However, two houses with the same area may
still have different prices. These differences cannot be explained by the area.

The total variation among observed responses is measured by the total sum of squares

SSTOT =
n∑

i=1

(yi − y)2 = (n− 1)s2y.
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This is the variation of the values yi about their sample mean regardless of our regression model. A
portion of this total variation is attributed to predictor X and the regression model connecting the
predictor with the response. This portion is measured by the regression sum of squares

SSREG =
n∑

i=1

(ŷi − y)2.

This is the portion of total variation explained by the model. Since the centroid (x, y) belongs to the
regression line, we have y = b1x+ b0, so we can write

SSREG =
n∑

i=1

(b0 + b1x− y)2 =
n∑

i=1

(y − b1x+ b1x− y)2

=
n∑

i=1

b21(x− x)2 = b21Sxx = b21(n− 1)s2x.

The rest of total variation is attributed to “error”. It is measured by the sum of squares error SSERR.
This is the portion of total variation not explained by the model. It is the sum of squared residuals
that the method of least squares minimizes. Regression and error sums of squares partition SSTOT

into two parts,

SSTOT = SSREG + SSERR.

The goodness of fit, appropriateness of the predictor and the chosen regression model can be judged
by the proportion of SSTOT that the model can explain.

Definition 4.1. R-square, or coefficient of determination is the proportion of the total variation

explained by the model,

R2 =
SSREG

SSTOT

= 1− SSERR

SSTOT

. (4.1)

It is always between 0 and 1, with high values generally suggesting a good fit.
In univariate regression, R-square also equals the squared sample correlation coefficient

R2 =
SSREG

SSTOT

=
b21(n− 1)s2x
(n− 1)s2y

=

(
b1
sx
sy

)2

=

(
ρ
sy
sx

sx
sy

)2

= ρ2. (4.2)

Example 4.2 (World Population, Continued). In Example 1.2 we found

x = 1985, y = 4991.5
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sx = 24.5, sy = 1884.6

ρ = 0.9972, b0 = −147300.5, b1 = 76.72

and the equation of the line of regression

y = −147300.5 + 76.72x.

Now, we further compute

SSTOT = (n− 1)s2y = 4.972 · 107,

SSREG = b21(n− 1)s2x = 4.944 · 107,

SSERR = SSTOT − SSREG = 2.83 · 105.

Then
R2 =

SSREG

SSTOT

= ρ2 = 0.9943 or 99.43%,

very high! This is a very good fit although some portion of the remaining 0.57% of total variation
can still be explained by adding non-linear terms into the model.

4.2 Univariate ANOVA and F-test

For further analysis, we introduce standard regression assumptions. We will assume that observed
responses yi are independent Normal random variables with mean

E(Yi) = β0 + β1xi

and constant variance σ2. So, responses Y1, . . . , Yn have different means but the same variance.
Predictors xi are considered non-random. As a consequence, regression estimates b0 and b1 also
have Normal distribution.

This variance of the responses, σ2, is equal to the mean squared deviation of responses from
their respective expectations. Let us estimate it.

First, we estimate each expectation

E(Yi) = G(xi) = β1xi + β0 by Ĝ(xi) = b0 + b1xi = ŷi.

Then, we consider deviations ei = yi− ŷi, square them, and add. We obtain the error sum of squares

SSERR =
n∑

i=1

e2i .
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Then, we divide this sum by its number of degrees of freedom, this is how variances are estimated.
Let us compute the degrees of freedom for all three SS in the regression ANOVA.

The total sum of squares

SSTOT = (n− 1)s2y has dfTOT = n− 1 degrees of freedom,

because it is computed directly from the sample variance s2y.
Out of them, the regression sum of squares

SSREG has dfREG = 1 degree of freedom,

because the regression line, which is just a straight line, has dimension 1.
This leaves dfERR = n− 2 degrees of freedom for the error sum of squares, so that

dfTOT = dfREG + dfERR.

Note that we could find the number of degrees of freedom by subtracting from the sample size n the
number of estimated parameters, 2 (β0 and β1).

Then the regression variance is

s2 =
SSERR

n− 2

and it estimates σ2 = Var(Y ) unbiasedly (i.e., E(s2) = σ2).

ANOVA F-test

We want to test how significant is a predictor X for the estimate of a response Y , i.e., how much
changes in X will produce significant changes in Y , via the linear relationship G(x) = β1x+ β0.

A non-zero slope β1 indicates significance of the model, relevance of predictor X in the infer-
ence about response Y and existence of a linear relation among them. It means that a change in X

causes changes in Y . In the absence of such relation, E(Y ) = β0 remains constant. Therefore, to
see if X is significant for the prediction of Y , we test the hypotheses

H0 : β1 = 0

H1 : β1 ̸= 0.
(4.3)

The hypotheses (4.3) can be tested using a T -statistic having a Student T (n− 2) distribution.
However, a more universal, and therefore, more popular method of testing significance of a

model is is the ANOVA F-test. It compares the portion of variation explained by regression with
the portion that remains unexplained. Significant models explain a relatively large portion.
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Sum Degrees Mean
Source of squares of freedom Squares F

SS df MS = SS/df

Model SSREG =
n∑

i=1

(ŷi − y)2 1 MSREG = SSREG
MSREG

MSERR

Error SSERR =
n∑

i=1

(yi − ŷi)
2 n− 2 MSERR =

SSERR

n− 2

Total SSTOT =
n∑

i=1

(yi − y)2 n− 1

Table 3: Univariate ANOVA

Each portion of the total variation is measured by the corresponding sum of squares, SSREG for
the explained portion and SSERR for the unexplained portion (error). Dividing each sum of squares
by the number of degrees of freedom, we obtain the mean squares

MSREG =
SSREG

dfREG

= SSREG ,

MSERR =
SSERR

dfERR

=
SSERR

n− 2
.

We see that the sample regression variance is the mean squared error

s2 = MSERR.

Under the null hypothesis

H0 : β1 = 0,

both mean squares, MSREG and MSERR are independent, and their ratio F has an F-distribution
with parameters dfREG = 1 and dfERR = n− 2 degrees of freedom. Then the ratio

F =
MSREG

MSERR

=
SSREG

s2

is the test statistic used to test significance of the entire regression model. The ANOVA F-test is
always right-tailed, because only large values of the F-statistic show a large portion of explained
variation and the overall significance of the model.

A standard way to present analysis of variance is the ANOVA Table 3.
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Example 4.3. A computer manager needs to know how efficiency of her new computer program
depends on the size of incoming data. Efficiency will be measured by the number of processed
requests per hour. Applying the program to data sets of different sizes, she gets the following
results:

Data size (gigabytes), x 6 7 7 8 10 10 15
Processed requests, y 40 55 50 41 17 26 16

In general, larger data sets require more computer time, and therefore, fewer requests are processed
within 1 hour. Let us find the ANOVA table and discuss it.

Solution. By least squares estimation, we find b1 = −4.14, b0 = 72.29 and, further,

SSTOT = Syy = 1452,

SSREG = b21Sxx = 961.14,

SSERR = SSTOT − SSREG = 490.86,

F =
(n− 2)SSREG

SSERR

= 9.79.

We have the ANOVA table

Sum Degrees Mean
Source of squares of freedom Squares F
Model 961.14 1 961.14 9.79
Error 490.86 5 98.17
Total 1452 6

The regression variance is estimated by

s2 = MSERR = 98.17.

R-square is

R2 =
SSREG

SSTOT

=
961.14

1452
= 0.662 or 66.2%.

That is, 66.2% of the total variation of the number of processed requests is explained by sizes of
data sets only.
The F-statistic of 9.79 is not significant at the 0.025 level, but significant at the 0.05 level, so, data
size is moderately significant in predicting number of processed requests.
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