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Introduction

The purpose of this course is to present several classes of nonlinear

operators f : X → X and to discuss different properties (existence,

uniqueness, data dependence, various stability properties) of the fixed

point equation

x = f(x), x ∈ X

in metric and topological settings. Then, using fixed point approaches and

techniques, existence, uniqueness, data dependence results for different

types of operatorial equations are given.

Adrian Petruşel February 2021
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Chapter 1

Contractive-type operators

and fixed points

1.1 Background in Analysis

Metric spaces

Let (X, d) be a metric space. Recall that a metric d on a

nonempty set X is a functional d : X ×X → R+ satisfying the following

axioms

(i) d(x, y) = 0 if and only if x = y

(ii) d(x, y) = d(y, x) for every x, y ∈ X
(iii) d(x, y) ≤ d(x, z) + d(z, y), for every x, y, z ∈ X.

In what follows, sometimes we will need to consider infinite-valued

metrics, also called generalized metrics.

Let (X,+, ·,R) be a linear space. Then a functional p : X → R+

is said to be a norm on X if it satisfies the following axioms

(i) p(x) = 0 if and only if x = Θ

(ii) p(λx) = |λ|p(x), for each x ∈ X and λ ∈ R+

(iii) p(x+ y) ≤ p(x) + p(y), for each x, y ∈ X.

Usually we denote p(x) := ‖x‖, x ∈ X.

1
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The pair (X, ‖ · ‖), where X is a nonempty set and ‖ · ‖ is a norm on

it is called a normed space.

It is well-known that each norm induces a metric on X, by the formula

d(x, y) := ‖x− y‖.

Throughout this course, we denote by P (X) the space of all nonempty

subsets of a nonempty set X. By Pcp(X) we will denote the space of all

nonempty compact subsets of X.

If (X, d) is a metric space, x0 ∈ X and r > 0, then

Bd(x0; r) := {x ∈ X|d(x0, x) < r} and B̃d(x0; r) := {x ∈ X|d(x0, x) ≤ r}

denote the open, respectively the closed ball of radius R centered in x.

If X is a topological space and Y is a subset of X, then we will denote

by Y the closure and by intY the interior of the set Y .

If X is a normed space and Y is a nonempty subset of X, then coY

respectively coY denote the convex hull, respectively the closed convex

hull of the set Y .

Exercise. Consider on R the functional

d(x, y) =

{
2, if x 6= y

0, otherwise

Show that d is a metric on R and then determine Bd(0; 2), B̃d(0; 2)

and Bd(0; 2).

It is well-known that each metric space is a topological space, with

the topology generated by the family of all open balls from X. It is called

the metric topology on X.

Moreover, if (X, d) is a metric space, then d : X×X → R is continuous

in the metric topology. A similar property holds for norms.
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Sequences in metric spaces

Let (X, d) be a metric space. The sequence (xn)n∈N is called:

(i) Cauchy if for each ε > 0 there is Nε ∈ N∗ such that for

each n,m ≥ Nε, m > n we have d(xn, xm) < ε (or, equivalently, if

d(xn, xn+p)→ 0 as n, p→ +∞ independently).

(ii) convergent to x∗ ∈ X if for each ε > 0 there is Nε ∈ N∗ such

that for each n ≥ Nε we have d(xn, x
∗) < ε.

Of course, any convergent sequence in X is Cauchy in X.

A metric space (X, d) is called complete if any Cauchy sequence in

X is convergent in X. Any closed subset of a complete metric space is

complete.

A Banach space is a normed space having the property that it is

complete with respect to the metric induced by the norm.

Theorem 9. A uniformly continuous function maps Cauchy se-

quences into Cauchy sequences.

Proof. Let f : (X, d) → (Y, ρ) be a uniformly continuous func-

tion. Let (xn) be a Cauchy sequence in X. To see that (f(xn)) is a

Cauchy sequence, let ε > 0. Then there is a δ > 0 such that for every

x, y ∈ X, d(x, y) < δ implies that ρ(f(x), f(y)) < ε. Thus there exists an

N(ε) ∈ N such that d(xm, xn) < δ for any m,n ≥ N(ε). It follows that

ρ(f(xm), f(xn)) < ε. for any m,n ≥ N(ε). Hence (f(xn)) is a Cauchy

sequence in Y .

Remark. If f is not uniformly continuous, then the theorem may not

be true. For example, f(x) = 1
x

is continuous on ]0,∞[ and xn = 1
n

is a

Cauchy sequence in ]0,∞[ but f(xn) = n is not a Cauchy sequence.

Remark. If d(xn, xn+1) ≤ an for every n ∈ N, and
∑
n≥1

an <∞, then

the sequence (xn) is Cauchy.
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Examples of complete metric spaces

1) (Rn, d) is a complete metric space with each of the following

functionals

dE(x, y) :=

√√√√ n∑
i=1

(xi − yi)2

dM(x, y) :=
n∑
i=1

|xi − yi|

dC(x, y) := max
i∈{1,2,··· ,n}

|xi − yi|.

2) (C([a, b],Rn), d) is a complete metric space with each of the

following functionals:

dC(x, y) := max
t∈[a,b]

dRn(x(t), y(t))

dB(x, y) := max
t∈[a,b]

(dRn(x(t), y(t)) · e−τ(t−a)).

3) If (X, d) is a complete metric space, then (Pcp(X), Hd) is a com-

plete metric space, where Hd : Pcp(X) × Pcp(X) → R+ is the so-called

Pompeiu-Hausdorff metric, and it is defined by

Hd(A,B) := max{sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)}.

Equivalence of metrics

Let X be a nonempty set and d1, d2 two metrics on X.

The two metrics are said to be topologically equivalent if they gener-

ate the same topology on X. There are many equivalent ways of express-

ing this condition. For example:

♠ a subset A of X is d1-open if and only if it is d2-open

♠ the identity function I : X →X is both (d1, d2)-continuous and

(d2, d1)-continuous.
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By definition, two metric d1 and d2 on X are called metrically

(strongly) equivalent if for each x ∈ X there exists c1, c2 > 0 such that

c1d1(x, y) ≤ d2(x, y) ≤ c2d1(x, y), for each y ∈ X.

If two metrics are strongly equivalent then they also are topologically

equivalent. But the reverse implication, in generally, does not hold.

Examples of Banach spaces

1) (Rn, ‖·‖) is a Banach space with each of the following functionals

‖x‖E :=

√√√√ n∑
i=1

x2i

‖x‖M :=
n∑
i=1

|xi|

‖x‖C := max
i∈{1,2,··· ,n}

|xi|.

2) (C([a, b],Rn), d) is a Banach space with each of the following

functionals:

‖x‖C := max
t∈[a,b]

‖x(t)‖Rn

‖x‖B := max
t∈[a,b]

(‖x(t)‖Rn · e−τ(t−a)).

Remark. The unit interval [0, 1] is a complete metric space, but it is

not a Banach space because it is not a linear space.

Equivalence of norms

By definition, two norms ‖ · ‖1 and ‖ · ‖2 on X are called topologically

equivalent if they generate the same topology on X.
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By definition, two norms ‖ · ‖1 and ‖ · ‖2 on X are called strongly

equivalent if for each x ∈ X there exists c1, c2 > 0 such that

c1‖x‖1 ≤ ‖x‖2 ≤ c2‖x‖1.

If two norms are strongly equivalent then they also are topologically

equivalent. But the reverse implication, in generally, does not hold.



1.2. THE BANACH-CACCIOPPOLI CONTRACTION PRINCIPLE 7

1.2 The Banach-Caccioppoli contraction

principle

Some definitions first.

Definition. If X is a nonempty set and f : X → X an operator then

x ∈ X is called a fixed point for f iff x = f(x). Denote by Fix(f) the

fixed point set of f . Also, denote by I(f) := {Y ∈ P (X)| f(Y ) ⊂ Y } the

set of all nonempty invariant subsets of f .

Definition. Let X be a nonempty set, x ∈ X and f : X → X be an

operator. Then the sequence of successive approximations (xn)n∈N ⊂ X

for f starting from x is defined as follows:

x0 = x, xn = fn(x), for n ∈ N,

where f 0 := 1X , f
1 := f, . . . , fn+1 = f ◦ fn, n ∈ N are the iterate

operators of f . As consequence, we also have the following recurrence

relation:

x0 = x, xn+1 = f(xn), n ∈ N.

Definition. If (X, d) is a metric space and f : X → X is an operator,

then f is said to be:

i) α-Lipschitz if there is α ∈ R+ such that for every x, y ∈ X we have

d(f(x), f(y)) ≤ αd(x, y);

ii) α-contraction if it is α-Lipschitz with α ∈ [0, 1[;

iii) nonexpansive if it is 1-Lipschitz;

iv) contractive if for each x, y ∈ X, x 6= y we have d(f(x), f(y)) <

d(x, y).

The Banach-Caccioppoli contraction principle.

Let (X, d) be a complete metric space and Y a closed subset of X. Let

f : Y → Y be an α-contraction. Then we have the following conclusions:

(i) Fix(f) = {x∗};
(ii) for each x ∈ Y the sequence of successive approximations (i.e.

x0 = x, xn := fn(x0), n ≥ 1) for f starting from x converges to x∗;
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(iii) d(xn, x
∗) ≤ αn

1−α · d(x0, f(x0)), for each n ∈ N.

(iv) d(xn+1, x
∗) ≤ α

1−α · d(xn, xn+1), for each n ∈ N.

Steps of the proof.

1) (xn)n∈N is a Cauchy sequence, since

(∗) d(xn, xn+p) ≤
αn

1− α
· d(x0, x1), for each n ∈ N and each p ∈ N∗.

2) lim
n→+∞

xn = x∗ ∈ Fix(f).

3) the uniqueness of the fixed point, by reductio ad absurdum.

4) Using (∗) we get (iii) and (iv). 2
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Exercises and examples.

1) Let f ∈ C1(R). Then

f is α− Lipschitz if an only if |f ′(x)| ≤ α, for each x ∈ R.

Hint. Use the Mean Value Theorem.

2) Let f :]0, 1[→]0, 1[, f(x) = x
2

and g : R → R, g(x) = π
2

+ x −
arctanx.

Show that f and g are fixed point free mappings. Please comment the

connection with Banach-Caccioppoli theorem.

3) Let f :]0, 1[→ R, f(x) = 2x(1− x) (the logistic operator).

(a) Find Fix(f)

(b) Is f a contraction on [0, 1] ?

(c) Find a closed invariant subset A ⊂ [0, 1] such that f to be contraction

on A.

4) Consider c > 0 and the sequence (xn)n∈N ⊂ R given by

x0 = 1, xn+1 =
1

2
(xn +

c

xn
), n ∈ N.

a) Show (by fixed point methods) that lim
n→+∞

xn =
√
c;

b) Find
√

2 with an error less than 10−2.

Hint. Use the Banach-Caccioppoli theorem. 2
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1.3 Consequences, applications and exten-

sions

Let present first a data dependence result.

The continuous dependence of the fixed point of the Banach-

Caccioppoli contraction principle.

Let (X, d) be a complete metric space and f, g : X → X such that:

(i) f is an α-contraction (denote by x∗f its unique fixed point);

(ii) There exists x∗g ∈ Fix(g);

(iii) There exists η > 0 such that d(f(x), g(x)) ≤ η, for each x ∈ X.

Then d(x∗f , x
∗
g) ≤

η
1−α .

Remark. J. Hadamard (1902) defines the concept of well-posedness

for a certain mathematical problem.

Remark. A.N. Tychonov define another concept of well-posed prob-

lem (in the sense of Tychonov).

Definition. Let (X, d) be a metric space and f : X → X be an

operator. Consider the fixed point problem

x = f(x), x ∈ X. (1.1)

We say that the fixed point problem for the operator f is well-posed if

Fix(f) = {x∗} and, if xn ∈ X, n ∈ N is a sequence such that

d(xn, f(xn))→ 0 as n→∞,

then

xn → x∗ as n→∞.

Theorem. Let (X, d) be a complete metric space and f : X → X an

α-contraction. Then, the fixed point problem for f is well-posed.
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Definition. Let (X, d) be a metric space and f : X → X be an

operator. Consider the fixed point problem

x = f(x), x ∈ X. (1.2)

We say that the operator f has:

(a) the limit shadowing property if for any sequence (yn)n∈N ⊂ X

with the property

(d(yn+1, f(yn))→ 0 as n→∞,

there exists x ∈ X such that

d(yn, f
n(x))→ 0 as n→∞.

(b) the Ostrowski’s property if Fixf = {x∗} and for any sequence

(yn)n∈N ⊂ X with the property

(d(yn+1, f(yn))→ 0 as n→∞,

we have that

yn → x∗ as n→∞.

For our next result we need the following auxiliary result.

Cauchy’s Lemma. Let (an)n∈N and (bn)n∈N be two sequences of non-

negative real numbers, such that
+∞∑
k=0

ak < +∞ and lim
n→+∞

bn = 0. Then

lim
n→+∞

(
n∑
k=0

an−kbk) = 0.

Theorem. Let (X, d) be a complete metric space and f : X → X an

α-contraction. Then, the operator f has the Ostrowski’s property and the

limit shadowing property.
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Proof. By the Contraction Principle, we know that Fix(f) = {x∗}.
Let (yn)n∈N be a sequence in X such that d(yn+1, f(yn)) → 0 as

n→∞.

We shall prove first that d(yn, x
∗) → 0 as n → +∞. We successively

have:

d(x∗, yn+1) ≤ d(x∗, f(yn))+d(yn+1, f(yn)) = d(f(x∗), f(yn))+d(yn+1, f(yn))

≤ αd(x∗, yn) + d(yn+1, f(yn)) ≤ α[αd(x∗, yn−1) + d(yn, f(yn−1))]+

d(yn+1, f(yn)) ≤ · · · ≤ αn+1d(x∗, y0)+α
nd(y1, f(y0))+· · ·+d(yn+1, f(yn)).

By Cauchy’s Lemma, the right hand side tends to 0 as n→ +∞. Thus,

d(x∗, yn+1) → 0 as n → +∞. This shows that f has the Ostrowski’s

property.

Now, for arbitrary x ∈ X, we have

d(yn, f
n(x)) ≤ d(yn, x

∗) + d(x∗, fn(x))→ 0 as n→ +∞.

Definition. Let (X, d) be a metric space and f : X → X be an

operator. Consider the fixed point problem

x = f(x), x ∈ X. (1.3)

We say that the operator f has the Ulam-Hyers stability property if

there exists c > 0, such that for every ε > 0 and every ε-solution y∗

of the fixed point problem x = f(x) (which means that y∗ satisfies the

following relation

d(y∗, f(y∗)) ≤ ε),

there exists a solution x∗ ∈ X of the fixed point problem x = f(x) such

that

d(x∗, y∗) ≤ cε.

Theorem. Let (X, d) be a complete metric space and f : X → X

be an α-contraction. Then, the fixed point problem x = f(x) has the

Ulam-Hyers property.
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The local form of the Banach-Caccioppoli contraction prin-

ciple.

Let (X, d) be a complete metric space, x0 ∈ X and r > 0. Let f :

B(x0; r) → X be an α-contraction such that d(x0, f(x0)) < (1 − α)r.

Then Fixf 6= ∅.
Hint.

Consider 0 < ε < r such that d(x0, f(x0)) ≤ (1 − α)ε < (1 − α)r. Show

that B̃(x0; ε) ∈ I(f) and apply the Banach-Caccioppoli theorem. 2

An application of the above results are the so-called domain invariance

principles.

Let E be a Banach space and X ⊂ E. Let f : X → E be an operator.

Then the operator g : X → E defined by g(x) = x − f(x) is said to be

the field generated by f .

We have the following result.

Theorem.

Let E be a Banach space and U an open subset of it. Let f : U → E

be an α-contraction.

Then the following conclusions hold:

i) the field g generated by f is an open operator, i.e., the image of any

open set is open too;

ii) g(U) is open in E;

iii) g : U → g(U) is a homeomorphism.

Sketch of the proof.

i) g is open operator if and only if for any V an open subset of U the

set g(V ) is open in E too. For, it’s enough to prove that for any y ∈ g(V )

there exists W an open neighborhood of y such that W ⊂ g(V ).

In order to get the conclusion, one can prove first that the following

implication holds:

for u ∈ V and each B(u; r) ⊂ V ⇒ B(g(u); (1− α)r) ⊂ g(B(u; r)).
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In order to prove it, we will apply the local form of the Banach-

Caccioppoli principle. Indeed, let u ∈ V and y ∈ B(g(u); (1 − α)r),

i.e., ‖y − g(u)‖ < (1− α)r. We have to show that y ∈ g(B(u; r)), which

means that there exists x ∈ B(u; r) such that y = g(x). This means that

we are looking for x ∈ B(u; r) such that y + f(x) = x. For this con-

clusion, it is enough to apply the local form of the Banach-Caccioppoli

principle for h : B(u; r) → X, h(x) = y + f(x). We can do it, since h

is an α-contraction and d(u, h(u)) = ‖u − h(u)‖ = ‖u − f(u) − y‖ =

‖g(u)− y‖ < (1− α)r.

Now, let V be an open subset of U and take any y ∈ g(V ). Then,

there exists u ∈ V such that y = g(u). Notice that, since V is open, there

exists B(u; r) ⊂ V . Take W := B(g(u); (1 − α)r). Hence, by the above

proof, we have W ⊂ g(B(u; r)) ⊂ g(V ).

(ii) Apply (i) for U = V .

(iii) g : U → g(U) is surjective and continuous. Moreover, it is also

injective since

‖g(x)− g(y)‖ = ‖x− f(x)− y + f(y)‖ = ‖(x− y)− (f(x)− f(y))‖ ≥

‖x− y‖ − ‖f(x)− f(y)‖ ≥ (1− α)‖x− y‖.

Then, if g(x) = g(y), then x = y. Additionally, g−1 is continuous too,

since for any open set V ⊂ g(U) we have that (g−1)−1(V ) = g(V ) is open

(by (i)). Thus, g it is a homeomorphism. 2

Other local fixed point theorems are the following.

Theorem.

Let E be a Banach space and let f : B̃(0; r)→ E be an α-contraction,

such that f(∂B̃(0; r)) ⊂ B̃(0; r). Then Fix(f) = {x∗}.
Proof. Let us define, for x ∈ B̃(0; r)

G(x) :=
1

2
(x+ f(x)).

Then we have:
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(i) Fix(f) = Fix(G);

(ii) G : B̃(0; r) → B̃(0; r) (take G(x) := 1
2
(x + f(u) + f(x) − f(u)),

where u := r
‖x‖x); Indeed, we have

‖G(x)‖ = ‖1

2
(x+f(u)+f(x)−f(u))‖ ≤ 1

2
(‖x‖+‖f(u)‖+‖f(x)−f(u)‖) ≤

1

2
(‖x‖+r+α‖x−u‖) ≤ 1

2
[‖x‖+ r + α(r − ‖x‖)] =

1

2
[(1 + α)r + (1− α)‖x‖] ≤

1

2
[(1− α)r + (1 + α)r] = r.

(iii) G is 1+α
2

-contraction.

Theorem.

Let E be a Banach space and let f : B̃(0; r)→ E be an α-contraction,

such that f(−x) = −f(x), for each x ∈ ∂B̃(0; r). Then Fix(f) = {x∗}.
Proof. Show that f(−x) = −f(x), for each x ∈ ∂B̃(0; r) implies that

f(∂B̃(0; r)) ⊂ B̃(0; r). (indeed, for x ∈ ∂B̃(0; r) we have:

2‖f(x)‖ = ‖f(x)− f(−x)‖ ≤ 2α‖x‖.

Thus, ‖f(x)‖ ≤ α‖x‖ = αr < r.

Exercise. Show, by fixed point methods, that for each y ∈ R the

equation x− 1
3
sinx = y has a unique solution in R.

Continuation results for contractions

Let (X, d) be a complete metric space and Y a closed subset such

that intY 6= ∅. Denote by CR(Y,X) the family of all contractions from

Y to X. Let (J, ρ) the metric space of parameters.

Definition. The family (Hλ)λ∈J ⊂ CR(Y,X) is said to be α-

contractive if α ∈ [0, 1[ and there is M > 0 and p ∈]0, 1] such that:

(i) d(Hλ(x1), Hλ(x2)) ≤ αd(x1, x2), for each x1, x2 ∈ Y and λ ∈ J ;

(ii) d(Hλ(x), Hµ(x)) ≤M [ρ(λ, µ)]p, for each x ∈ Y and λ, µ ∈ J .
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Denote by A := ∂Y , U := intY and by CRA(Y,X) := {f ∈
CR(Y,X) : f|A : A→ X is fixed point free }.

Theorem. Let (X, d) be a complete metric space and Y a closed sub-

set such that intY 6= ∅. Let (J, ρ) be a connex metric space and (Hλ)λ∈J

be an α-contractive family from CRA(Y,X). Then:

(i) if there exists λ∗0 ∈ J such that the equation Hλ∗0
(x) = x has

a solution then the equation Hλ(x) = x has a unique solution for every

λ ∈ J ;

(ii) if Hλ(xλ) = xλ for λ ∈ J then the operator j : J → intY given

by j(λ) = xλ is continuous.
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Kannan’s fixed point theorem

The following result is a fixed point theorem for operators which are

not necessarily continuous.

Theorem. Let (X, d) be a complete metric space and f : X → X be

a Kannan type contraction, i.e. there exists α ∈]0, 1
2
[ such that

d(f(x), f(y)) ≤ α[̇d(x, f(x)) + d(y, f(y))], for each x, y ∈ X.

Then we have the following conclusions:

(i) Fix(f) = {x∗};
(ii) for each x ∈ Y the sequence of successive approximations (i.e.

x0 ∈ X, xn := fn(x0), n ≥ 1) for f starting from x converges to x∗.

Steps of the proof.

Let x0 ∈ X be arbitrary and xn := fn(x0), for n ≥ 1. Thus xn+1 = f(xn),

n ∈ N. Then we have:

1) (xn)n∈N is a Cauchy sequence; Notice first that

d(xn, xn+1) ≤
α

1− α
d(xn−1, xn) ≤ knd(x0, x1), for each n ≥ 1,

where k := α
1−α < 1. Thus, as a consequence, we obtain

d(xn, xn+p) ≤
kn

1− k
· d(x0, x1), for each n ∈ N and each p ∈ N∗.

2) lim
n→+∞

xn = x∗ ∈ X, by the completeness of the space.

3) x∗ ∈ Fix(f) since we can write d(x∗, f(x∗)) ≤ d(x∗, f(xn)) +

d(f(xn), f(x∗)) ≤ d(x∗, xn+1) + α (d(xn, xn+1) + d(x∗, f(x∗))) . Thus

d(x∗, f(x∗)) ≤ α

1− α
[d(x∗, xn+1) + αd(xn, xn+1)]→ 0, as n→∞.

4) the uniqueness of the fixed point follows by contradiction. 2

Exercise. Let f : [0, 1]→ [0, 1] be defined by

f(x) :=

{
x
4
, x ∈ [0, 1

2
[

x
5
, x ∈ [1

2
, 1],
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Show that f is not a contraction, but f is a Kannan type contraction with

α = 4
9
.

Exercise. Show that f : [0, 1] → [0, 1] f(x) = x
3

is a 1
3
-contraction,

but it is not a Kannan type contraction (Take x = 1
3

and y = 0).

Exercise. Under the assumptions of Kannan’s fixed point theorem

show that the fixed point problem x = f(x) is well-posed and has the

Ulam-Hyers property.

A generalization of both Contraction Principle and Kannan’s fixed

point theorem is the following result proved by L. Ćirić.

Ćirić’s fixed point theorem

Theorem. Let (X, d) be a complete metric space and f : Y → Y

be a Ćirić-type contraction, i.e. there exists α ∈]0, 1[ such that for each

x, y ∈ X we have:

d(f(x), f(y)) ≤ α·max{d(x, y), d(x, f(x)), d(y, f(y)),
1

2
[d(x, f(y))+d(y, f(x))]}.

Then we have the following conclusions:

(i) Fix(f) = {x∗};
(ii) for each x ∈ Y the sequence of successive approximations (i.e.

x0 = x, xn := fn(x0), n ≥ 1) for f starting from x converges to x∗.
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1.4 The Nemitki-Edelstein fixed point

principle

Recall that if (X, d) is a metric space, then an operator f : X → X is

called contractive if:

x, y ∈ X, x 6= y implies d(f(x), f(y)) < d(x, y).

Theorem.

Let (X, d) be a compact metric space and f : X → X be a contractive

operator. Then Fix(f) = {x∗} and for each x ∈ Y the sequence of suc-

cessive approximations (i.e. x0 = x, xn := fn(x0), n ≥ 1) for f starting

from x converges to x∗.

Sketch of the proof. Since X is compact and the functional

h(x) = d(x, f(x)) is continuous from X to R there exists x∗ ∈ X

such that h(x∗) = inf
x∈X

h(x). Next, show, by reductio ad absurdum,

that x∗ ∈ Fix(f). Indeed, suppose x∗ 6= f(x∗). Then, h(f(x∗)) =

d(f(x∗), f 2(x∗)) < d(x∗, f(x∗)) = h(x∗), which is a contradiction. The

uniqueness is an easy consequence of the contractive condition. Hence

Fix(f) = {x∗}.
For the convergence property, notice first that xn+1 = f(xn). Since X

is compact, there exists a convergent subsequence xnk
. Moreover, since

xnk+1 = f(xnk
), using the continuity of f , we get (by passing to limit)

that xnk
converges to x∗ ∈ Fix(f).

Let us consider now any convergent subsequence (xnp) of xn. Suppose

(xnp) conveges to some l ∈ X. Then, since xnp+1 = f(xnp), we obtain

again that l ∈ Fix(f) and so l = x∗. Thus xnp converges to x∗, as

p → +∞. Now, since each convergent subsequence of (xn) has the fixed

point x∗ of f as the limit point, it follows (by a well-known result in

functional analysis) that the whole sequence (xn) converges to x∗. 2

Exercise. Show that even f : R→ R, f(x) = ln(1+ex) is contractive,

nevertheless Fix(f) = ∅. Why ?
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1.5 Meir-Keeler Fixed Point Theorem

Let (X, d) be a metric space. An operator f : X → X is called a

Meir-Keeler operator if for each ε > 0 there exists δ > 0 such that the

following implication holds:

x, y ∈ X ε ≤ d(x, y) < ε+ δ ⇒ d(f(x), f(y)) < ε.

Remark. Any Meir-Keeler operator is contractive and, hence, con-

tinuous. Indeed, if we chose x, y ∈ X with x 6= y, then, by taking

ε := d(x, y) > 0 we obtain that d(f(x), f(y)) < ε = d(x, y).

Meir-Keeler Theorem. Let (X, d) be a complete metric space and

f : X → X be a Meir-Keeler operator. Then:

(i) Ff = {x∗};
(ii) the sequence (fn(x))n∈N converges to x∗, for each x ∈ X.

Proof.

Step 1. The Meir-Keeler condition implies that d(xn, xn+1) → 0 as

n→ +∞, where xn := fn(x), x ∈ X.

Indeed, if we denote cn := d(xn, xn+1), n ∈ N, then, since (cn) is

deacresing and positive, it is convergent to a certain η ≥ 0. Suppose that

η > 0. Then there exists δ > 0 such that the following implication holds:

η ≤ cn < η + δ implies cn+1 < η.

This is a contradiction with the fact that (cn) is deacreasing to η. Hence

Step 1 is proved.

Step 2. The sequence xn := fn(x), x ∈ X is Cauchy.

Indeed, suppose by contradiction that there exists x0 ∈ X such

that the sequence xn := fn(x0) is not Cauchy. Then, there exists ε > 0

such that lim
n,m→+∞

d(xm, xn) > 2ε. By Meir-Keeler condition, there exists

δ > 0 such that

x, y ∈ X ε ≤ d(x, y) < ε+ δ ⇒ d(f(x), f(y)) < ε.
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Choose δ′ := min{δ, ε}. By Step 1, we get that there exists M ∈ N∗ such

that cM < δ′

ε
. Let m,n > M,n > m be such that d(xm, xn) > 2ε. For any

j ∈ [m,n] we have

|d(xm, xj)− d(xm, xj+1| ≤ cj = d(xj, xj+1) <
δ′

3
.

Now, since d(xm, xm+1) < ε and d(xm, xn) > 2ε = ε + ε ≥ ε + δ′, there

exists j ∈ [m,n] such that

ε+
2δ′

3
< d(xm, xj) < ε+ δ′.

Thus,

ε ≤ ε+
2δ′

3
< d(xm, xj) < ε+ δ′ < ε+ δ.

For all m and j we have that d(xm, xj) ≤ d(xm, xm+1) + d(xm+1, xj+1) +

d(xj+1, xj) and, therefore, by the above estimations we get that

d(xm, xj) ≤ d(xm, xm+1) + d(f(xm), f(xj)) + d(xj+1, xj) ≤ cm + ε+ cj <
δ′

3
+ ε+ δ′

3
= 2δ′

3
+ ε, a contradiction.

Step 3. Fix(f) = {x∗} and lim
n→+∞

fn(x) = x∗ for each x ∈ X.

Indeed, denote first x∗(x) := lim
n→+∞

fn(x) for x ∈ X. Next, by the

above Remark we know that f is contractive and hence continuous. Thus

x∗(x) ∈ Fix(f). By the contractive condition we obtain the uniqueness

of the fixed point.

The proof is now complete.

1.6 Krasnoselskii’s Theorem

Theorem. (Cantor) Let (X, d) be a complete metric space and Yn, n ∈
N be nonempty closed subsets of X such that Yn+1 ⊂ Yn, n ∈ N and

δ(Yn)→ 0 as n→∞.

Then,
⋂
n∈N

Yn = {x∗}.

Using Cantor’s theorem we have:
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Theorem (1972) Let (X, d) be a complete metric space and f :

X → X be an operator. Suppose that for each 0 < a ≤ b < +∞ there is

l(a, b) ∈ [0, 1[ such that

x, y ∈ X, a ≤ d(x, y) ≤ b implies d(f(x), f(y)) ≤ l(a, b)d(x, y).

Then we have:

(i) Fixf = Fixfn = {x∗};
(ii) the sequence (fn(x))n∈N converges to x∗, for each x ∈ X.

Proof. Step 1. We prove that for each r > 0 there exists B̃(x; r) ⊂ X

such that B̃(x; r) ∈ I(f).

We will use the ”reductio ad absurdum” method: suppose there exists

r > 0 such that fo each x ∈ X one have B̃(x; r) /∈ I(f). Then, there

exists x1 ∈ X such that d(x, x1) ≤ r and d(x, f(x1)) > r. We have two

cases:

a) d(x, x1) ≤ r
2
. Then d(x, x1) ≤ d(x, x1) ≤ r

2
implies

d(f(x), f(x1)) ≤ l(d(x, x1),
r
2
)d(x, x1) < r

2
. Thus, d(x, f(x)) ≥

d(x, f(x1))− d(f(x1), f(x)) ≥ r − r
2

= r
2
.

b) d(x, x1) >
r
2
. Then r

2
< d(x, x1) ≤ r implies d(f(x), f(x1)) ≤

l( r
2
, r)d(x, x1). Hence d(x, f(x)) ≥ d(x, f(x1)) − d(f(x1), f(x)) ≥ r −

l( r
2
, r)d(x, x1) ≥ r − l( r

2
, r) · r = r[1− l( r

2
, r)].

Thus, in both cases we have:

(∗) d(x, f(x)) ≥ min{r
2
, r[1− l(r

2
, r)]} := a.

On the other hand, for each x0 ∈ B̃(x; r) we have that a ≤ d(x0, f(x0)) ≤
d(x0, f(x0)) := b implies d(f(x0), f

2(x0)) ≤ l(a, b)d(x0, f(x0)) <

d(x0, f(x0)). Thus

a ≤ d(fk(x0), f
k+1(x0)) ≤ lk(a, b) · d(x0, f(x0))→ 0, as k → +∞.

Hence uk := d(fk(x0), f
k+1(x0))→ 0, k → +∞. As consequence, for each

ε > 0 there is k(ε) ∈ N∗ such that for each k ≥ k(ε) one have that uk < a.
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In particular, for ε := a there is a k∗ ∈ N∗ such that for each k ≥ k∗

we have uk∗ < a. Hence, uk∗ = d(fk
∗
(x0), f

k∗+1(x0)) = d(x, f(x)) < a

(where x := fk
∗
(x0)). The contradiction shows that Step 1 is proved.

Step 2. There exists a decreasing sequence B1, B2, · · · , Bn, · · · of

closed balls such that diamBn → 0, as n→ +∞.

Indeed, let B1 := B̃(x, 1) ∈ I(f). For f : B1 → B1 we can apply Step

1 and we get that there exists B2 ∈ B1 (B2 := B̃(x, 1
2
)) such that

B2 ∈ I(f). By this procedure we also get Bn := B̃(x, 1
n
) ∈ I(f), · · · .

Since diamBn → 0 as n → +∞, we obtain, by Cantor’s theorem, that⋂
n∈N∗

Bn = {x∗} ∈ I(f). Thus x∗ ∈ Fix(f).

Step 3. The uniqueness of the fixed point.

Suppose that x∗, y∗ ∈ Fixf . Then d(x∗, y∗) = d(f(x∗), f(y∗)) ≤
l(d(x∗, y∗), d(x∗, y∗))d(x∗, y∗) < d(x∗, y∗), which represents a contradic-

tion.

Step 4. Let x ∈ X with x 6= x∗. We have d(fn(x), x∗) → 0, as

n→ +∞.

Indeed, since the sequence (d(fn(x), x∗))n∈N is decreasing, it is conver-

gent too. If, by contradiction d(fn(x), x∗) → u > 0 as n → +∞,

then d(fn(x), x∗) ≤ l(u, d(x, x∗))n · d(x, x∗) → 0 as n → +∞. Thus

d(fn(x), x∗)→ 0 as n→ +∞.

Finally, notice that from (ii) we obtain Fixfn = Fixf = {x∗}.
The proof is now complete. 2

Remark. i) Let (X, d) be a compact metric space and f : X → X be a

contractive operator. Then f is a generalized contraction in Krasnoselskii’

sense.

ii) Let (X, d) be a metric space, f : X → X and γ : R+ → R+ be a

continuous mapping such that γ(t) > 0 and for each t > 0. Suppose that

for each x, y ∈ X the following assertion is satisfied:

d(f(x), f(y)) ≤ d(x, y)− γ(d(x, y)).

Then f is a generalized contraction in Krasnoselskii’ sense.
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A local result is the following:

Theorem. Let E be a Banach space and f : B := B̃(0; r) → E be

a generalized contraction in Krasnoselskii’ sense. Suppose f(∂B) ⊂ B.

Then Fixf = {x∗}.
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1.7 Graphic Contraction Principle

Let (X, d) be a metric space and f : X → X be an operator. We

denote by

Graph(f) := {(x, f(x)) : x ∈ X}

the graph of the operator f .

The contraction condition means that there exists α ∈]0, 1[ such that

d(f(x), f(y)) ≤ αd(x, y), for every (x, y) ∈ X ×X.

If the above condition is assumed not for all (x, y) ∈ X × X, but only

for (x, y) ∈ Graph(f) := {(x, f(x)) : x ∈ X}, then we obtain a weaker

assumption on f . The problem is now if we can obtain existence, unique-

ness, data dependence of the fixed points of f under this weaker assump-

tion on f . The following result is an existence theorem for the solution

of the fixed point equation x = f(x) under the assumption that f is a

graphic α-contraction.

Theorem (1972). Let (X, d) be a complete metric space, f : X → X

and α ∈ [0, 1[. We suppose that:

(a) f is a graphic α-contraction, i.e., d(f(x), f 2(x)) ≤ αd(x, f(x)),

for all x ∈ X;

(b) the operator f has closed graph, i.e., the set Graph(f) is closed

in X ×X.

Then:

(i) Fix(f) 6= ∅;
(ii) fn(x)→ f∞(x) as n→∞, and f∞(x) ∈ Fix(f), ∀ x ∈ X;

(iii) d(x, f∞(x)) ≤ 1

1− α
d(x, f(x)), for all x ∈ X.

Proof. (i)+(ii). Let x ∈ X be arbitrary chosen. By (a), we have that

xn := fn(x), for n ∈ N is a Cauchy sequence. Indeed, for any x ∈ X, we

have

d(xn, xn+1) = d(fn(x), fn+1(x)) ≤ αd(fn−1(x), fn(x)) ≤ · · · ≤ αnd(x, f(x)).
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Then

d(xn, xn+p) ≤
αn

1− α
· d(x, f(x)), for each n ∈ N and each p ∈ N∗.

Thus, d(xn, xn+p)→ 0 as n, p→∞. This shows that (xn) is Cauchy.

Since (X, d) is a complete metric space it follows that (fn(x))n∈N is

convergent and we denote by f∞(x) its limit. By (b), since xn+1 = f(xn)

for each n ∈ N, we have that f∞(x) ∈ Fix(f), i.e., Fix(f) 6= ∅.
(iii) We can write that

d(x, fn+1(x)) ≤ d(x, f(x)) + d(f(x), f 2(x)) + · · ·+ d(fn(x), fn+1(x))

≤ (1 + α + α2 + · · ·+ αn)d(x, f(x)).

Then, letting n→∞, we have

d(x, f∞(x)) ≤ 1

1− α
d(x, f(x)), for all x ∈ X.

2

Exercise. Show that, in the conditions of the Graphic Contraction

Principle, we have that Fix(fn) = Fix(f), for every n ∈ N.

Exercise. Let f : [0, 1]→ [0, 1] be defined by

f(x) :=

{
0, x ∈ [0, 1

2
[

1, x ∈ [1
2
, 1],

Show that f is not a contraction, but f is a discontinuous graphic k-

contraction (with any k ∈]0, 1[) and Fix(f) = {0, 1}. Moreover, show

that fn(x) → 0 as n → ∞, for every x ∈ [0, 1
2
[ and fn(x) → 1 as

n→∞, for every x ∈ [1
2
, 1].

Exercise. Let X := [0, 1] ∪ [2, 3] and f : X → X be defined by

f(x) :=

{
1
2
x, x ∈ [0, 1]

1
2
x+ 3

2
, x ∈ [2, 3].
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Show that f is a continuous graphic 1
2
-contraction and Fix(f) = {0, 3}.

Exercise. Let f : [−1, 1]→ [−1, 1] be defined by

f(x) :=

{
x
2
, x 6= 0

1
2
, x = 0,

Show that f is a graphic 1
2
-contraction, fn(x)→ 0 as n→∞, for every

x ∈ [−1, 1] and Fix(f) = ∅. Why it happens this ?



28CHAPTER 1. CONTRACTIVE-TYPE OPERATORS AND FIXED POINTS

1.8 Caristi-Browder’s Theorem

Theorem (1976). Let (X, d) be a complete metric space, f : X → X be

an operator and ϕ : X → R+ be a functional. We suppose that:

(a) d(x, f(x)) ≤ ϕ(x)− ϕ(f(x)), for all x ∈ X;

(b) the operator f has closed graph.

Then:

(i) Fix(f) 6= ∅;
(ii) fn(x)→ f∞(x) as n→∞, and f∞(x) ∈ Fix(f), ∀ x ∈ X;

(iii) if there is α ∈ R∗+ such that ϕ(x) ≤ αd(x, f(x)), then

d(x, f∞(x)) ≤ αd(x, f(x)), for all x ∈ X.

Proof. (i)+(ii). Let x ∈ X be arbitrary chosen. For n ∈ N, let us

denote an+1 :=
n∑
k=0

d(fk(x), fk+1(x)), n ∈ N. From (a) it follows that, for

every n ∈ N, we have

an+1 =
n∑
k=0

d(fk(x), fk+1(x)) ≤ ϕ(x)− ϕ(fn+1(x)) ≤ ϕ(x).

On the other hand,

an+1 − an = d(fn(x), fn+1(x)) ≥ 0, for every n ∈ N.

By the above two relation, we get that the sequence (an)n∈N is convergent.

Hence, (an)n∈N is also Cauchy. Thus, for every ε > 0 there exists n(ε) ∈ N
such that, for every n,m ≥ n(ε), we have that |am − an| < ε. On the

other hand, for every n,m ≥ n(ε) with m > n we have

d(fn(x), fm(x)) ≤
m−1∑
k=0

d(fk(x), fk+1(x))−
n−1∑
k=0

d(fk(x), fk+1(x)) =

= am − an < ε.
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This implies that (fn(x))n∈N is a Cauchy sequence and, hence, it is

convergent in X. Let us denote by f∞(x) its limit. From (b) we have that

f∞(x) ∈ Fix(f).

(iii) d(x, fn+1(x)) ≤
n∑
k=0

d(fk(x), fk+1(x)) ≤ ϕ(x) ≤ αd(x, f(x)).

So, d(x, f∞(x)) ≤ αd(x, f(x)), for all x ∈ X. 2

Exercise. Show that, under the conditions of the above theorem, we

have Fix(f) = Fix(fn), for every n ∈ N.

Exercise. Let (X, d) be a complete metric space and f : X → X be

an α-contraction. Show that f satisfies the Caristi condition:

d(x, f(x)) ≤ ϕ(x)− ϕ(f(x)), for all x ∈ X,

with a function ϕ which should be indicated.
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1.9 Picard and weakly Picard operators

Let (X, d) be a metric space. An operator f : X → X is called weakly

Picard operator (WPO) if the sequence of successive approximations

{fn(x)}n∈N converges for all x ∈ X and its limit (which generally depend

on x) is a fixed point of f . If an operator f is WPO with a unique fixed

point, i.e., Fix(f) = {x∗}, then, by definition, f is called Picard operator

(PO).

If f : X → X is a WPO, we can define the operator

f∞ : X → Fix(f), given by f∞(x) := lim
n→∞

fn(x).

Notice that, f∞(X) = Fix(f) and the restriction of f∞ to Fix(f) is

the identity, i.e., f∞ is a set retraction of X on Fix(f). Notice that in

the case of a Picard operator with Fix(f) = {x∗}, then f∞(x) = x∗, for

every x ∈ X.

In this context, if (X, d) is a metric space, f : X → X is a WPO

and ψ : R+ → R+ is a function, then by definition f is a ψ-WPO if the

following conditions hold:

(a) ψ is increasing, continuous at 0 and ψ(0) = 0;

(b) d(x, f∞(x)) ≤ ψ(d(x, f(x))), ∀ x ∈ X.

In particular, if ψ(t) = ct for all t ∈ R+ (for some c > 0), then f is called

a c-WPO.

Exercise. (i) Show that any α-contraction and any Kannan type

contraction on a complete metric space are c-PO; Find the corresponding

value of c in each case.

(ii) Show that any graphic contraction with closed graph and any

Caristi-Browder operator on a complete metric spaces are WPO. In this

context, is a graphic contraction or a Caristi-Browder operator a ψ-WPO

? Motivation. Find ψ if the answer is positive.
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1.10 Gronwall type inequalities

Let X be a nonempty set, d : X×X → R+ and � be a binary relation

on X. Then the triple (X, d,�) is called an ordered metric space if:

(i) (X, d) is a metric space;

(ii) (X,�) is an ordered set, i.e., � is an order relation (reflexive,

transitive and antisymmetric) on X;

(iii) If (xn)n∈N, (yn)n∈N are sequences in X such that xn � yn for

every n ∈ N, xn → x, yn → y as n→∞, then x � y.

Theorem. (Gronwall type lemma for Picard operators) Let (X, d,�)

be an ordered metric space and f : X → X be an operator. We suppose:

(a) f is increasing;

(b) f is a Picard operator (we denote by x∗ its unique fixed point).

Then the following conclusions hold:

(1) if x ∈ X with x � f(x) then x � x∗;

(2) if x ∈ X with x � f(x) then x � x∗.

Proof. (1) Let x ∈ X such that x � f(x). Then, by (a), we have

x � f(x) � f 2(x) � · · · � fn(x),∀n ∈ N.

Passing to the limit as n → ∞ and using (iii) from the above definition

and the fact that f is a Picard operator, we get that x � x∗.

Corollary. (Gronwall type lemma for contractions) Let (X, d,�) be

a complete ordered metric space and f : X → X be an operator. We

suppose:

(a) f is increasing;

(b) f is a contraction (we denote by x∗ its unique fixed point).

Then the following conclusions hold:

(1) if x ∈ X with x � f(x), then x � x∗;

(2) if x ∈ X with x � f(x), then x � x∗.
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1.11 Comparison theorems for weakly

Picard operators

In the case of weakly Picard operators we have the following result.

Theorem. (Comparison theorem for two weakly Picard operators)

Let (X, d,�) be an ordered metric space and f, g : X → X be two given

operators. We suppose:

(a) g is increasing;

(b) f(x) � g(x), for every x ∈ X;

(c) f, g are weakly Picard operators.

Then, if x � y then f∞(x) � g∞(y).

Proof. Let x, y ∈ X such that x � y. Then, by (b) and (a), we have

f(x) � g(x) � g(y). Then, we have

f 2(x) � g(f((x)) � g(g(x)) = g2(x) � g(g(y)) = g2(y).

Inductively, we have

fn(x) � gn(x) � gn(y),∀n ∈ N.

Passing to the limit as n → ∞ and using (iii) from the definition of a

ordered metric space and the fact that f is a weakly Picard operator, we

get that f∞(x) � g∞(y).

Exercise. Write and prove a comparison theorem for the case of a

graphic contraction.

Theorem. (Comparison theorem for three weakly Picard operators)

Let (X, d,�) be an ordered metric space and f, g, h : X → X be three

given operators. We suppose:

(a) g is increasing;

(b) f(x) � g(x) � h(x), for every x ∈ X;

(c) f, g, h are weakly Picard operators.

Then, if x � y � z then f∞(x) � g∞(y) � h∞(z).
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1.12 Maia-Rus’s fixed point theorem

The following result was proved by Maia in the paper M.G. Maia:

Un’osservatione sulle contrazioni metriche, Rend. Sem. Mat. Univ.

Padova, 40(1968), 139-143.

Theorem (Maia). Let X be a nonempty set, d and ρ be two metrics

on X and f : X → X be an operator. We suppose that:

(1) there exists c > 0 such that, d(x, y) ≤ cρ(x, y), ∀ x, y ∈ X;

(2) (X, d) is a complete metric space;

(3) f : (X, d)→ (X, d) is continuous;

(4) f : (X, ρ)→ (X, ρ) is an α-contraction.

Then:

(i) Fix(f) = {x∗};

(ii) f : (X, d)→ (X, d) is a PO.

Proof. Let x0 ∈ X be arbitrary, and consider the sequence of succes-

sive approximations starting from x0, i.e., xn := fn(x0), for n ∈ N∗. Then

xn+1 = f(xn), for every n ∈ N. The proof is organized in some steps:

I. By (4), it follows (in a similar way to the Contraction Principle)

that the sequence (xn) is Cauchy in (X, ρ).

II. By (1) and I. it follows that the sequence (xn) is Cauchy in (X, d)

too, since d(xn, xn+p) ≤ cρ(xn, xn+p)→ 0 as n.p→∞.

III. By (2) and II. it follows that the sequence (xn) is convergent in

(X, d). We denote by x∗ its limit, i.e., xn → x∗ with respect to d, as

n→∞.

IV. By (3) and III., using the fact that xn+1 = f(xn), for every n ∈ N,

we obtain that x∗ = f(x∗).

V. By (4) and IV. we obtain (by reductio ad absurdum) that the fixed

point is unique. This complete the proof. 2
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Remark. Maia’s Theorem remains true (see the paper I.A. Rus: On a

fixed point theorem of Maia, Studia Univ. Babeş-Bolyai Math., 22(1977),

40-42) if we replace the condition (1) with the following one:

(1′) there exists c > 0 such that, d(f(x), f(y)) ≤ cρ(x, y), ∀ x, y ∈ X.

Hence, we obtain the so-called Rus’s variant of Maia’s fixed point theorem

or Maia-Rus’s Theorem.

Exercise. Suppose that all the conditions in Maia’s theorem are sa-

tisfied. Is f a ψ-PO with respect to d or with respect to ρ ? Motivation.

Find ψ if the answer is positive.
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1.13 Applications to operatorial equations

1.13.1 Integral equations

Let us consider first the following system of Volterra integral equations:

x(t) =

∫ t

a

K(t, s, x(s))ds+ g(t), t ∈ [a, b],

where g ∈ C([a, b],Rn) and K ∈ C([a, b]× [a, b]× Rn,Rn).

By a solution of the system we understand a map x ∈ C([a, b],Rn)

which satisfies the system for every t ∈ [a, b].

We also suppose that the following Lipschitz condition holds: there

exists LK > 0 such that

‖K(t, s, u)−K(t, s, v)‖ ≤ LK · ‖u− v‖,

for each (t, s, u), (t, s, v) ∈ [a, b]× [a, b]× Rn, where ‖ · ‖ denotes a norm

in Rn.

Notice first that, if we introduce the operator

A : C([a, b],Rn)→ C([a, b],Rn), x 7−→ Ax,

defined by

Ax(t) :=

∫ t

a

K(t, s, x(s))ds+ g(t), t ∈ [a, b],

then the above system of Volterra integral equations can be written as a

fixed point equation of the form

x = Ax, x ∈ X,

where X := C([a, b],Rn) will be endowed by the following Bielecki type

norm

‖x‖B := max
t∈[a,b]

(
‖x(t)‖e−τ(t−a)

)
, where τ > 0.
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Since (C([a, b],Rn), ‖ · ‖B) is a Banach space, in order to apply the Con-

traction principle for the above fixed point problem, we need to prove

that A is a contraction. Indeed, we have:

‖Ax(t)−Ay(t)‖ ≤
∫ t

a

‖K(t, s, x(s))−K(t, s, y(s))‖ds ≤ LK

∫ t

a

‖x(s)−y(s)‖ds

= LK

∫ t

a

‖x(s)− y(s)‖e−τ(s−a)eτ(s−a)ds ≤ LK‖x− y‖B
∫ t

a

eτ(s−a)ds

≤ LK
τ
‖x− y‖Beτ(t−a), for each t ∈ [a, b].

Thus, after multiplying with e−τ(t−a) and taking max
t∈[a,b]

we obtain that

‖Ax− Ay‖B ≤
LK
τ
‖x− y‖B, for every x, y ∈ X.

Since τ is arbitrary, we can choose τ > LK and thus LA := LK

τ
< 1. This

shows that A is a contraction (with constant LA) on the Banach space

X. By the Contraction Principle, the fixed point equation x = Ax has a

unique solution x∗ ∈ X. Moreover, this solution can be approximate by

the sequence of successive approximations of A.

Hence, we proved the following result.

Theorem. (existence, uniqueness and approximation for the solution

of a system of Volterra integral equations)

Let us consider the following system of Volterra integral equations:

x(t) =

∫ t

a

K(t, s, x(s))ds+ g(t), t ∈ [a, b].

We suppose:

(i) g ∈ C([a, b],Rn) and K ∈ C([a, b]× [a, b]× Rn,Rn);

(ii) there exists LK > 0 such that

‖K(t, s, u)−K(t, s, v)‖ ≤ LK · ‖u− v‖,
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for each (t, s, u), (t, s, v) ∈ [a, b]× [a, b]×Rn, where ‖ · ‖ denotes a norm

in Rn.

Then, the above system has a unique solution x∗ ∈ C([a, b],Rn) and

the sequence (xn)n∈N defined by

x0 ∈ C([a, b],Rn), xn+1(t) :=

∫ t

a

K(t, s, xn(s))ds+ g(t), t ∈ [a, b], n ∈ N

converges (uniformly) in C([a, b],Rn) to x∗.

Exercise. Let us consider the following system of Fredholm integral

equations:

x(t) =

∫ b

a

K(t, s, x(s))ds+ g(t), t ∈ [a, b],

where g ∈ C([a, b],Rn) and K ∈ C([a, b]× [a, b]× Rn,Rn).

By a solution of the above system we understand x ∈ C([a, b],Rn)

which satisfies the system for every t ∈ [a, b].

We also suppose that the following Lipschitz condition holds: there

exists LK > 0 such that

‖K(t, s, u)−K(t, s, v)‖ ≤ LK · ‖u− v‖,

for each (t, s, u), (t, s, v) ∈ [a, b]× [a, b]×Rn, where ‖ · ‖ denotes a norm

in Rn.

Prove an existence, uniqueness and approximation result for the above

system of Fredholm integral equations, working in the Banach space X :=

C([a, b],Rn) endowed by the following Ceb̂ısev type norm

‖x‖C := max
t∈[a,b]

‖x(t)‖.
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1.13.2 The Cauchy problem for a system of differ-

ential equations

Consider the following initial value problem (Cauchy problem):

(1) x′(t) = f(t, x(t)), t ∈ [a, b]

(2) x(t0) = x0,

where t0 ∈ [a, b], x0 ∈ Rn are given and f : [a, b] × Rn → Rn is a

continuous function such that f(t, ·) : Rn → Rn is Lf -Lipschitz.

By a solution of the above Cauchy problem we understand a map

x ∈ C1([a, b],Rn) which satisfies (1) for every t ∈ [a, b] and (2).

Lemma. Let us consider the Cauchy problem (1) + (2). We suppose

that f : [a, b] × Rn → Rn is a continuous function. Then (1) + (2) is

equivalent with the following Volterra integral equation

(3) x(t) =

∫ t

t0

f(s, x(s))ds+ x0, t ∈ [a, b].

By the main theorem of the above section, we have:

Theorem (existence, uniqueness and approximation result for the

solution of the Cauchy problem (1) + (2))

Let us consider the Cauchy problem (1) + (2). We suppose:

(i) f ∈ C([a, b]× Rn,Rn);

(ii) there exists Lf > 0 such that

‖f(t, u)− f(t, v)‖ ≤ Lf‖u− v‖, for every t ∈ [a, b], u, v ∈ Rn,

where ‖ · ‖ denotes a norm in Rn.

Then, the Cauchy problem (1)+(2) has a unique solution x∗ and the

sequence (xn)n∈N ⊂ C([a, b],Rn), given by

xn+1(t) =

∫ t

t0

f(s, xn(s))ds+ x0, t ∈ [a, b], n ∈ N

converges (uniformly) to x∗, for every x0 ∈ C([a, b],Rn).
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Proof. The result follows by applying the existence, uniqueness and

approximation for the solution of the following system of Volterra integral

equations

(3) x(t) =

∫ t

t0

f(s, x(s))ds+ x0, t ∈ [a, b].

Here the operator which must be considered is

Ax(t) :=

∫ t

t0

f(s, x(s))ds+ x0, t ∈ [a, b].

1.13.3 The Dirichlet problem for a differential equa-

tion of second order

Consider the following boundary value problem (Dirichlet problem):

(1) x′′(t) = f(t, x(t)), t ∈ [a, b]

(2) x(a) = x(b) = 0,

where f : [a, b]×Rn → Rn is a continuous function such that the map

f(t, ·) : Rn → Rn is Lf -Lipschitz.

By a solution of the above Dirichlet problem we understand a map

x ∈ C2([a, b],Rn) which satisfies (1) for every t ∈ [a, b] and (2).

The following result is important in our approach.

Lemma. Let us consider the Dirichlet problem (1) + (2). We suppose

that f : [a, b] × Rn → Rn is a continuous function. Then (1) + (2) is

equivalent with the following Fredholm integral equation

(3) x(t) = −
∫ b

a

G(t, s)f(s, x(s))ds, t ∈ [a, b],

where G : [a, b] × [a, b] → R+ is the following Green function associated

to this problem

G(t, s) :=

{
(b−t)(s−a)

b−a , a ≤ s ≤ t ≤ b
(b−s)(t−a)

b−a , a ≤ t < s ≤ b.
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Remark. We have the following properties of G:

(a) G is continuous on [a, b]× [a, b];

(b) G is positive and symmetric;

(c) G(t, s) ∈ [0, b−a
4

], for every t, s ∈ [a, b];

(d)
∫ b
a
G(t, s)ds ∈ [0, (b−a)

2

8
], for every t ∈ [a, b];

(e)
∫ b
a
|∂G(t,s)

∂t
|ds ∈ [0, b−a

2
], for every t ∈ [a, b].

Let us consider the operator

B : (C([a, b],Rn), ‖ · ‖C)→ (C([a, b],Rn), ‖ · ‖C), x 7−→ Bx,

defined by

Bx(t) := −
∫ b

a

G(t, s)f(s, x(s))ds, t ∈ [a, b].

Then, the above Fredholm integral equation (3) (and, as a consequence

of the Lemma, the Dirichlet problem (1) + (2)) is equivalent to the fixed

point equation

x = Bx, x ∈ X,

where X := C([a, b],Rn), ‖·‖C) is a Banach space. The main problem now

is to prove that (under some additional assumptions) B is a contraction.

We have the following existence, uniqueness and approximation result

for the solution of the above Dirichlet problem.

Theorem. (existence, uniqueness and approximation result for the

solution of the Dirichlet problem (1) + (2))

Consider the above Dirichlet problem (1) + (2). We suppose:

(i) f : [a, b]× Rn → Rn is continuous;

(ii) there exists Lf > 0 such that

‖f(t, u)− f(t, v)‖ ≤ Lf‖u− v‖, for every t ∈ [a, b], u, v ∈ Rn,

where ‖ · ‖ denotes a norm in Rn;

(iii)
Lf (b−a)2

8
< 1.
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Then, the Dirichlet problem has a unique solution x∗ which can be

approximated by the following sequence of successive approximations

x0 ∈ C([a, b],Rn), xn+1(t) = −
∫ b

a

G(t, s)f(s, xn(s))ds, t ∈ [a, b], n ∈ N.

Proof. Under the above assumption the operator

B : (C([a, b],Rn), ‖ · ‖C)→ (C([a, b],Rn), ‖ · ‖C), x 7−→ Bx,

defined by

Bx(t) := −
∫ b

a

G(t, s)f(s, x(s))ds, t ∈ [a, b]

is a contraction with constant LB :=
Lf (b−a)2

8
. The conclusion follows by

the Contraction Principle. 2

1.13.4 Nonlinear alternative with an application to

a Cauchy problem

By teh Continuation Theorem we can obtain the following result which

is useful in applications.

Theorem. (Nonlinear Alternative for Contractions) Let E be a Ba-

nach space, X ∈ Pcl,cv(E) and U an open subset of X such that 0 ∈ U .

Let f : U → X be an α-contraction such that f(U) is bounded. Then f

has at least one of the following properties:

(i) f has a unique fixed point

(ii) there exist y0 ∈ ∂U and λ0 ∈]0, 1[ such that y0 = λ0f(y0).

Proof. For (λ, x) ∈ [0, 1] × U we define: Hλ(x) := λ · f(x). Then,

(Hλ)λ∈[0,1] is an α-contractive family of contractions with p = 1. Hence

(Hλ)λ∈[0,1] ⊂ CR(U,X).

a) if (Hλ)λ∈[0,1] ⊂ CR∂U(U,X) then, since H0(0) = 0, we can apply

the continuation theorem for contractions and we get that H1 = f has a

fixed point in U .
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b) if (Hλ)λ∈[0,1] is not in CR∂U(U,X) then, Hλ = λ · f has a fixed

point in ∂U for some λ ∈ [0, 1]. Of course, λ 6= 0 (since, if λ = 0 then,

because 0 = H0(0) we have 0 ∈ ∂U , a contradiction with 0 ∈ U). Hence,

in this case, f has a fixed point in ∂U (for λ = 1) or (ii) holds. 2

Consider the following initial value problem:

(1) x′(t) = f(t, x(t)), t ∈ [0, T ]

(2) x(0) = 0,

where f : [0, T ]× R→ R is a continuous function.

Suppose that:

(a) for each r > 0 there is ar ∈ R such that |f(t, x) − f(t, y)| ≤
ar|x− y|, for each t ∈ [0, T ] and each x, y ∈ [−r, r];

(b) There exists a monotone increasing function ϕ : R+ → R∗+ such

that |f(t, x)| ≤ ϕ(|x|), for each t ∈ [0, T ] and each x ∈ R;

(c) T <
∫ +∞
0

ds
ϕ(s)

;

Then the problem (1) + (2) has a unique solution x ∈ C1[0, T ].

Proof. Consider, for λ ∈ [0, 1], the following family of initial value

problems:

(1λ) x
′(t) = λf(t, x(t)), t ∈ [0, T ]

(2λ) x(0) = 0,

Let M > 0 such that T <
∫M
0

ds
ϕ(s)

<
∫ +∞
0

ds
ϕ(s)

.

Step 1. For each solution x of (1λ)+(2λ) we have |x(t)| < M , for each

t ∈ [0, T ].

Since |x′(t)| ≤ |λ|ϕ(|x(t)|), for each t ∈ [0, T ], we obtain, by integrat-

ing from 0 to t that ∫ t

0

|x′(s)|
ϕ(|x(s)|)

ds ≤
∫ t

0

λds.
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If we change variables (v := |x(s)|) then∫ |x(t)|
0

1

ϕ(v)
dv ≤ λt ≤ λT ≤ T <

∫ M

0

ds

ϕ(s)
.

Thus |x(t)| < M , for each t ∈ [0, T ].

Let L := aM > 0. Consider on C[0, T ] the Bielecki type norm:

‖x‖B := max
t∈[0,T ]

(|x(t)|e−Lt).

Define

U := {x ∈ C[0, T ]||x(t)| < M,∀t ∈ [0, T ]}.

Then 0 ∈ U and U is open in C[0, T ].

Define G : U → C[0, T ], x 7→ Gx, where

Gx(t) :=

∫ t

0

f(s, x(s))ds.

Step 2. We show that G is a contraction.

Let x.y ∈ U . Then:

|Gx(t)−Gy(t)| ≤
∫ t
0
|f(s, x(s))− f(s, y(s))|ds ≤

L
∫ t
0
|x(s)− y(s)|e−LseLsds ≤ (eLt − 1)‖x− y‖B.

Choose α < 1 such that eLt−1 ≤ αeLt, for each t ∈ [0, T ] (for example

any α ≥ 1− e−LT ). Then:

|Gx(t) − Gy(t)| ≤ α‖x − y‖BeLt, for any t ∈ [0, T ]. As consequence,

‖Gx−Gy‖B ≤ α‖x− y‖B.

Step 3. We prove that λG is fixed point free on ∂U , i.e., @x ∈ ∂U

such that x = λGx.

By contradiction, suppose that there is x ∈ ∂U such that x = λGx.

Then

x(t) = λ

∫ t

0

f(s, x(s))ds, t ∈ [0, T ].

Hence x′(t) = λf(t, x(t)), t ∈ [0, T ] and x(0) = 0, showing that x is a

solution for (1λ) + (2λ). Then, by Step 1, we get that |x(t)| < M , for all

t ∈ [0, T ]. Thus x ∈ U , which is a contradiction with x ∈ ∂U .
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Step 4. We prove that G(U) is bounded.

We have:

|Gx(t)| ≤
∫ t

0

|f(s, x(s))|ds ≤
∫ t

0

ϕ(|x(s)|)ds ≤ ϕ(M) · T,

for each t ∈ [0, T ]. Hence ‖G(x)‖ ≤ ϕ(M) · T .

Then from the Nonlinear Alternative we get that G has a unique fixed

point in x∗ ∈ U . This x∗ is a solution of the problem (1) + (2). 2.



Chapter 2

Topological Fixed Point

Theorems

2.1 Multivalued Analysis

The aim of this section is to present the main properties of some

(generalized) functionals defined on the space of all subsets of a metric

space. A special attention is paid to gap functional, excess functional and

to Pompeiu-Hausdorff functional.

Let (X, d) be a metric space. Sometimes we will need to consider

infinite-valued metrics, also called generalized metrics d : X × X →
R+ ∪ {+∞}.

We denote by P(X) the set of all subsets of a nonempty set X.

Recall that, if X is a metric space, x ∈ X and R > 0, then B(x,R)

and respectively B̃(x,R) denote the open, respectively the closed ball of

radius R centered in x. Also, if X is a topological space and Y is a subset

of X, then we will denote by Y the closure and by int(Y ) the interior

of the set Y . Also, if X is a normed space and Y is a nonempty subset

of X, then co(Y ) respectively co(Y ) denote the convex hull, respectively

the closed convex hull of the set Y .

45
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We consider, for the beginning, the generalized diameter functional

defined on the space of all subsets of a metric space X.

Definition. Let (X, d) be a metric space. The generalized diameter

functional diam : P(X)→ R+ ∪ {+∞} is defined by:

diam(Y ) =

{
sup{d(a, b)| a ∈ Y, b ∈ Y }, if Y 6= ∅
0, if Y = ∅

Definition. The subset Y of X is said to be bounded if and only if

diam(Y ) <∞.

Lemma. Let (X, d) be a metric space and Y, Z nonempty bounded

subsets of X. Then:

i) diam(Y ) = 0 if and only if Y = {y0}.
ii) If Y ⊂ Z then diam(Y ) ≤ diam(Z).

iii) diam(Y ) = diam(Y ).

iv) If Y ∩ Z 6= ∅ then diam(Y ∪ Z) ≤ diam(Y ) + diam(Z).

v) If X is a normed space then:

a) diam(x+ Y ) = diam(Y ), for each x ∈ X.

b) diam(αY ) = |α|diam(Y ), where α ∈ R.

c) diam(Y ) = diam(co(Y )).

d) diam(Y ) ≤ diam(Y + Z) ≤ diam(Y ) + diam(Z).

Proof. iii) Because Y ⊆ Y we have diam(Y ) ≤ diam(Y ). For

the reverse inequality, let consider x, y ∈ Y . Then there exist (xn)n∈N,

(yn)n∈N ⊂ Y such that xn → x and yn → y as n → ∞. It follows that

d(xn, yn)
R→ d(x, y). Because d(xn, yn) ≤ diam(Y ), for all n ∈ N we get

by passing to limit d(x, y) ≤ diam(Y ). Hence diam(Y ) ≤ diam(Y ).

iv) Let u, v ∈ Y ∪ Z. We have the following cases:

a) If u, v ∈ Y then d(u, v) ≤ diam(Y ) ≤ diam(Y ) + diam(Z) a̧nd so

diam(Y ∪ Z) ≤ diam(Y ) + diam(Z).
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b) If u, v ∈ Z then by an analogous procedure we have d(u, v) ≤
diam(Z) ≤ diam(Y ) + diam(Z) and so diam(Y ∪ Z) ≤ diam(Y ) +

diam(Z).

c) If u ∈ Y and v ∈ Z then choosing t ∈ Y ∩ Z we have that

d(u, v) ≤ d(u, t) + d(t, v) ≤ diam(Y ) + diam(Z). Hence, diam(Y ∪Z) ≤
diam(Y ) + diam(Z).

v) c) Let us prove that diam(co(Y )) ≤ diam(Y ). Let x, y ∈ co(Y ).

Then there exist xi, yj ∈ Y , λi, µj ∈ R+, such that

x =
n∑
i=1

λixi, y =
m∑
j=1

µjyj,

n∑
i=1

λi = 1,
m∑
j=1

µj = 1.

From these relations we have:

‖x− y‖ =

∥∥∥∥∥
n∑
i=1

λixi −
m∑
j=1

µjyj

∥∥∥∥∥ =

∥∥∥∥∥
(

m∑
j=1

µj

)
n∑
i=1

λixi −

(
n∑
i=1

λi

)
m∑
j=1

µjyj

∥∥∥∥∥
≤

m∑
j=1

n∑
i=1

λiµj‖xi − yj‖ ≤

(
m∑
j=1

n∑
i=1

λiµj

)
diam(Y ) = diam(Y ).

�

Let us consider now the following sets of subsets of a metric space

(X, d):

P (X) = {Y ∈ P(X)| Y 6= ∅}; Pb(X) = {Y ∈ P (X)| diam(Y ) <∞};

Pop(X) = {Y ∈ P (X)| Y is open}; Pcl(X) = {Y ∈ P (X)| Y is closed};

Pb,cl(X) = Pb(X) ∩ Pcl(X); Pcp(X) = {Y ∈ P (X)| Y is compact};

Pcn(X) = {Y ∈ P (X)| Y is connex}.

If X is a normed space, then we denote:

Pcv(X) = {Y ∈ P (X)| Y convex}; Pcp,cv(X) = Pcp(X) ∩ Pcv(X).
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Let us define the following generalized functionals:

(1) D : P(X)× P(X)→ R+ ∪ {+∞}

D(A,B) =


inf{d(a, b)| a ∈ A, b ∈ B}, if A 6= ∅ 6= B

0, if A = ∅ = B

+∞, if A = ∅ 6= B or A 6= ∅ = B.

D is called the gap functional between A and B.

In particular, D(x0, B) = D({x0}, B) (where x0 ∈ X) is called the

distance from the point x0 to the set B.

(2) δ : P(X)× P(X)→ R+ ∪ {+∞},

δ(A,B) =

{
sup{d(a, b)| a ∈ A, b ∈ B}, if A 6= ∅ 6= B

0, otherwise

(3) ρ : P(X)× P(X)→ R+ ∪ {+∞},

ρ(A,B) =


sup{D(a,B)| a ∈ A}, if A 6= ∅ 6= B

0, if A = ∅
+∞, if B = ∅ 6= A

ρ is called the excess functional of A over B.

(4) H : P(X)× P(X)→ R+ ∪ {+∞},

H(A,B) =


max{ρ(A,B), ρ(B,A)}, if A 6= ∅ 6= B

0, if A = ∅ = B

+∞, if A = ∅ 6= B or A 6= ∅ = B.

H is called the generalized Pompeiu-Hausdorff functional of A and B.

Let us prove now that the functional H is a metric on the space

Pb,cl(X). First we will prove the following auxiliary result:

Lemma. D(b, A) = 0 if and only if b ∈ A.
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Proof. We shall prove that A = {x ∈ X| D(x,A) = 0}. For this

aim, let x ∈ A be arbitrarily. It follows that for each r > 0 and for each

B(x, r) ⊂ X we have A ∩ B(x, r) 6= ∅. Then for each r > 0 there exists

ar ∈ A such that d(x, a) < r. It follows that for each r > 0 we have

D(x,A) < r and hence D(x,A) = 0. �

Theorem. Let (X, d) be a metric space. Then the pair (Pb,cl(X), H)

is a metric space.

Proof. We shall prove that the three axioms of the metric hold:

a) H(A,B) ≥ 0, for all A,B ∈ Pb,cl(X) is obviously.

H(A,B) = 0 is equivalent with ρ(A,B) = 0 and ρ(B,A) = 0, that

means sup
a∈A

D(a,B) = 0 and sup
b∈B

D(b, A) = 0. Hence D(a,B) = 0, for each

a ∈ A and D(b, A) = 0, for each b ∈ B. Using Lemma 1.4. we obtain

that a ∈ B, for all a ∈ A and b ∈ A, for all b ∈ B, proving that A ⊆ B

and B ⊆ A.

b) H(A,B) = H(B,A) is quite obviously.

c) For the third axiom of the metric, let consider A,B,C ∈ Pb,cl(X).

For each a ∈ A, b ∈ B and c ∈ C we have d(a, c) ≤ d(a, b) + d(b, c).

It follows that inf
c∈C

d(a, c) ≤ d(a, b) + inf
c∈C

d(b, c), for all a ∈ A and b ∈
B. We get D(a, C) ≤ d(a, b) + D(b, C), for all a ∈ A, b ∈ B. Hence

D(a, C) ≤ D(a,B)+H(B,C), for all a ∈ A and so D(a, C) ≤ H(A,B)+

H(B,C), for all a ∈ A. In conclusion, we have proved that ρ(A,C) ≤
H(A,B)+H(B,C). Similarly, we get ρ(C,A) ≤ H(A,B)+H(B,C), and

so H(A,C) ≤ H(A,B) +H(B,C). �

Remark. H (or Hd if necessary) is called the Pompeiu- Hausdorff

metric induced by the metric d on Pb,cl(X). Notice also that H is a

generalized metric (in the sense that H(A,B) ∈ R+ ∪+∞) on Pcl(X).

Lemma. Let the open balls A := B(x0; r), B := B(y0; s) ⊂ Rn, where

x0, y0 ∈ Rn and r, s > 0. Then

H(A,B) = ‖x0 − y0‖E + |r − s|,
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where ‖ · ‖E denotes the Euclidean norm in Rn.

Lemma. Let (X, d) a metric space. Then we have:

i) D(·, Y ) : (X, d)→ R+, x 7→ D(x, Y ), (where Y ∈ P (X)) is nonex-

pansive.

ii) D(x, ·) : (Pcl(X), H) → R+, Y 7→ D(x, Y ), (where x ∈ X) is

nonexpansive.

Proof. i) We shall prove that for each Y ∈ P (X) we have

|D(x1, Y )−D(x2, Y )| ≤ d(x1, x2), for all x1, x2 ∈ X.

Let x1, x2 ∈ X be arbitrarily. Then for all y ∈ Y we have

d(x1, y) ≤ d(x1, x2) + d(x2, y). Then inf
y∈Y

d(x1, y) ≤ d(x1, x2) +

inf
y∈Y

d(x2, y) and so D(x1, Y ) ≤ d(x1, x2) +D(x2, y). We have proved that

D(x1, y)−D(x2, Y ) ≤ d(x1, x2). Interchanging the roles of x1 and x2 we

obtain D(x2, Y )−D(x1, Y ) ≤ d(x1, x2), proving the conclusion.

ii) We shall prove that for each x ∈ X we have:

|D(x,A)−D(x,B)| ≤ H(A,B), for all A,B ∈ Pcl(X).

Let A,B ∈ Pcl(X) be arbitrarily. Let a ∈ A and b ∈ B. Then we have

d(x, a) ≤ d(x, b)+d(b, a). It followsD(x,A) ≤ d(x, b)+D(b, A) ≤ d(x, b)+

H(B,A) and hence D(x,A)−D(x,B) ≤ H(A,B). By a similar procedure

we get D(x,B) − D(x,A) ≤ H(A,B) and so |D(x,A) − D(x,B)| ≤
H(A,B), for all A,B ∈ Pb,cl(X). �

Lemma. Let (X, d) be a metric space. Then the generalized functional

diam : (Pcl(X), H)→ R+ ∪ {+∞} is continuous.

Let us define now the notion of neighborhood for a nonempty set.

Definition. Let (X, d) be a metric space, Y ∈ P (X) and ε > 0.

An open neighborhood of radius ε for the set Y is the set denoted

V 0(Y, ε) and defined by V 0(Y, ε) = {x ∈ X| D(x, Y ) < ε}. We also
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consider the closed neighborhood for the set Y , defined by V (Y, ε) =

{x ∈ X| D(x, Y ) ≤ ε}.

Remark. From the above definition we have that, if (X, d) is a metric

space, Y ∈ P (X) then:

a)
⋃
{B(y, r) : y ∈ Y } = V 0(Y, r), where r > 0.

b)
⋃
{B̃(y, r) : y ∈ Y } ⊂ V (Y, r), where r > 0.

c)V 0(Y, r + s) ⊃ V 0(V 0(Y, s), r), where r, s > 0.

d)V 0(Y, r) is an open set, while V (A, r) is a closed set.

e) If (X, d) is a normed space, then:

i) V 0(Y, r + s) = V 0(V 0(Y, s), r), where r, s > 0

ii) V 0(Y, r) = Y + int(rB̃(0, 1)).

Proof. d) V 0(Y, r) = f−1(]−∞, r[) and V (Y, r) = f−1([0, r]), where

f(x) = D(x, Y ), x ∈ X is a continuous function.

Lemma. Let (X, d) a metric space. Then we have:

i) If Y, Z ∈ P (X) then δ(Y, Z) = 0 if and only if Y = Z = {x0}
ii) δ(Y, Z) ≤ δ(Y,W ) + δ(W,Z), for all Y, Z,W ∈ Pb(X).

iii) Let Y ∈ Pb(X) and q ∈]0, 1[. Then, for each x ∈ X there exists

y ∈ Y such that qδ(x, Y ) ≤ d(x, y).

Proof. ii) Let Y, Z,W ∈ Pb(X). Then we have:

d(y, z) ≤ d(y, w) + d(w, z), for all y ∈ Y, z ∈ Z,w ∈ W . Then

sup
z∈Z

d(y, z) ≤ d(y, w) + sup
z∈Z

d(w, z), for all y ∈ Y,w ∈ W . So δ(y, Z) ≤

δ(y, w) + δ(w,Z) ≤ δ(y,W ) + δ(W,Z) and hence δ(Y, Z) ≤ δ(Y,W ) +

δ(W,Z).

iii) Suppose, by reductio ad absurdum, that there exists x ∈ X and

there exists q ∈]0, 1[ such that for all y ∈ Y to have qδ(x, Y ) > d(x, y).

It follows that qδ(x, Y ) ≥ sup
y∈Y

d(x, y) and hence qδ(x, Y ) ≥ δ(x, Y ). In

conclusion, q ≥ 1, a contradiction. �

Lemma. Let (X, d) a metric space. Let Y, Z ∈ P (X) and q > 1.

Then, for each y ∈ Y there exists z ∈ Z such that d(y, z) ≤ qH(Y, Z).
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Some very important properties of the metric space (Pcl(X), Hd) are

contained in the following result:

Theorem. i) If (X, d) is a complete metric space, then (Pcl(X), Hd)

is a complete metric space.

ii) If (X, d) is a totally bounded metric space, then (Pcl(X), Hd) is a

totally bounded metric space.

iii) If (X, d) is a compact metric space, then (Pcl(X), Hd) is a compact

metric space.

iv) If (X, d) is a separable metric space, then (Pcp(X), Hd) is a sepa-

rable metric space.

v) If (X, d) is a ε-chainable metric space, then (Pcp(X), Hd) is also

an ε-chainable metric space.

Proof. i) We will prove that each Cauchy sequence in (Pcl(X), Hd)

is convergent. Let (An)n∈N be a Cauchy sequence in (Pcl(X), Hd). Let us

consider the set A defined as follows:

A =
∞⋂
n=1

(
∞⋃
m=n

Am

)
.

We have two steps in the proof:

1) A 6= ∅.
In this respect, consider ε > 0. Then for each k ∈ N there is Nk ∈ N

such that for all n,m ≥ Nk we have H(An, Am) <
ε

2k+1
. Let (nk)k∈N

be an increasing sequence of natural numbers such that nk ≥ Nk. Let

x0 ∈ An0 . Let us construct inductively a sequence (xk)k∈N having the

following properties:

α) xk ∈ Ank
, for each k ∈ N

β) d(xk, xk+1) <
ε

2k+1
, for each k ∈ N.

Suppose that we have x0, x1, . . . , xk satisfying α) and β) and we will

generate xk+1 in the following way.

We have:

D(xk, Ank+1
) ≤ H(Ank

, Ank+1
) <

ε

2k+1
.
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It follows that there exists xk+1 ∈ Ank+1
such that d(xk, xk+1) <

ε

2k+1
.

Hence, we have proved that there exist a sequence (xk)k∈N satisfying

α) and β).

From β) we get that (xk)k∈N is Cauchy in (X, d). Because (X, d) is

complete it follows that there exists x ∈ X such that x = lim
k→∞

xk. I

need to show now that x ∈ A. Since (nk)k∈N is an increasing sequence it

follows that for n ∈ N∗ there exists kn ∈ N∗ such that nkn ≥ n. Then

xk ∈
⋃
m≥n

Am, for k ≥ kn, n ∈ N∗ implies that x ∈
⋃
m≥n

Am, n ∈ N∗. Hence

x ∈ A.

2) In the second step of the proof, we will establish that H(An, A)→ 0

as n→∞.

The following inequalities hold:

d(xk, xk+p) ≤ d(xk, xk+1) + · · ·+ d(xk+p−1, xk+p) <

<
ε

2k+1
+

ε

2k+2
+ · · ·+ ε

2k+p
< ε

(
1 +

1

2
+ · · ·+ 1

2k
+ . . .

)
=

= ε
1

1− 1

2

= 2ε, for all p ∈ N∗.

If in d(xk, xk+p) < 2ε we are letting p → ∞ we obtain d(xk, x) <

2ε, for each k ∈ N. In particular d(x0, x) < 2ε. So, for each n0 ∈ N,

n0 ≥ N0 and for x0 ∈ An0 there exists x ∈ A such that d(x0, x) ≤ 2ε,

which imply

ρ(An0 , A) ≤ 2ε, for all n0 ≥ N0 (1).

On the other side, because the sequence (An)n∈N is Cauchy, it follows

that there exists Nε ∈ N such that for m,n ≥ Nε we have H(An, Am) <

ε. Let x ∈ A be arbitrarily. Then x ∈
∞⋃
m=n

Am, for n ∈ N∗, which implies

that there exist n0 ∈ N, n0 ≥ Nε and y ∈ An0 such that d(x, y) < ε.
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Hence, there exists m ∈ N, m ≥ Nε and there is y ∈ Am such that

d(x, y) < ε.

Then, for n ∈ N∗, with n ≥ Nε we have:

D(x,An) ≤ d(x, y) +D(y, An) ≤ d(x, y) +H(Am, An) < ε+ ε = 2ε.

So,

ρ(A,An) < 2ε, for each n ∈ N with n ≥ Nε. (2)

From (1) and (2) and choosing nε := max{N0, Nε} it follows that

H(An, A) < 2ε, for each n ≥ nε. Hence H(An, A)→ 0 as n→∞.

v) (X, d) being an ε-chainable metric space (where ε > 0) it follows, by

definition, that for all x, y ∈ X there exists a finite subset (the so-called

ε-net) of X, let say x = x0, x1, . . . , xn = y such that d(xk−1, xk) < ε, for

all k = 1, 2, . . . , n.

Let y ∈ X arbitrary and Y = {y}. Obviously, Y ∈ Pcp(X). Because

the ε-chainability property is transitive, it is sufficient to prove that for

all A ∈ Pcp(X) there exist an ε-net in Pcp(X) linking Y with A. We have

two steps in our proof:

a) Let suppose first that A is a finite set, let say A = {a1, a2, ..., an}
We will use the induction method after the number of elements of A. If

n = 1 then A = {a} and the conclusion follows from the ε-chainability of

(X, d). Let suppose now that the conclusion holds for each subsets of X

consisting of at most n elements. Let A be a subset of X with n+1 points,

A = {x1, x2, . . . , xn+1}. Using the ε-chainability of the space (X, d) it

follows that there exist an ε-net in X, namely x1 = u0, u1, . . . , um = x2

linking the points x1 and x2. We obtain that the following finite set: A,

{u1, x2, . . . , xn+1}, . . . , {um−1, x2, . . . , xn+1, {x2, . . . , xn+1} is an ε-net in

Pcp(X) from A to B := {x2, . . . , xn+1}. But, from the hypothesis B is

ε-chainable with Y , and hence A is ε-chainable with Y in Pcp(X).

b) Let consider now A ∈ Pcp(X) be arbitrary.

A being compact, there exists a finite family of nonempty compact

subsets of A, namely {Ak}nk=1, having diam(Ak) < ε such that A =
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n⋃
k=1

Ak. For each k = 1, 2, . . . n we can choose xk ∈ Ak and define C =

{x1, . . . , xn}. Then for all z ∈ A there exists k ∈ {1, 2, . . . , n} such that

D(z, C) ≤ δ(Ak). We obtain:

H(A,C) = max

{
sup
z∈A

D(z, C), supy∈CD(y, A)

}
=

= sup
z∈A

D(z, C) ≤ max
i≤k≤n

δ(Ak) < ε,

meaning that A is ε-chainable by C in Pcp(X). Using the conclusion a)

of this proof, we get that C is ε-chainable by Y in Pcp(X) and so we have

proved that A is ε-chainable by Y in Pcp(X). �

Exercise. 1) Let A = [0, 3], B = [1, 5] and C = [4,∞[. Find:

a) diam(A), diam(C);

b) D(0, B), D(B,C), D(A,C);

c) ρ(A,C), ρ(C,A), ρ(A,B);

d) H(A,B), H(A,C), H(B,C).

2) Let us consider the closed balls A := B̃((0, 1); 2), B := B̃((1, 3); 1)

in R2. Find H(A,B) and D((3, 4);A).

2.2 Nadler’s Contraction Principle for

Multi-valued Operators

Let X, Y be two nonempty sets. By a multivalued operator F : X ( Y

we understand an operator F : X → P(Y ) which assign (by a given rule)

to every point x ∈ X a set F (x) ⊂ Y . Usually, we are working with multi-

valued operators with nonempty values, i.e., F : X → P (Y ).

The graph of the multi-valued operator F is the set

Graph(F ) := {(x, y) ∈ X × Y : y ∈ F (x)}.
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If Y = X, then a fixed point for F is an element x∗ ∈ X with x∗ ∈
F (x∗), while a strict fixed point for F is an x∗ ∈ X with F (x∗) = {x∗}.
We denote by Fix(F ) the fixed point set and by SFix(F ) the strict fixed

point set of F .

For a multi-valued operator F : X → P (X), the sequence of the

successive approximations starting from x0 ∈ X is a sequence (xn)n∈N

with xn+1 ∈ F (xn), for every n ∈ N.

The following theorem was proved by Nadler in 1969 for multi-valued

operators with nonempty, bounded and closed values and it was improved

by Covitz and Nadler in 1970, for the case of multi-valued operators with

closed values.

Theorem. (Nadler’s Contraction Principle) Let (X, d) be a complete

metric space and F : X → Pcl(X) be a multi-valued k-contraction, i.e.,

k ∈ [0, 1[ and

H(F (x), F (y)) ≤ kd(x, y), for every x, y ∈ X.

Then, the following conclusions hold:

(a) Fix(F ) 6= ∅;
(b) for every (x0, x1) ∈ Graph(F ) there exists a sequence (xn)n∈N of

successive approximations starting from x0 ∈ X which converges to a

fixed point of F .

Proof. Let x0 ∈ X be arbitrary and choose x1 ∈ F (x0) also arbitrary.

Let 1 < q < 1
k
. Then, by the second Lemma on page 51, for x1 ∈ F (x0)

there exists x2 ∈ F (x1) such that

d(x1, x2) ≤ qH(F (x0), F (x1)).

Thus, by the contraction condition, we obtain

d(x1, x2) ≤ qH(F (x0), F (x1)) ≤ qkd(x0, x1).

let us denote by K := qk < 1. By an iterative procedure, we obtain a

sequence (xn)n∈N of successive approximations for F starting from x0 ∈ X
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such that

d(xn, xn+1) ≤ Knd(x0, x1), for every n ∈ N.

By a standard procedure we can show that the sequence (xn)n∈N is

Cauchy in (X, d). Thus, by the completeness of the space (X, d) the

sequence (xn)n∈N is convergent to an element x∗ = x∗(x0) ∈ X. We will

show now that x∗ is a fixed point of F . We can estimate

0 ≤ D(x∗, F (x∗)) ≤ d(x∗, xn+1) +D(xn+1, F (x∗)) ≤

d(x∗, xn+1)+H(F (xn), F (x∗)) ≤ d(x∗, xn+1)+kd(xn, x
∗), for every n ∈ N.

Letting n → ∞ we obtain that D(x∗, F (x∗)) = 0, so using the fact that

F has closed values and Lemma on page 48 we get that x∗ ∈ F (x∗). 2

Exercise. Let (X, d) be a complete metric space and F : X → Pcl(X)

be a multi-valued k-contraction. We suppose that SFix(F ) 6= ∅. Show

that Fix(F ) = SFix(F ) = {x∗}.

2.3 Schauder’s Fixed Point Theorems

2.3.1 K2M operators

Let X be a linear space over R. A subset A of X is called a linear

subspace if for all x, y ∈ A we have that x+ y ∈ A and for all x ∈ X and

each λ ∈ R we have λ · x ∈ A.

Let A be a nonempty subset of X.

Then, the linear hull (or the span) of A, denoted by span(A) is, by

definition, the intersection of all subspaces which contains A, i.e., the

smallest linear subspace containing A. We have the following characteri-

zation of the linear hull.

span(A) = {x ∈ X|x =
n∑
i=1

λi · xi, with xi ∈ A, λi ∈ R, n ∈ N}.

If A ⊂ R2 and A = {p} with p 6= 0, then span(A) is the line through

p and the origin.
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Similarly, the affine hull, denoted by aff(A) is defined by

aff(A) = {x ∈ X|x =
n∑
i=1

λi · xi,
n∑
i=1

λi = 1, xi ∈ A, λi ∈ R, n ∈ N}.

If A = {x1, x2} ⊂ R2, then aff(A) is the line through x1 and x2.

Finally, we define the convex hull of A, denoted by co(A), as the in-

tersection of all convex subsets of X which contains A, i.e., co(A) is the

smallest convex set which contains A. We have the following characteri-

zation of coA.

co(A) = {x ∈ X|x =
n∑
i=1

λi · xi,
n∑
i=1

λi = 1, xi ∈ A, λi ∈ [0, 1], n ∈ N}.

Of course, co(A) ⊂ aff(A) ⊂ span(A).

Similarly, we denote by co(A) is the intersection of all convex and

closed subsets of X which contains A, i.e., co(A) is the smallest convex

and closed set which contains A.

Also, a k-dimensional flat (or a linear k-variety) in X is a subset L

of X with dimL = k such that for each x, y ∈ L, with x 6= y, the whole

line joining x and y is included in L, i.e.,

(1− λ) · x+ λ · y ∈ L, for each λ ∈ R.

The basic fixed point theorem in a topological setting was given by

Bohl-Brouwer-Hadamard in 1904-1909-1910.

Brouwer’s Fixed Point Theorem. Let Y be a compact convex

subset of a finite dimensional Banach space X and f : Y → Y be a

continuous operator. Then there exists at least one fixed point for f .

Definition. A subset A of a linear space X is said to be finitely closed

if its intersection with any finite-dimensional flat L ⊂ X is closed in the

Euclidean topology of L.

If X is a linear topological space, then any closed subset of X is

finitely closed.
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Definition. A family {Ai| i ∈ I} of sets is said to have the finite

intersection property if the intersection of each finite sub-family is not

empty.

We present now the concept of KKM operator, using the definition

given by Ky Fan.

Definition. Let X be a linear space and Y be a nonempty subset

of X. The multivalued operator G : Y → P (X) is called a Kuratowski-

Knaster-Mazurkiewicz operator (briefly K2M operator) if and only if

co{x1, . . . , xn} ⊂
n⋃
i=1

G(xi),

for each finite subset {x1, . . . , xn} ⊂ Y .

The main property of K2M operators is given in the following the-

orem. We have here the Ky Fan variant (1961) of the originally KKM

principle (1929).

Theorem. (K2M principle) Let X be a linear space, Y be a nonempty

subset of X and G : Y → P (X) be a K2M operator such that G(x) is

finitely closed (or, in particular, closed), for each x ∈ Y . Then the family

{G(x)| x ∈ Y } of sets has the finite intersection property.

Proof. We argue by contradiction: assume that there exist

{x1, . . . , xn} ⊂ Y such that
n⋂
i=1

G(xi) = ∅. Denote by L the finite dimen-

sional flat spanned by {x1, . . . , xn}, i.e., L = span{x1, · · · , xn}. Let us

denote by d the Euclidean metric in L and by C := co{x1, . . . , xn} ⊂ L.

Because L ∩ G(xi) is closed in L, for all i ∈ {1, 2, . . . , n} we have

that:

Dd(x, L ∩G(xi)) = 0 ⇔ x ∈ L ∩G(xi), for all i = 1, n.

Since
n⋂
i=1

[L ∩G(xi)] = ∅ it follows that the map λ : C → R given by

λ(c) =
n∑
i=1

Dd(c, L ∩G(xi)) 6= 0, for each c ∈ C.
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Hence we can define the continuous map f : C → C by the formula

f(c) =
1

λ(c)

n∑
i=1

Dd(c, L ∩G(xi))xi.

By Brouwer’s fixed point theorem there is a fixed point c0 ∈ C of f ,

i.e., f(c0) = c0. Let

I = {i| Dd(c0, L ∩G(xi)) 6= 0}.

Then

c0 6∈
⋃
i∈I

G(xi).

Indeed, arguing by contradiction, if c0 ∈
⋃
i∈I

G(xi), then c0 is in at least

one G(xi), i ∈ I. This implies that c0 ∈ G(xi) ∩ L, a contradiction with

the fact that Dd(c0, L ∩G(xi)) 6= 0.

On the other side:

c0 = f(c0) ∈ co{xi| i ∈ I} ⊂
⋃
i∈I

G(xi),

where last inclusion follows by the K2M assumption of G. This is a

contradiction, which proves the result. �

As an immediate consequence we obtain the following theorem:

Corollary. (Ky Fan) Let X be a linear topological space, Y be a

nonempty subset of X and G : Y → Pcl(X) be a K2M operator. If, for

x ∈ X, at least one of the sets G(x) is compact, then⋂
x∈Y

G(x) 6= ∅.

2.3.2 First Schauder’s Fixed Point Theorem

One of the simplest application of K2M principle is the well-known

best approximation theorem of Ky Fan.
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Lemma. (Ky Fan-Best approximation theorem) Let X be a normed

space, Y be a compact convex subset of X and f : Y → X be a continuous

operator. Then there exists at least one y0 ∈ Y such that

‖y0 − f(y0)‖ = inf
x∈Y
‖x− f(y0)‖.

Proof. Define G : Y → P (X) by

G(x) = {y ∈ Y |‖y − f(y)‖ ≤ ‖x− f(y)‖}.

Because f is continuous, the sets G(x) are closed in Y and therefore com-

pact. We verify that G is a K2M operator. For, let y ∈ co{x1, . . . , xn} ⊂

Y . Suppose, by contradiction, that y /∈
n⋃
i=1

G(xi). Then ‖y − f(y)‖ >

‖xi − f(y)‖ for i ∈ {1, 2, · · · , n}. This shows that all the points xi lie in

an open ball of radius ‖y−f(y)‖ centered at f(y). Therefore, the convex

hull of it is also there and in particular y. Thus ‖y− f(y)‖ > ‖y− f(y)‖,
which is a contradiction. By the compactness of G(x) we find a point y0

such that y0 ∈
⋂
x∈Y

G(x) and hence ‖y0 − f(y0)‖ ≤ ‖x − f(y0)‖, for all

x ∈ Y . This clearly implies ‖y0− f(y0)‖ = inf
x∈Y
‖x− f(y0)‖ and the proof

is complete. �

Theorem. Let Y be a compact convex subset of a Banach space X.

Let f : Y → X be a continuous operator such that for each x ∈ Y with

x 6= f(x), the line segment [x, f(x)] contains at least two points of Y .

Then f has at least a fixed point.

Proof. By the previous Lemma, we obtain an element y0 ∈ Y with

‖y0−f(y0)‖ = inf
x∈Y
‖x−f(y0)‖. We will show that y0 is a fixed point of f .

The segment [y0, f(y0)] must contain a point of Y other than y0, let say

x. Then x = ty0 + (1− t)f(y0), with some t ∈]0, 1[. Then ‖y0− f(y0)‖ ≤
t‖y0 − f(y0)‖ and since t < 1, we must have ‖y0 − f(y0)‖ = 0. �
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Corollary. (Schauder I) Let Y be a compact convex subset of a Ba-

nach space X. Let f : Y → Y be a continuous operator. Then f has at

least a fixed point.

2.3.3 Second and Third Schauder’s Fixed Point

Theorem

Definition. Let X, Y be two Banach spaces, K ⊆ X and f : K → Y .

Then f is called:

1) continuous, if xn ∈ K, n ∈ N with xn → x ∈ K as n → +∞
implies f(xn)→ f(x) as n→ +∞;

2) with closed graph, if xn ∈ K, n ∈ N with xn → x and f(xn)→ y

as n→ +∞ implies x ∈ K and y = f(x);

3) bounded, if for each bounded subset A of K, implies f(A) is

bounded in Y ;

4) compact, if for each bounded subset A of K the set f(A) is

relatively compact in Y ;

5) completely continuous, if f is continuous and compact;

6) with relatively compact range, if f is continuous and f(K) is

relatively compact in Y (i.e., f(K) is compact);

Two well-known results are:

Lemma. a) Let f : K → Y be a continuous function and A ⊂ K be

compact. Then f(A) is compact too.

b) If M is a compact set and Z ⊆M , then Z is relatively compact.

Remark. i) If f : K → Y is with relatively compact range, then f is

completely continuous.

ii) Suppose X is a finite dimensional space, K ⊆
X is closed and f : K ⊂ X → Y . Then

f is completely continuous if and only if f is continuous.

Proof. i) If f is with relatively compact range, then f(K) is compact

in Y . Let A ⊂ K be bounded. Then, f(A) ⊂ f(K) ⊂ f(K). Hence f(A)



2.3. SCHAUDER’S FIXED POINT THEOREMS 63

is relatively compact.

ii) Let A be a bounded subset of K. Then A is a compact set (since

the space X is finite dimensional). Then, f(A) is a compact set. From

f(A) ⊂ f(A) and by the previous Lemma b), we get that f(A) is rela-

tively compact. 2

Recall now a very important theorem in functional analysis.

Mazur’s Theorem. a) Let X be a Banach space and M be a rela-

tively compact subset of it. Then co(M) is relatively compact.

b) Let X be a Banach space and M be a relatively compact subset of

it. Then co(M) is compact.

c) If X is a finite dimensional normed space and M ⊂ X is compact,

then co(M) is compact too.

The next result (Schauder’ second theorem) is very useful for appli-

cations.

Theorem. (Schauder II) Let Y be a bounded closed convex subset of

a Banach space X. Let f : Y → Y be a completely continuous operator.

Then f has at least a fixed point.

Proof. Since f is completely continuous and Y is bounded we have

that f(Y ) is relatively compact in X. From Mazur’s theorem we know

that the closed convex hull of a relatively compact subset of a Banach

space is compact. Hence K := co(f(Y )) is compact and convex. Since Y

is closed and convex and f(Y ) ⊂ Y we get that K ⊂ Y . Then

f(K) ⊆ f(Y ) ⊆ K := co(f(Y )).

Thus f : K → K. Also, K ∈ Pcp.cv(X). By Schauder I, we obtain that

Fix(f) 6= ∅. 2

By Schauder I we immediately obtain the following result.

Theorem. (Schauder III) Let Y be a closed convex subset of a Banach

space X. Let f : Y → Y be an operator with relatively compact range.

Then f has at least a fixed point.
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Proof. Since f is with relatively compact range, we have that f is

continuous and f(Y ) is relatively compact in X. From Mazur’s theorem

we get that K := co(f(Y )) is compact and convex. Since Y is closed

and convex and f(Y ) ⊂ Y we get that K ⊂ Y . Thus f : K → K. By

Schauder I we get the conclusion.

2.4 Applications

Let (X, d) be a compact metric space and denote

C(X,R) := {f : X → R|f continuous }.

Then (C(X,R), ‖ · ‖C,B) is a Banach space.

Definition. A subset Y ⊂ C(X,R) is said called:

i) bounded if there is M > 0 such that |u(x)| ≤M , for each u ∈ Y
and each x ∈ X;

ii) echicontinuous if for each ε > 0 there is δ > 0 such that the

following implication holds:

d(x1, x2) < δ ⇒ |u(x1)− u(x2)| < ε, ∀ u ∈ Y.

Theorem. (Ascoli-Arzela) Y ⊂ C(X,R) is relatively compact if and

only if Y is bounded and echicontinuous.

Theorem. (The Fredholm integral operator)

Let K : [a, b] × [a, b] × [−R,R] → R continuous. Consider the Fredholm

integral operator

T : C[a, b]→ C[a, b], u 7−→ Tu

given by

Tu(x) :=

∫ b

a

K(x, s, u(s))ds, x ∈ [a, b].

Then T is completely continuous.



2.4. APPLICATIONS 65

Proof. 1) The continuity of T .

Let u0 ∈ C[a, b] be arbitrary and ε > 0. We will prove that T is continuous

in u0, i.e., for ε > 0 there exists δ(u0, ε) > 0 such that, if u ∈ C[a, b] with

‖u− u0‖ ≤ δ implies ‖Tu− Tu0‖ ≤ ε.

Since K is continuous on the compact set W := [a, b]×[a, b]×[−R,R],

it is uniformly continuous with respect to the third variable. Hence, there

exists δ1(ε) > 0 such that for any p, q ∈ [−R,R] with |p − q| < δ1(ε)

implies |K(x, s, p)−K(x, s, q)| < ε
b−a , for each (x, s) ∈ [a, b]× [a, b].

Then, there exists δ(u0, ε) := δ1(ε) > 0 such that for each u ∈ C[a, b]

with ‖u−u0‖ ≤ δ we have |K(x, s, u(s))−K(x, s, u0(s))| < ε
b−a , for each

(x, s) ∈ [a, b]× [a, b].

Thus, |Tu(x) − Tu0(x)| ≤
∫ b
a
|K(x, s, u(s)) − K(x, s, u0(s))|ds ≤ ε,

for each x ∈ [a, b]. Takig the sup
x∈[a,b]

we get that ‖Tu− Tu0‖ ≤ ε.

2) We will prove now that T is compact, i.e. for each bounded subset

Y of C[a, b] the set T (Y ) is compact.

By Ascoli-Arzela, it is enough to prove that T (Y ) is bounded and

equicontinuous.

i) We prove first that T (Y ) is bounded, i.e., there exists M > 0

such that ‖v‖ ≤M , for every v ∈ T (Y ).

We have: |Tu(x)| ≤
∫ b
a
|K(x, s, u(s))|ds ≤ MK(b − a) := M (where

MK := max
(x,s,p)∈W

|K(x, s, p)|). By taking sup
x∈[a,b]

, we get v := ‖Tu‖ ≤M , for

each u ∈ Y .

ii) We prove now that T (Y ) is equicontinuous.

Since K is uniformly continuous on W := [a, b] × [a, b] × [−R,R] with

respect to the first variable we can write that there exists δ2(ε) > 0 such

that for any x1, x2 ∈ [a, b] with |x1 − x2| < δ2(ε) implies |K(x1, s, p) −
K(x2, s, p)| < ε

b−a , for each (s, p) ∈ [a, b] × [−R,R]. Hence there exists

δ2(ε) > 0 such that for any x1, x2 ∈ [a, b] with |x1 − x2| < δ2(ε) and any

u ∈ Y we have |K(x1, s, u(s))−K(x2, s, u(s))| < ε
b−a , for each s ∈ [a, b].
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Thus, |Tu(x1)− Tu(x2)| ≤
∫ b
a
|K(x1, s, u(s))−K(x2, s, u(s))| ≤ ε

b−a(b−
a) = ε. As a conclusion, T (Y ) is equicontinuous. 2

Remark. a) Let K : [a, b] × [a, b] × [−R,R] → R and g : [a, b] → R
be continuous. Consider the Fredholm-type integral operator

T : C[a, b]→ C[a, b] u 7−→ Tu

given by

Tu(x) :=

∫ b

a

K(x, s, u(s))ds+ g(x), x ∈ [a, b].

Then T is completely continuous.

b) Let K : [a, b]× [a, b]×R→ R be continuous. Consider the Fredholm

integral operator

T : C[a, b]→ C[a, b]

u 7−→ Tu

given by

Tu(x) :=

∫ b

a

K(x, s, u(s))ds, x ∈ [a, b].

Then T is completely continuous.

An existence result for Fredholm integral equation is:

Theorem. Let K : [a, b]× [a, b]× [−R,R] → R be continuous. Con-

sider the Fredholm integral equation:

u(x) = λ

∫ b

a

K(x, s, u(s))ds, x ∈ [a, b].

Suppose that |λ| ≤ R
MK(b−a) , where MK := max

(x,s,p)∈W
|K(x, s, p)| (here W :=

[a, b]× [a, b]× [−R,R]).

Then there at least one u∗ ∈ B̃(0;R) ⊂ C[a, b] a solution to the above

Fredholm integral equation.
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Proof. Using the previous theorem we have that the Fredholm inte-

gral operator

T : B̃(0;R) ⊂ C[a, b]→ C[a, b]

u 7−→ Tu

given by

Tu(x) := λ

∫ b

a

K(x, s, u(s))ds, x ∈ [a, b]

is completely continuous.

We will prove now that the set B̃(0;R) is invariant with respect to

T . Indeed, let u ∈ B̃(0;R). We will show that Tu ∈ B̃(0;R).

We have: |Tu(x)| ≤ |λ|
∫ b
a
|K(t, s, u(s))|ds ≤ |λ|MK(b − a) ≤ R. By

taking max
x∈[a,b]

, we get that ‖Tu‖ ≤ R, for each u ∈ B̃(0;R).

Hence we have that T : B̃(0;R) ⊂ C[a, b] → B̃(0;R) is completely

continuous on the bounded, closed and convex subset B̃(0;R) of the

Banach space C[a, b]. By Schauder II, there exists at least one fixed point

u∗ ∈ B̃(0;R) for T . This fixed point is a solution of the above Fredholm

integral equation. 2

Theorem. (The Volterra integral operator)

Let K : [a, b] × [a, b] × [−R,R] → R continuous. Consider the Volterra

integral operator

T : C[a, b]→ C[a, b]

u 7−→ Tu

given by

Tu(t) :=

∫ t

a

K(t, s, u(s))ds, t ∈ [a, b].

Then T is completely continuous.

Remark. a) Let K : [a, b] × [a, b] × [−R,R] → R and g : [a, b] → R
be continuous. Consider the Volterra-type integral operator

T : C[a, b]→ C[a, b]
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u 7−→ Tu

given by

Tu(t) :=

∫ t

a

K(t, s, u(s))ds+ g(t), t ∈ [a, b].

Then T is completely continuous.

b) Let K : [a, b]× [a, b]×R→ R be continuous. Consider the Volterra

integral operator

T : C[a, b]→ C[a, b]

u 7−→ Tu

given by

Tu(x) :=

∫ t

a

K(x, s, u(s))ds, x ∈ [a, b].

Then T is completely continuous.

An existence result for a Volterra-type equation is:

Theorem. Let K : [a, b]× [a, b]×R→ R continuous, such that there

exist α, β > 0 such that |K(t, s, p)| ≤ α · |p| + β, for each (t, s) ∈ [a, b]

and p ∈ R. Consider g ∈ C[a, b].

Then there exists at least one solution of the following Volterra-type

integral equation:

u(t) =

∫ t

a

K(t, s, u(s))ds+ g(t), t ∈ [a, b].

Proof. Consider on C[a, b] the Bielecki-type norm, with arbitrary

τ > 0, i.e.,

‖u‖B := max
t∈[a,b]

|u(t)| · e−τ(t−a).

Let R > 0 be arbitarily chosen and B̃(0;R) ⊂ (C[a, b], ‖ · ‖B).

STEP 1. The operator

T : B̃(0;R) ⊂ C[a, b]→ C[a, b]
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u 7−→ Tu

given by

Tu(t) :=

∫ t

a

K(t, s, u(s))ds+ g(t), t ∈ [a, b]

is completely continuous, by the above theorem on Volterra integral op-

erators.

STEP 2. We prove that B̃(0;R) ⊂ (C[a, b], ‖ · ‖B) is invariant with

respect to T .

Let u ∈ B̃(0;R). Then, we have:

|Tu(t)| ≤
∫ t
a
|K(t, s, u(s))|ds+ ‖g‖ ≤ α

∫ t
a
|u(s)|ds+β(b− a) + ‖g‖ =

α
∫ t
a
|u(s)|e−τ(s−a)eτ(s−a)ds + β(b − a) + ‖g‖ ≤ α‖u‖B · 1τ e

τ(t−a) + β(b −
a) + ‖g‖.

Hence, |Tu(t)|e−τ(t−a) ≤ α
τ
‖u‖B + β(b− a) + ‖g‖, for each t ∈ [a, b].

We choose τ > 0 such that α
τ
R+β(b−a)+‖g‖ ≤ R. Thus, ‖Tu‖B ≤ R

and then T : B̃(0;R) ⊂ (C[a, b], ‖ · ‖B)→ B̃(0;R) ⊂ (C[a, b], ‖ · ‖B).

The conclusion follows now by Schauder II. 2

Application to differential equations.

A. Peano’s Theorem.

Consider the Cauchy problem:

u′(t) = f(t, u(t)), u(t0) = u0,

where f : D → R is continuous.

(here D := {(t, u) ∈ R2|t ∈ [t0 − a, t0 + a]× [u0 − b, u0 + b]}).

Then the Cauchy problem has at least one solution in C[t0 − h, t0 + h],

where h := min{a, b
M
} (with M = max

D
|f(t, u)|).

Proof. Denote

X := (C[t0 − h, t0 + h], ‖ · ‖) and Y := B̃(u0; b) ⊂ X.

Define T : B̃(u0; b) ⊂ X → X, x 7−→ Tx, where

Tu(t) :=

∫ t

t0

f(s, u(s))ds+ u0, for t ∈ [t0 − h, t0 + h].
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Notice that the Cauchy problem is now equivalent to the following fixed

point problem: u = Tu.

We have:

1) T : Y → Y

Indeed, we will prove that if u ∈ Y , then Tu ∈ Y . We have |Tu(t)−u0| ≤∫ t
t0
|f(s, u(s))|ds ≤M(t− t0) ≤Mh ≤M b

M
= b, for each t ∈ [t0−h, t0 +

h]. By taking the maximum of t ∈ [t0 − h, t0 + h], we get that

‖Tu− u0‖ ≤ b, for every u ∈ Y.

Thus T (u) ∈ Y , for every u ∈ Y .

2) T is completely continuous from the above theorem on Volterra

operators.

Hence, by Schauder II, we get that T has at least one fixed point in

Y . This fixed point is a solution for our Cauchy problem. 2
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B. Boundary Value Problem of Dirichlet-type.

Consider the following boundary value problems of Dirichlet-type:

I.

(I1) x′′(t) = 0, t ∈ [a, b]

(I2) x(a) = α, x(b) = β.

II.

(II1) x′′(t) = f(t), t ∈ [a, b]

(II2) x(a) = 0, x(b) = 0,

where f : [0, T ]→ R is a continuous function.

III.

(III1) x′′(t) = f(t), t ∈ [a, b]

(III2) x(a) = α, x(b) = β,

where f : [a, b]→ R is a continuous function.

IV.

(IV 1) x′′(t) = f(t, x(t)), t ∈ [a, b]

(IV 2) x(a) = 0, x(b) = 0,

where f : [a, b]× R→ R is a continuous function.

V.

(V 1) x′′(t) = f(t, x(t)), t ∈ [a, b]

(V 2) x(a) = α, x(b) = β,

where f : [a, b]× R→ R is a continuous function.

The purpose is to solve or to give existence results for these problems.
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• The unique solution to problem (I1) and (I2) is:

xI(t) =
t− a
b− a

β +
b− t
b− a

α, t ∈ [a, b].

• The unique solution to problem (II1) and (II2) is:

xII(t) = −
∫ b

a

G(t, s)f(s)ds, t ∈ [a, b],

where G : [a, b] × [a, b] → R is the Green function corresponding to the

problem (II), i.e.,

G(t, s) :=

{
(s−a)(b−t)

b−a , if s ≤ t
(t−a)(b−s)

b−a , if s ≥ t

• The unique solution to problem (III1) and (III2) is:

xIII(t) = −
∫ b

a

G(t, s)f(s)ds+
t− a
b− a

β +
b− t
b− a

α, t ∈ [a, b].

• Problem (IV 1) and (IV 2) is equivalent to the following Fredholm

integral equation:

x(t) = −
∫ b

a

G(t, s)f(s, x(s))ds, t ∈ [a, b].

• Problem (V 1) and (V 2) is equivalent to the following Fredholm-type

integral equation:

x(t) = −
∫ b

a

G(t, s)f(s, x(s))ds+
t− a
b− a

β +
b− t
b− a

α, t ∈ [a, b].

Consider the problem (IV 1) and (IV 2).

(IV 1) x′′(t) = f(t, x(t)), t ∈ [a, b]

(IV 2) x(a) = 0, x(b) = 0.
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We have the following existence result.

Theorem. Let f : [a, b] × [−R,R] → R be a continuous func-

tion, where R > 0 is such that if x ∈ B̃(0;R) ⊂ C[a, b] then

x(t) ∈ [−R,R], for each t ∈ [a, b]. Suppose M(b − a) ≤ R, where

M := max
(t,u)∈[a,b]×[−R,R]

|G(t, s)| · |f(t, u)|.

Then, the problem (IV 1) and (IV 2) has at least one solution in

B̃(0;R) ⊂ C[a, b].

Proof. STEP 1. The problem (IV 1) and (IV 2) is equivalent to the

following Fredholm integral equation:

x(t) = −
∫ b

a

G(t, s)f(s, x(s))ds, t ∈ [a, b].

STEP 2. The operator T : B̃(0;R) ⊂ C[a, b] → C[a, b], x 7−→ Tx,

where

Tx(t) := −
∫ b

a

G(t, s)f(s, x(s))ds, t ∈ [a, b]

is completely continuous by the corresponding result for Fredholm oper-

ators.

STEP 3. We prove that T : B̃(0;R) ⊂ C[a, b]→ B̃(0;R).

Indeed, let x ∈ B̃(0;R) ⊂ C[a, b]. Then |Tx(t)| ≤
∫ b
a
|G(t, s)| ·

|f(s, x(s))|ds ≤ M(b − a) ≤ R, for each t ∈ [a, b]. Hence ‖Tx‖ ≤ R,

for every x ∈ B̃(0;R).

By Schauder II, we get that T has at least one fixed point in x∗ ∈
B̃(0;R) ⊂ C[a, b]. This fixed point is clearly a solution to problem (IV 1)

and (IV 2). 2
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[76] A. S. Mureşan, Non-cooperative Games, Mediamira Cluj-Napoca,

2003.
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[85] A. Petruşel, Multivalued operators and fixed points, Pure Math.

Appl., 11(2000), 361-368.
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[102] B. Ricceri, Une propriété topologique de l’ensemble des points fixed
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