
Stem-and-Leaf Plots

Stem-and-leaf plots are similar to histograms, although they carry more information. Namely, they
also show how the data are distributed within columns. To construct a stem-and-leaf plot, we need
to draw a stem and a leaf. The first one or several digits form a “stem”, and the next digit forms a
“leaf”. Other digits are dropped; in other words, the numbers get rounded. For example, the number
139 can be written as

13 9

with 13 going to the stem and 9 to the leaf, or as

1 3

with 1 joining the stem, 3 joining the leaf, and the digit 9 being dropped. In the first case, the leaf
unit equals 1 and the stem unit is 10, while in the second case, the leaf unit is 10 and the stem unit is
102, showing that the (rounded) number is not 13, but 130. The stem and leaf units must be carefully

specified for each such plot.
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Stem-and-leaf plot, Example 4.1
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Example 4.1. Consider again the data from Example 4.3 from last time, about the CPU times (in
seconds) for N = 30 randomly chosen jobs (sorted increasingly),

9 15 19 22 24 25 30 34 35 35

36 36 37 38 42 43 46 48 54 55

56 56 59 62 69 70 82 82 89 139

Let us draw a stem-and-leaf plot with leaf unit 1 (i.e., the last digits form a leaf). The remaining
digits go to the stem. Each CPU time is then written as

10 “stem” + “leaf”,

making the stem-and-leaf plot above.

Turning this plot by 90 degrees counterclockwise, we get a histogram with 10−unit bins (be-
cause each stem unit equals 10). Thus, all the information seen on a histogram can be obtained here
too. In addition, now we can see individual values within each column.

Stem-and-leaf plots can also be used to compare two samples. For this purpose, one can put two
leaves on the same stem.

Example 4.2. The following two samples represent transmission times (in seconds) of signals -
known as “pings”- from two different locations.

L1: 0.0156, 0.0396, 0.0355, 0.0480, 0.0419, 0.0335, 0.0543, 0.0350,

0.0280, 0.0210, 0.0308, 0.0327, 0.0215, 0.0437, 0.0483,

L2: 0.0298, 0.0674, 0.0387, 0.0787, 0.0467, 0.0712, 0.0045, 0.0167,

0.0661, 0.0109, 0.0198, 0.0039.

Let us sort the two samples in increasing order.

L1: 0.0156, 0.0210, 0.0215, 0.0280, 0.0308, 0.0327, 0.0335, 0.0350

0.0355, 0.0396, 0.0419, 0.0437, 0.0480, 0.0483, 0.0543,

L2: 0.0039, 0.0045, 0.0109, 0.0167, 0.0198, 0.0298, 0.0387, 0.0467

0.0661, 0.0674, 0.0712, 0.0787.

Since all numbers start with 0.0..., we choose a stem unit of 0.01, a leaf unit of 0.001 and drop the
last digit. We construct the following two stem-and-leaf plots (two in one), one to the left (L1) and
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one to the right (L2) of the stem.
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Looking at these two plots, we can see about the same average ping from the two locations. Also, we
realize that the first location has a more stable connection, because its pings have lower variability
(i.e., lower variance).

Scatter Plots and Time Plots

Scatter plots are used to see and understand a relationship between two variables. These can be
temperature and humidity, experience and salary, age of a network and its speed, number of servers
and the expected response time, etc. To study the relationship, both variables are measured on each
sampled item. For example, temperature and humidity during each of n days, age and speed of n
networks, or experience and salary of n randomly chosen computer scientists are recorded. Then, a
scatter plot consists of n points on an (x, y)-plane, with x- and y-coordinates representing the two
recorded variables.

Example 4.3. Protection of a personal computer largely depends on the frequency of running an-
tivirus software on it. One can set to run it every day, once a week, once a month, etc. During a
scheduled maintenance of computer facilities, a computer manager records the number of times the
antivirus software was launched on each computer during 1 month (variable X) and the number of
detected viruses (worms) (variable Y ). The data for 30 computers are given in the table below.

X 30 30 30 30 30 30 30 30 30 30 30 15 15 15 10

Y 0 0 1 0 0 0 1 1 0 0 0 0 1 1 0

X 10 10 6 6 5 5 5 4 4 4 4 4 1 1 1

Y 0 2 0 4 1 2 0 2 1 0 1 0 6 3 1
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Is there a connection between the frequency of running antivirus software and the number of worms
in the system? A scatter plot of these data is given in Figure 1(a). It clearly shows that the number
of worms reduces, in general, when the antivirus is employed more frequently. This relationship,
however, is not certain because no worm was detected on some “lucky” computers although the
antivirus software was launched only once a week (4 times a month) on them.

Fig. 1: Scatter plots for Example 4.3

Looking at the scatter plot in Figure 1(a), the manager realized that a portion of data is hidden
there because there are identical observations. For example, no worms were detected on 8 computers
where the antivirus software is used daily (30 times a month). Then, Figure 1(a) may be misleading.
When the data contain identical pairs of observations, the points on a scatter plot are often depicted
with either numbers or letters (e.g., “A” for 1 point, “B” for two identical points, “C” for three, ...,
“H” for eight, etc.). You can see the result in Figure 1(b).

When we study time trends and development of variables over time, we use time plots. These
are scatter plots with x-variable representing time.

Example 4.4. Here is how the world population increased between 1950 and 2012 (Figure 2). We
can clearly see that the population increases at an almost steady rate.
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Fig. 2: Time plot of the world population in 1950–2012, Example 4.4

The actual data will be given and studied in the next chapter (Correlation and Regression). We
will estimate the trends seen on time plots and scatter plots and even make forecasts for the future.
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Chapter 3. Calculative Descriptive Statistics

In the previous chapter we have considered some graphical methods for getting an idea of the
shape of the density function of the population from which the sample data was drawn. Some
characteristics, such as symmetry, regularity can be observed from these graphical displays of the
data. Next, we consider some statistics that allow us to summarize the data set analytically. Simple
descriptive statistics measuring the location, spread, variability and other characteristics can be
computed immediately. It is hoped that these will give us some idea of the values of the parameters
that characterize the entire population from which the sample was pooled. We are looking mainly
at two types of statistics: measures of central tendency, i.e. values that locate the observations with
highest frequencies (so, where most of the data values lie) and measures of variability, that indicate
how much the values are spread out.

1 Measures of Central Tendency

These are values that tend to locate in some sense the “middle” of a set of data. The term “average”
is often associated with these values. Each of the following measures of central tendency can be
called the “average” value of a set of data.

1.1 Mean

Definition 1.1. The (arithmetic) mean ( mean ) of the data x1, . . . , xN is the value

x =
1

N

N∑
i=1

xi. (1.1)

For grouped data,

(
xi

fi

)
i=1,n

,

x =
1

N

n∑
i=1

fixi.

Remark 1.2. The sum of all deviations from the mean is equal to 0. Indeed,

N∑
i=1

(xi − x) =
N∑
i=1

xi −Nxa = 0.
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Example 1.3. We consider again the data from Example 4.1 (CPU times):

70 36 43 69 82 48 34 62 35 15

59 139 46 37 42 30 55 56 36 82

38 89 54 25 35 24 22 9 56 19

The mean CPU time is

x =
70 + 36 + . . .+ 56 + 19

30
= 48.2333 seconds.

We may conclude that the mean CPU time of all the jobs handled by that particular processor is
about the same, “near” 48.2333 seconds. In other words, we try to estimate the population mean by
the sample mean. How good would that approximation be? We will learn later how to assess the
accuracy of our estimates.

Example 1.4. Let us assume that the value x = 139 (that seemed extreme, out of place, when we
looked at the histogram) was not in this sample. Then the mean would be

x1 = 45.1034,

somewhat lower.
Now, in the other direction, let us suppose that the CPU time of one more job (a heavier one) is
recorded and it is found to be 30 minutes = 1800 seconds. The mean of the new sample is

x2 = 104.7419 seconds,

way larger than the first value!

1.2 Median

One disadvantage of the sample mean is its sensitivity to extreme observations. As we have seen in
the previous example, one extreme value can significantly shift the value of the mean, to the point
where it becomes almost irrelevant.
The next measure of location is the median, which is much less sensitive than the mean.

Definition 1.5. The median ( median ) is the value M that divides a set of ordered data X into two

equal parts, i.e. the value with the property that it is exceeded by at most a half of observations and

is preceded by at most a half of observations.
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A sample is always discrete, since it consists of a finite number of observations. Then, comput-
ing a sample median is similar to the case of discrete distributions. In simple random sampling, all
observations are equally likely, and thus, equal probabilities on each side of a median translate into
an equal number of observations. There are two cases, depending on the sample size N .

If the sorted primary data is
x1 ≤ . . . ≤ xN ,

then

M =

 xk+1, if N = 2k + 1
xk + xk+1

2
, if N = 2k

.

Remark 1.6. The median may or may not be one of the values in the data.

Example 1.7. Let us find the median for the data in Example 1.3 (the CPU times).

Since there are N = 30 observations, there are two middle values, the 15th and the 16th entries.

9 15 19 22 24 25 30 34 35 35

36 36 37 38 42 43 46 48 54 55

56 56 59 62 69 70 82 82 89 139

Then the median is M = 42.5.

Remark 1.8. For an even number of observations, the median can be chosen to be any number
between the two middle values. So in the previous example, we could say that any number in the
interval (42, 43) is a median.

Example 1.9. Let us add again the extreme value of 30 minutes = 1800 seconds. The new sample

9 15 19 22 24 25 30 34 35 35

36 36 37 38 42 43 46 48 54 55

56 56 59 62 69 70 82 82 89 139 1800

has 31 observations, there is only one middle value (the 16th entry), so the median of the new sample
is

M2 = 43.

Notice that the new value differs very little from the previous one and is still relevant, unlike the
mean. So the median is a robust statistic, not being influenced (so much) by outliers.
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1.3 Mode

Definition 1.10. A mode Mo of a random variable X is a value with the highest pdf, i.e., it is the

point with the highest concentration of probability, Mo = argmax{f(x)}. A sample mode, xmo,

of a set of data is a most frequent value.

Remark 1.11. Notice from the wording of the definition that the mode may not be unique. A
distribution can have one mode − unimodal, two modes − bimodal, three modes − trimodal, or
more − multimodal.
When the pdf of a continuous distribution has multiple local maxima, it is common to refer to all of
the local maxima as modes of the distribution.
If every value occurs only once in a sample, we say that there is no mode.

Fig. 3: Normal Distribution (unimodal)

For data drawn from symmetric distributions, we have

x = M = xmo.

This is true, for instance, for the Normal distribution which is unimodal (Figure 3). For a Uni-
form U(a, b) distribution, all values in the interval [a, b] are modes (Figure 4(a)), while the χ2(1)

distribution (with ν = 1 degree of freedom) has no mode (Figure 4(b)).
In general,

xmo ≈ x− 3(x−M).
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(a) Uniform Distribution (multimodal)
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Fig. 4: Multiple modes and no mode

This empirical formula was given by K. Pearson.

Example 1.12. In our example about the CPU times (Example 1.3), the values 35, 36, 56 and 82 ap-
pear twice, while all the other values have a frequency of 1. So all four are modes, this is multimodal
data.

9 15 19 22 24 25 30 34 35 35
36 36 37 38 42 43 46 48 54 55

56 56 59 62 69 70 82 82 89 139

If we group the data into 10 classes, then the modal class is the third one, (35, 48], with modal mark
41.5 (Figure 5(a)). If we have only 6 classes, then the second one is the modal class, [30.7, 52.4),
with mark 41.55 (Figure 5(b)).

2 Measures of Variability

Once we have located the central values of a set of data, it is important to measure the variability,
whether the data values are tightly clustered or spread out. At the heart of Statistics lies variability:
measuring it, reducing it, distinguishing random from real variability, identifying the various sources
of real variability and making decisions in the presence of it. We need to know how “unstable” the
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Fig. 5: Modal class

data is and how much the values differ from its average or from other middle values. These numbers
will have small values for closely grouped data (little variation) and larger values for more widely
spread out data (large variation).

The measures of variation will also help us assess the reliability of our estimates and the accuracy
of our forecasts.

2.1 Quantiles, percentiles and quartiles

Consider the primary data X = {x1, . . . , xN}. The first two measures of variation give a very
general idea of the spread in the data values.

Definition 2.1. The range ( range ) of X is the difference

xmax − xmin.

If the values of X are sorted in increasing order, then the range is xN − x1.

Definition 2.2. The mean absolute deviation ( mad ) of X is the mean of the absolute value of the
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deviations from the mean, i.e. the value

MAD1 =
1

N

N∑
i=1

|xi − x|.

The median absolute deviation ( mad ) of X is the median of the absolute value of the deviations

from the median, i.e. the value

MAD2 = median{|xi −M |}.

Like the median, the median absolute deviation is not influenced by extreme values, whereas the
mean absolute deviation is.

Next, following the idea behind the definition of the median, we define values that divide the
data into certain percentages. We simply replace 0.5 in its definition by some probability 0 < p < 1.

Definition 2.3. Let X be a set of data sorted increasingly, p ∈ (0, 1) and k = 1, 2, . . . , 99.

(1) A sample p-quantile ( quantile ) is any number that exceeds at most 100p% of the sample and

is exceeded by at most 100(1− p)% of the sample.

(2) A k-percentile ( prctile ) Pk is a (k/100)-quantile. So, Pk exceeds at most k% and is exceeded

by at most (100− k)% of the data

(3) The quartiles of X are the values

Q1 = P25, Q2 = P50 = M and Q3 = P75.

xmin Q1 Q2 Q3 xmax

25% 25% 25% 25%

Fig. 6: Quartiles

Definition 2.4. Let X be a set of sorted data with quartiles Q1, Q2 and Q3.
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(1) The interquartile range ( iqr ) is the difference between the third and the first quartile

IQR = Q3 −Q1. (2.2)

(2) The interquartile deviation or the semi interquartile range is the value

IQD =
IQR

2
=

Q3 −Q1

2
. (2.3)

(3) The interquartile deviation coefficient or the relative interquartile deviation is the value

IQDC =
IQD

M
=

Q3 −Q1

2Q2

. (2.4)

Remark 2.5.
1. The interquartile deviation is an absolute measure of variation and it has an important property:
the range M ± IQD contains approximately 50% of the data.
2. The interquartile deviation coefficient IQDC varies between −1 and 1, taking values close to 0

for symmetrical distributions, with little variation and values close to ±1 for skewed data with large
variation.

Example 2.6. Consider again the CPU times (in seconds) for N = 30 randomly chosen jobs (sorted
ascendingly):

9 15 19 22 24 25 30 34 35 35

36 36 37 38 42 43 46 48 54 55

56 56 59 62 69 70 82 82 89 139

Solution. For this example, the range is

139− 9 = 130 seconds

and the mean and median absolute deviations are

MAD1 = 19.6133,

MAD2 = 13.5.

To determine the quartiles, notice that 25% of the sample equals 30/4 = 7.5 and 75% of the
sample is 90/4 = 22.5 observations. From the ordered sample, we see that the 8th element, 34, has

13



7 observations to its left and 22 to its right, so it has no more than 7.5 observations to the left and no

more than 22.5 observations to the right of it. Hence, Q1 = 34.
Similarly, the third quartile is the 23rd smallest element, Q3 = 59. Recall from last time that the

second quartile (the median) is Q2 = M = 42.5. Then

IQR = 59− 34 = 25,

IQD = IQR/2 = 12.5,

IQDC = IQD/Q2 = 0.2941.

The interval
M ± IQD = [30, 55]

contains 14 observations.
The value of the IQDC is close neither to 0, nor to the values ±1. So the data doesn’t show

strong symmetry or strong asymmetry. This may be due to the extreme values 9 and/or 139.

Example 2.7. A computer maker sells extended warranty on the produced computers. It agrees to
issue a warranty for x years if it knows that only 10% of computers will fail before the warranty ex-
pires. It is known from past experience that lifetimes of these computers have a Gamma distribution
with parameters α = 60 and λ = 1/5 years. Compute x and advise the company on the important
decision under uncertainty about possible warranties.

Solution. We just need to find the tenth percentile of the specified Gamma distribution and let
x = P10. In Matlab, that would be computed (as the inverse of the cdf) by

x = gaminv(0.1, 60, 1/5) = 10.0624.

Thus, the company can issue a 10-year warranty rather safely.

Remark 2.8. For populations or very large data sets, calculating exact percentiles can be computa-
tionally very expensive since it requires sorting all the data values. Machine learning and statistical
software use special algorithms (such as linear interpolation) to get an approximate percentile that
can be calculated very quickly and is guaranteed to have a certain accuracy.
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Outliers

The interquartile range is also involved in another important aspect of statistical analysis, namely
the detection of outliers. An outlier, as the name suggests, is basically an atypical value, “far away”
from the rest of the data, that does not seem to belong to the distribution of the rest of the values in
the data set.

We have seen how the mean is very sensitive to outliers. Other statistical procedures can be
gravely affected by the presence of outliers in the data. Thus, the problem of detecting and locating
an outlier is an important part of any statistical data analysis process.

How to classify a value as being “extreme”? First, we could use a simple property, known as the
“3σ rule”. This is an application of Chebyshev’s inequality

P (|X − E(X)| < ε) ≥ 1− V (X)

ε2
, ∀ε > 0.

If we use the classical notations E(X) = µ, V (X) = σ2, Std(X) = σ for the mean, variance and
standard deviation of X and take ε = 3σ, we get

P (|X − µ| < 3σ) ≥ 1− σ2

9σ2

=
8

9
≈ .89.

This is saying that it is very probable (at least 0.89 probable) that |X − µ| < 3σ, or, equivalently,
that µ − 3σ < X < µ + 3σ. In words, the 3σ rule states that most of the values that any random

variable takes, at least 89%, lie within 3 standard deviations away from the mean. This property is
true in general, for any distribution, but especially for unimodal and symmetrical ones, where that
percentage is even higher.

Based on that, one simple procedure would be to consider an outlier any value that is more than
2.5 standard deviations away from the mean, and an extreme outlier a value more than 3 standard
deviations away from the mean.

A more general approach, that works well also for skewed data, is to consider an outlier any
observation that is outside the range[

Q1 −
3

2
IQR, Q3 +

3

2
IQR

]
= [Q1 − 3IQD, Q3 + 3IQD] .

Also, the coefficient 3/2 can be replaced by some other number to decrease or enlarge the
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interval of “normal” values (or, equivalently, the domain that covers the outliers):

[Q1 − w · IQR, Q3 + w · IQR] , w = 0.5, 1, 1.5.

For our example on CPU times of processors, we have

Q1 −
3

2
IQR = −3.5,

Q3 +
3

2
IQR = 96.5,

so observations outside the interval [−3.5, 96.5] are considered outliers. In this case, there is only
one, the value 139.

Boxplots

All the information we discussed above is summarized in a graphical display, called a boxplot
( boxplot ), a plot in which a rectangle is drawn to represent the second and third quartiles (so
the interquartile range), with a line inside for the median value and which indicates which values
are considered extreme. The “whiskers” of the boxplot are the endpoints of the interval on which
normal values lie (so everything outside the whiskers is considered an outlier).

For the data in Example 2.6, the boxplot is displayed in Figure 7.
A boxplot can be displayed vertically (default) or horizontally, as in Figure 7. The box can have

a “notch” (indentation) at the value of the median, as in Figure 8(a). The width of the interval of the
whiskers can be changed. The interval that determines the outliers (i.e., outside of which values are
considered too extreme, outliers) is

[Q1 − w · IQR,Q3 + w · IQR].

The default value is w = 1.5. With the smaller whiskers, boxplot displays more data points as
outliers. In Figure 8(b), the whisker size is set to w = 0.5. Then, outliers are all the values outside
the interval [Q1 − 0.5 · IQR,Q3 + 0.5 · IQR] = [21.5, 71.5]. These would be 9, 15, 19 (too small)
and 82, 89, 139 (too large).

Boxplots are also very useful when we want to compare data from different samples (see Figure
9). We can compare the interquartile ranges, to examine how the data is dispersed between each
sample. The longer the box, the more dispersed the data.
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Fig. 7: Quartiles, Interquartile Range, Outliers

1

20

40

60

80

100

120

140

(a) boxplot with a notch

1

20

40

60

80

100

120

140

(b) whisker w = 0.5
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Fig. 9: Multiple boxplots

2.2 Moments, variance, standard deviation and coefficient of variation

The idea of the mean can be generalized, by taking various powers of the values in the data.

Definition 2.9.

(1) The moment of order k is the value

νk =
1

N

N∑
i=1

xk
i , νk =

1

N

n∑
i=1

fix
k
i , (2.5)

for primary and for grouped data, respectively.

(2) The central moment of order k ( moment ) is the value

µk =
1

N

N∑
i=1

(xi − x)k, µk =
1

N

n∑
i=1

fi(xi − x)k (2.6)

for primary and for grouped data, respectively.
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(3) The variance ( var ) is the value

σ2 =
1

N

N∑
i=1

(xi − x)2, σ2 =
1

N

n∑
i=1

fi(xi − x)2 (2.7)

for primary and for grouped data, respectively. The quantity σ =
√
σ2 is the standard devia-

tion ( std ).

Remark 2.10.
1. A more efficient computational formula for the variance is

σ2 =
1

N

(
N∑
i=1

x2
i −

1

N

( N∑
i=1

xi

)2)
=

1

N

(
N∑
i=1

x2
i −Nx2

)
, (2.8)

which follows straight from the definition.
2. We will see later that when the data represents a sample (not the entire population), a better
formula is

s2 =
1

N − 1

N∑
i=1

(xi − x)2 =
1

N − 1

( N∑
i=1

x2
i −Nx2

)
,

s2 =
1

N − 1

n∑
i=1

fi(xi − x)2 =
1

N − 1

( N∑
i=1

fix
2
i −Nx2

)
,

(2.9)

for the sample variance for primary or grouped data. The reason the sum is divided by N − 1

instead of N will have to do with the “bias” of an estimator and will be explained later on in the
next chapters. To fully explain why using N leads to a biased estimate involves the notion of
degrees of freedom, which takes into account the number of constraints in computing an estimate.
The sample observations x1, . . . , xN are independent (by the definition of a random sample), but
when computing the variance, we use the variables x1 − x, . . . , xN − x. Notice that by subtracting
the sample mean x from each observation, there exists a linear relation among the elements, namely

N∑
k=1

(xk − x) = 0

and, thus, we lose 1 degree of freedom due to this constraint. Hence, there are only N−1 degrees of
freedom. So, we will use (2.8) to compute the variance of a set of data that represents a population
and (2.9) for the variance of a sample.

Example 2.11. Consider again our previous example on CPU times (in seconds) for N = 30 ran-
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domly chosen jobs:
70 36 43 69 82 48 34 62 35 15

59 139 46 37 42 30 55 56 36 82

38 89 54 25 35 24 22 9 56 19

Recall that for this data the sample mean was x = 48.2333 seconds. The sample variance is

s2 =
(70− 48.2333)2 + . . .+ (19− 48.2333)2

30− 1
=

20391

29
≈ 703.1506 sec2.

Alternatively, using (2.8),

s2 =
702 + . . .+ 192 − 30 · 48.23332

30− 1
=

90185− 69794

29
≈ 703.1506 sec2.

The sample standard deviation is

s =
√
703.1506 ≈ 26.1506 sec.

By the 3σ rule, using x and s as estimates for the population mean µ and population standard
deviation σ, we may infer that at least 89% of the tasks performed by this processor require between
x− 3s = −30.2185 and x+ 3s = 126.6851 (so less than 126.6851) seconds of CPU time.

Definition 2.12. The coefficient of variation is the value

CV =
s

x
.

Remark 2.13.
1. The coefficient of variation is also known as the relative standard deviation (RSD).
2. It can be expressed as a ratio or as a percentage. It is useful in comparing the degrees of variation
of two sets of data, even when their means are different.
2. The coefficient of variation is used in fields such as Analytical Chemistry, Engineering or Physics
when doing quality assurance studies. It is also widely used in Business Statistics. For example, in
the investing world, the coefficient of variation helps brokers determine how much volatility (risk)
they are assuming in comparison to the amount of return they can expect from a certain investment.
The lower the value of the CV, the better the risk-return trade off.
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