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Introduction

Let X and Y be two nonempty sets and F,G : X — P(Y’) be multi-
valued operators. An operatorial inclusion is, by definition, a problem of
the following type:

(1) Find z € X satisfying the relation : F(x) N G(x) # 0.

Such elements x are called coincidence points for F' and G.

Examples:

i) If G: X — Y is defined by G(x) = {f(x)}, where f : X — Y is a
single-valued map, then (1) becomes a coincidence problem for f and F
or a f-fixed point problem for F'

(1;) Find x € X such that f(z) € F(z)

i) If G: X — P(X) is defined by G(z) = {z}, then we get a fixed
point problem for the multi-valued operator F":

(1;) Find 2 € X such that x € F(z)
Moreover, a special type of fixed point problem is the following:

(1%) Find 2 € X such that {z} = F(z)

An element x having this property is called a strict fixed point for F.

iii) If G : X — P(Y') is defined by the constant operator G(z) = {y},
for each x € X, then (1) is a surjectivity problem for the multi-function
E:

(1) Given y € Y find € X such that y € F(x).

iii



iv INTRODUCTION

iv) If Y is a linear space and G : X — P(Y) is defined by the zero
constant operator G(z) = {0}, for each € X, then (1) is a zero point
problem or an equilibrium problem for the multi-function F:

(1;,) Find x € X such that 0 € F(x).

By definition, an operatorial anti-inclusion is the following problem:

(2) Find z € X satisfying the relation F(x) N G(z) = 0.
An element x € X having this property is called an anti-coincidence
point for F' and G.

Examples:

i) If FF = G (that means F(x) = G(x), for each x € X), then (2)
becomes a maximal element problem for F"

(2;) Find z € X such that F(z) =0

i) If G : X — P(Y) is defined by G(z) = {f(z)}, for each x € X,
where f : X — Y is a single-valued operator, then we obtain the following
non-selection problem:

(24) Find z € X such that f(x) ¢ F(x)

Let us remark that if problem (2;) has no solutions, then the mapping
f is a selection for F, i.e. f(z) € F(x), for each z € X.

iii) If G : X — P(X) is defined by G(z) = {z}, then we get a
non-fixed point problem for the multi-valued operator F":

(24) Find x € X such that ¢ F(z)
Let us remark that (2;;) is equivalent with the following operator
inclusion: find € X such that x € Cy(F(z)).

Similarly, we can consider the strict non-fixed point problem, the non-
surjectivity problem or the non-zero point problem.
Selections, fixed points, coincidence points, zero points for multi-

functions, integral and differential inclusions are several keywords and



phrases which characterize this course. In fact, there are two impor-
tant purposes of it. First, some abstract operatorial inclusions with focus
on fixed points, coincidence points and selections are presented. Second,
some applications of the abstract theory to integral and differential in-
clusions, dynamical systems and the theory of self-similar sets are con-

sidered.

e Evaluation: during the semester: two written tests (WT1, WT2)
and course-+seminar activity (CSA).

e The schedule for the two written tests: First written test (WT1):
November 15, 2023; Second written test (WT2): December 13, 2023.

e Final mark FM :=40% WT1 + 40% WT2 + 20% CSA.

Adrian Petrusel September 2023
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Chapter 1
Multi-valued analysis

The purpose of this chapter is to report the basic theory of multi-
valued operators between metric spaces. More precisely, basic properties
of the Pompeiu-Hausdorff generalized metric, continuity and measurabi-
lity concepts and results for multi-functions are reported. (many of them,

being already classical theorems, are presented without proofs.)

1.1 Pompeiu-Hausdorff metric

The aim of this section is to present the main properties of some
(generalized) functionals defined on the space of all subsets of a metric
space. A special attention is paid to gap functional, excess functional and
to Pompeiu-Hausdorff functional.

Let (X,d) be a metric space. Recall that a metric d for a
nonempty set X is a functional d : X x X — R, satisfying the following
axioms:

(i) d(xz,y) =0 if and only if x =y
(ii) d(z,y) = d(y, z) for every z,y € X
(ili) d(z,y) < d(zx, z) + d(z,y), for every z,y, 2z € X.

In what follows, sometimes we will need to consider infinite-valued

1



2 CHAPTER 1. MULTI-VALUED ANALYSIS

metrics, also called generalized metrics d : X x X — R, U {+o0}, see
Luxemburg [136] and Jung [116].

Throughout this book, we denote by P(X) the space of all sub-
sets of a nonempty set X. If X is a metric space, x € X and R > 0, then
B(z, R) and respectively B (x, R) denote the open, respectively the closed
ball of radius R centered in x. If X is a topological space and Y is a sub-
set of X, then we will denote by Y the closure and by intY the interior
of the set Y. Also, if X is a normed space and Y is a nonempty subset of
X, then convY respectively convY denote the convex hull, respectively
the closed convex hull of the set Y.

We consider, for the beginning, the diameter generalized functional

defined on the space of all subsets of a metric space X.

Definition 1.1.1. Let (X, d) be a metric space. The diameter gene-
ralized functional, diam : P(X) — Ry U {+oo} is defined by:

sup{d(a,b)| a €Y, beY}, ifY £

diam(Y') = { 0, ity =0

Definition 1.1.2. The subset Y of X is said to be bounded if and
only if diam(Y") < oo.

Lemma 1.1.3. Let (X,d) be a metric space and Y,Z nonempty
bounded subsets of X. Then:
i) diam(Y') = 0 if and only if Y = {yo}.
it) If Y C Z then diam(Y') < diam(Z).
iii) diam(Y) = diam(Y").
w) If Y NZ #0 then diam(Y U Z) < diam(Y') + diam(Z).
v) If X is a normed space then:
a) diam(z +Y) = diam(Y"), for each x € X.
b) diam(aY') = |a|diam(Y"), where a € R.
c¢) diam(Y') = diam(convY’).
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d) diam(Y) < diam(Y + Z) < diam(Y') + diam(Z).

Proof. iii) Because Y C Y we have diam(Y) < diam(Y). For
the reverse inequality, let consider z,y € Y. Then there exist (z,)nen,
(Yn)nen C Y such that z,, - x and y, — y as n — oo. It follows that
d(xp, Yn) 5 d(x,y). Because d(x,,y,) < diam(Y), for all n € N we get
by passing to limit d(z,y) < diam(Y'). Hence diam(Y) < diam(Y).

iv) Let u,v € Y U Z. We have the following cases:

a) If u,v € Y then d(u,v) < diam(Y) < diam(Y") + diam(Z) and so

diam(Y U Z) < diam(Y") + diam(Z).

b) If u,v € Z then by an analogous procedure we have d(u,v) <
diam(Z) < diam(Y) + diam(Z) and so diam(Y U Z) < diam(Y) +
diam(Z).

c) If u € Y and v € Z then choosing t € Y N Z we have that
d(u,v) < d(u,t) +d(t,v) < diam(Y') + diam(Z). Hence, diam(Y U Z) <
diam(Y') + diam(Z).

v) ¢) Let us prove that diam(convY’) < diam(Y). Let z,y € convY'.
Then there exist ;,y; € Y, A\, n; € Ry, such that

I:Z)\zxm y:Z,LL]y], Z)\Zzl, Zﬂjzl
=1 Jj=1 i=1 Jj=1

From these relations we have:

o=l = 3 =3 ] = H (z) S (z Ai) S o
=1 j:l j:l 1=1 =1 j:l
< Z Z Aitjl|ze =yl < <Z Z /\i,uj> diam(Y') = diam(Y).
j:l =1 j:l =1
O

Let us consider now the following spaces of subsets of a metric space
(X, d):

P(X)={Y e P(X)| Y #0}; P(X) = {Y € P(X)| diam(Y) < co};
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P,,(X)={Y € P(X)| Y isopen }; Py(X)={Y € P(X)| Y is closed };
Py (X)) =P(X)NPy(X); Pp(X)={Y € P(X)| Y is compact };
P.,.(X)={Y € P(X)| Y is connex}.
If X is a normed space, then we denote:
P.,(X)={Y € P(X)] Y convex}; P, (X) = Pp(X) N Pay(X).
Let us define the following generalized functionals:
(1) D:P(X)xP(X) = Ry U{+00}

inf{d(a,b)|]a € A, be B}, if A0 #B
D(A,B) =14 0, ifA=0=B8B
+o0, ifA=0#Bor A#(=B.
the so-called distance between the sets A and B or the gap functional.
In particular, D(xg, B) = D({zo}, B) (where xy € X) is called the

distance from the point zy to the set B.
(2) 6:P(X)xP(X)—= Ry U{+o0},

sup{d(a,b)|a € A, be B}, if A#D+#B
0, otherwise

JAB) = {
(3) p:P(X)xP(X)— R, U{+o0},

sup{D(a,B)|a€ A}, it A#40+#B
p(A,B) =< 0, if A=10
+00, ifB=0#A

the so-called excess functional.
(4) H:P(X)xP(X)— Ry U{+o0},

max{p(A, B),p(B,A)}, if A#0+#B
H(A,B) =1 0, iftA=(=8B
+00, if A=0#Bor A#0=DB.
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the so-called Pompeiu-Hausdorff generalized functional.

Let us prove now that the functional H is a metric on the space

P, (X). First we will prove the following auxiliary result:

Lemma 1.1.5. D(b, A) = 0 if and only if b € A.

Proof. We shall prove that A = {z € X| D(z, A) = 0}. For this
aim, let € A be arbitrarily. It follows that for each r > 0 and for each
B(z,r) C X we have AN B(x,r) # 0. Then for each r > 0 there exists
a, € A such that d(z,a) < r. It follows that for each r > 0 we have
D(xz,A) <r and hence D(z,A) = 0. O

Lemma 1.1.6. Let (X,d) be a metric space. Then the pair
(Pya(X), H) is a metric space.

Proof. We shall prove that the axioms of the metric hold:
a) H(A,B) > 0, for all A, B € P, 4(X) is obviously.
H(A, B) = 0 is equivalent with p(A, B) = 0 and p(B, A) = 0, that
means sup D(a, B) = 0 and iug D(b, A) = 0. Hence D(a, B) = 0, for each
S

a€A

a € Aand D(b,A) = 0, for each b € B. Using Lemma 1.1.5. we obtain
that a € B, for all a € A and b € A, for all b € B, proving that A C B
and B C A.

b) H(A, B) = H(B, A) is quite obviously.

c) For the third axiom of the metric, let consider A, B,C' € P, 4(X).
For each a € A, b € B and ¢ € C we have d(a,c) < d(a,b) + d(b,c).
It follows that igé d(a,c) < d(a,b) + égg d(b,c), for all a € Aand b €
B. We get D(a,C) < d(a,b) + D(b,C), for all a € A, b € B. Hence
D(a,C) < D(a,B)+H(B,C), foralla € A and so D(a,C) < H(A, B)+
H(B,C), for all a € A. In conclusion, we have proved that p(A,C) <
H(A,B)+ H(B,(C). Similarly, we get p(C, A) < H(A,B)+ H(B,(C), and
so HA,C)< H(A,B)+ H(B,C). O

Remark 1.1.7. H is called the Pompeiu-Hausdorff metric induced by
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the metric d. Occasionally, we will denote by H; the Pompeiu-Hausdorff
functional generated by the metric d of the space X.

Remark 1.1.8. H is a generalized metric on P.(X).

Lemma 1.1.9. Let (X,d) a metric space. Then we have:

i) D(-,Y): (X,d) = Ry, x+— D(x,Y), (where Y € P(X)) is nonex-
pansive.

ii) D(x,-) : (Py(X),H) = Ry, Y — D(z,Y), (where x € X) is

NONETPANSIVE.

Proof. i) We shall prove that for each Y € P(X) we have
|D(z1,Y) — D(x9,Y)| < d(x1,22), for all x1, 25 € X.

Let x1, 29 € X be arbitrarily. Then for all y € Y we have

d(xy,y) < d(xy,z2) + d(z2,y). Then 2}1615 d(xy,y) < d(xy,z9) +
;gf d(zq,y) and so D(z1,Y) < d(x1,x2) + D(22,y). We have proved that
D(x1,y) — D(x2,Y) < d(xy1,z5). Interchanging the roles of x; and x5 we
obtain D(x9,Y) — D(z1,Y) < d(z1,x2), proving the conclusion.

ii) We shall prove that for each z € X we have:

|D(x,A) — D(z,B)| < H(A, B), for all A,B € Py(X).

Let A, B € P,(X) be arbitrarily. Let a € A and b € B. Then we have
d(z,a) < d(z,b)+d(b,a). It follows D(z, A) < d(x,b)+D(b, A) < d(x,b)+
H(B, A) and hence D(z, A)—D(z, B) < H(A, B). By a similar procedure
we get D(z,B) — D(z,A) < H(A,B) and so |D(x,A) — D(x,B)| <
H(A,B), for all A,B € P, 4(X). O

Lemma 1.1.10. Let (X,d) be a metric space. Then the generalized
functional diam : (Py(X), H) — Ry U {400} is continuous.

Lemma 1.1.11. Let (X, d) be a metric space. Then we have:
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i) D(Y,Z) = D(Y,Z), for all Y, Z € P(X).

ii) DY, Z) < DY,W) + D(W, Z) + diam(W), for all Y, Z,W €
P(X).

iii) D(Y, ZUW) = min{D(Y, Z), D(Y, W)}, for all Y, Z,W € P(X).

w) If Y, Z € P(X) such thatY C Z C Y then

D(x0,Y) = D(z, Z) = D(x0,Y), for all zy € X.

Proof. i) Because Y C Y and Z C Z the inequality D(Y,Z) <
D(Y, Z) is obviously. For the reverse inequality let us consider u € Y, v €
Z. Then there exists (2, )pey C Y and (yn)neny C Z such that lim z, = u,

n—o0

nll_{{.lo yn, = v. Because D(Y, Z) < d(xp,yn) < d(zp,u)+d(u,v)+d(v,y,) it
follows, for n — oo, that: D(Y, Z) < d(u,v), for all u € Y,v € Z. Hence
D(Y,Z) < D(Y,Z).

ii) We have d(y, z) < d(y,wy) + d(wy, wy) +d(ws, z), for ally € Y, z €
Z, and for all wy,wy € W. We get D(y,Z) < d(y,w;) + d(wy,wy) +
D(wy, Z), for all y € Y,wy,ws € W. Then D(Y,Z) < D(y,Z) <
d(y,wy) + d(wy, wy) + D(we, Z), for all y € Y and wy, wy € W. We have
now D(Y, Z) < d(y,wy)+diam(W)+D(wsy, Z), for ally € Y, wy,wy € W.
So D(Y,Z) < D(y,W) + diam(W) + D(W, Z), for all y € Y. Finally
D(Y, Z) < D(Y, W) + D(W, Z) + diam(W). O

Let us define now the notion of neighborhood for a nonempty set.

Definition 1.1.12. Let (X, d) be a metric space, Y € P(X) and
€ > 0. An open neighborhood of radius ¢ for the set Y is the set denoted
VO(Y,e) and defined by VO(Y,e) = {z € X| D(z,Y) < e}. We also
consider the closed neighborhood for the set Y, defined by V(Y,e) =
{r € X| D(z,Y) <e}.

Remark 1.1.13. From the above definition we have that, if (X, d) is
a metric space, Y € P(X) then:
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a)J{B(y,r):y € Y} = VY, r), where r > 0.
)U{B(y,r):y € Y} C V(Y,r), where r > 0.
c)VOY,r+5s) D VOVOY,s),r), where r,s > 0.
d) diam(VO(Y,r)) < diam(Y) + 2r, for all Y € P,(X) and for all
r > 0.

o

e) If (X, d) is a normed space, then:

i) VO(Y,r +s)=VOVY,s),r), where r,s > 0

i) VOY,r) = Y + int(rB(0,1)).

Proof. d) Let ¢ > 0 and z,y € V(Y,r). From the definition of
VO(Y,r) there exist u,v € Y such that d(z,u) <r+e¢, d(z,v) <r+e.

Hence we have d(x,y) < d(x,u) + d(u,v) + d(v,z) < §(Y) + 2r + 2¢,
for all z,y € Y.

Hence diam(V (Y, r)) < diam(Y') + 2r + 2¢, for all ¢ > 0. O

Remark 1.1.14. If (X, d) is a metric space and Y, Z € P(X) then
D(Y,Z)=inf{e > 0| YNV (Z,¢) # 0}.

Lemma 1.1.15. a) Let (X,d) be a metric space and Y,Z € P(X).
Then D(Y, Z) = in)f(D(a:,Y) + D(z, 7).
xre
b) Let (X,d) be a metric space and (A;)icr, B nonempty subsets of
X. Then D(|J A;, B) = i.nﬁD(Ai, B)
i€l e
c) Let X be a normed space and A, B,C € P(X). If A is a convex

set, then we have:
D(AB+ (1 —=MX\)C,A) <AD(B,A)+ (1 = X\)D(C, A), for each X\ € [0, 1].

Proof. a) We denote by u = inf{D(z, Z) + D(z,Y) : x € X }. Because

D(Y,Z) = inf{D(z,Y)+ D(z,Z) : x € Y} we have that u < D(Y, Z).
For the reverse inequality, let * € X and y € Y,z € Z having the
property d(x,y) < D(z,Y)+¢ and d(z, 2z) < D(x,Z)+¢. Then we have:
D(Y,Z) <d(y,z) < D(x,Y)+D(x, Z)+2¢. But € was arbitrarily chosen,
and so D(Y, Z) < wu. O
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Lemma 1.1.16. Let (X, d) a metric space. Then we have:

i) If Y, Z € P(X) then 0(Y,Z) =0 if and only if Y = Z = {xo}

i) 0(Y,Z) < oY, W)+ (W, 2Z), for all Y, Z, W € Py(X).

iii) Let Y € Py(X) and q €]0,1[. Then, for each x € X there exists
y €Y such that ¢o(z,Y) < d(z,y).

Proof. ii) Let Y, Z, W € P,(X). Then we have:

d(y,z) < d(y,w) + d(w,z), for all y € Y,z € Z,w € W. Then
supd(y, z) < d(y,w) + supd(w, z), for all y € Y;w € W. So d(y, Z) <
g?g,w) +o(w, Z) < 5(3;%/12/) + 0(W, Z) and hence §(Y,Z) < §(Y, W) +
(W, Z).

iii) Suppose, by absurdum, that there exists € X and there exists
q €]0,1] such that for all y € Y to have ¢d(z,Y) > d(x,y). It follows

that ¢d(z,Y) > supd(zx,y) and hence ¢é(z,Y) > d(x,Y). In conclusion,
yey
q > 1, a contradiction. [

Lemma 1.1.17. Let (X, d) be a metric space, Y, Z,W € P(X). Then:
i) p(Y,Z) =0 if and only if Y C Z
i) p(Y, Z) < p(Y, W) + p(W, Z)
i) If Y, Z € P(X) and € > 0 then:
a) p(Y,Z) < e if and only if Y C V(Z;¢).
b) p(YV,Z) =inf{e >0 Y C VY (Z,e)}. (we consider inf ) = co)
c) If Y is closed, then p(Y,Z) = su)lgD(a:, Z)—D(z,Y)
we

d) p(Y,Z) = p(Y,Z)
i) Let ¢ > 0. If Y, Z € P(X) such that for each y € Y there exists
z € Z such that d(y,z) < e then p(Y,Z) < e.
v) Let ¢ > 0 and Y, Z € P(X). Then for each y € Y there exists
z € Z such that d(y,z) < p(Y,Z) +¢.
vi) Let ¢ > 1 and Y,Z € P(X). Then, for each y € Y there exists
z € Z such that d(y, z) < qp(Y, Z).

Proof. i) Suppose that p(Y, Z) = 0 and let y € Y be arbitrary. Then
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0 < inf{d(y,2)| 2z € Z} = D(y,Z) < p(Y,Z) = 0 implies that there
exists a sequence (z,)neny C Z such that d(y, z,) — 0, when n — oo. It
follows 2z, — y whenn - occandsoy € Z = Y C Z.

Reversely, suppose that Y C Z with a = %p(Y, Z) > 0. Then there

exists yo € Y with D(yo, Z) > a. For yo € Y C Z we find a sequence
(2zn)nen C Z such that z, — yo, when n — 0o. Hence there exists ng € N
such that d(z,,v) < a, for all n > ng, a contradiction with: for all
n>mng: a>d(z,,y) > inf{d(z,y0)| 2 € Z} = D(yo, Z) > .

ii) Let ¢ > 0 and y € Y. Because D(y, W) = inf{d(y,w)| w € W}
we have that there exists w € W such that d(y,w) < D(y, W) + €. For
each z € Z we have: D(y,Z) < d(y,z) < d(y,w) + d(w,z) < d(w, z) +
D(y, W) +e.

So D(y,Z) — D(y,W) — e < d(z,w), for all z € Z proving that
D(y,Z) — D(y,W) —e < D(w, Z).

Hence D(y, Z) < p(W,Z) 4+ p(Y,W) + ¢, for all y € Y.

Finally, p(Y,Z) < p(Y, W) 4+ p(W, Z) + € and so we get the desired
conclusion.

iii) a) p(Y,Z) < ¢ is equivalent with: for all y € Y D(y,Z) < ¢ and
equivalent with Y C V(Z,¢).

If Z is compact, then Y C V(Z, ) is equivalent with the fact that for
all y € Y we have D(y, Z) < € and equivalent with: for all y € Y there
exists zg € Z such that d(y, z9) < e, meaning that for all y € Y there
exists zo € Z N B(y;e) and hence for all y € Y : ZN By, ) # 0.

c¢) Denote u = sup D(x, Z)—D(z,Y). We shall prove that p(Y, Z) < u.
If u = oo then thgéei);equality is obviously. Let us consider u < oco. Let
y €Y and v > u. We have: D(y,Z) = D(y,Z) — D(y,Y) < u < v and
so y € VY(Z,v). Hence we have proved that Y C V%(Z,v) and so we
get that p(Y,Z) < u. We will prove now that p(Y,Z) > u. Let ¢ > 0
and x € X. We can choose y € Y such that d(z,y) < D(z,Y) + «.
Let z € Z be such that d(y,z) < D(y,Z) +¢ < p(Y,Z) + c. We have
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D(z,7) < d(z,z) < d(xz,y) +d(y,z) < D(x,Y) + p(Y,Z) + 2¢ and so
D(x,Z) — D(z,Y) < p(Y, Z) + 2¢. Because x was arbitrarily we obtain
that sup,cx D(z,2) — D(z,Y) < p(Y,Z) + 2¢. For ¢ N\, 0, we have
u<pY,Z). 0O

Lemma 1.1.18. Let (X,d) be a metric space, A,B € P(X) and
(Ay)ier a family of nonempty subsets of X. Then:
a) p(| JAi, B) = = sup p(4;, B)

el

b) If A€ Py(X) then:
i) p(A,-) : (Py(X), H) — Ry is nonexpansive.
i) p(+, A) - (Py(X), H) — R, is nonexpansive.

Proof. b) ii) Let us consider B,C' € P,(X) with H(B,(C) < +o0.
Then p(B,A) < p(B,C) + p(C,A) and p(C,A) < p(C,B) + p(B, A).
Since p(C,B) < +oo it is clear that p(B,A) = 4oo if and only
if p(C,A) = +oo. If both are finite then |p(C,A) — p(B,A)| <
mazx{p(B,C),p(C,B)} = H(B,C). O

Lemma 1.1.19. Let X be a normed space, A, B,C be nonempty
bounded, convexr subsets of X and r € [0,1]. Then:

a) p(convA, B) = p(A, B)

b) p(rB+ (1 —r)C,A) <rp(B,A)+ (1 —r)p(C,A)

c) p(A,rB+ (1 —r)C) <rp(A,B)+ (1 —7)p(A,C)

If (X,d) is a metric space, we have defined the Pompeiu-Hausdorff
generalized functional H : P(X) x P(X) — Ry U {400} and we have
shown that H is a generalized metric on P, (X). Other important pro-
perties of the functional H are as follows.

Lemma 1.1.20. Let (X, d) be a metric space andY, Z,V,W € P(X).
Then we have:

i) HY,Z) =0 if and only if Y = Z
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i) HY,Z)=H(Y,Z)=H(Y,Z)=H(Y,Z).
i) HY UV, ZUW) <max{H(Y,Z),H(V,W)}.

Proof. iii) From the definition of p we have:
pYUV, ZUW) =sup{D(z, ZUW)|z €YUV} =

=max{p(Y,ZUW),p(V,ZUW)} <max{p(Y,Z), p(V,W)}.

By a similar procedure we also get:
p(ZUW, Y UV) <max{p(Z,Y), p(W,V)}.
Hence
HY UV, ZUW) <max{p(Y,Z),p(V.W),p(Z,Y), p(W,V)}
— max{H(Y, Z), H(V,W)}. O

Lemma 1.1.21. Let (X, d) be a metric space. Then we have:

i) Let Y, Z € P(X). Then H(Y,Z) = sup D(z,Y) — D(x, Z)

ii) The operator I(z) = {x} is an z'somxeet);y of (X,d) into (Py(X), Hy)

iii) Let Y, Z € P(X) and € > 0.Then for each y € Y there exists
z € Z such that d(y,z) < H(Y,Z) + €.

w) Let Y, Z € P(X) and ¢ > 1. Then for each y € Y there exists
z € Z such that d(y,z) < qH(Y, Z).

v) If Y, Z € P, (X) then for each y € Y there exists z € Z such that
dly,z) < H(Y, Z).

vi) If Y, Z € P(X). If. for each y € Y there exists z € Z such that
d(y,z) < e and for each z € Z there exists y € Y with d(y,z) < e, then
H(Y,Z)<e.

vii) Let ¢ > 0. If Y, Z € P(X) are such that H(Y,Z) < ¢ then for
each y € Y there exists z € Z such that d(y,z) < ¢.

Proof. iii) Supposing contrary, there exists ¢ > 0 and exists y € YV
such that for all z € Z we have d(y,z) > H(Y,Z) + . It follows that
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D(y,Z) > H(Y,Z)+¢candso H(Y,Z) > D(y,Z) > H(Y, Z)+¢, proving
that € <0, a contradiction.

iv) Supposing again contrary: there exists ¢ > 1 and there exists
y € Y such that for all z € Z we have d(y, z) > ¢H(Y, Z). Then we have:
D(y,Z) > qH(Y,Z). But H(Y,Z) > D(Y, Z) > qH(Y, Z). Hence ¢ < 1,

a contradiction. O

Remark 1.1.22. Using the above result (vi) it follows that the Pom-

peiu-Hausdorff functional can be also defined by the following formula:
H(A,B) =inf{e > 0] AC V(B,e) and B C V(A,¢)},
for all A, B € P(X).

Lemma 1.1.23. Let X be a Banach space. Then:

)VHY 1+ + Y, Z1+-+2Z,) <HM, Z1) + -+ HY,, Zy), for
alY;, Z; € P(X),i=1,2,...,n (n € N¥)

i) HY + Z,Y + W) < H(Z,W), for allY,Z,W € P(X)

i) HY + Z,Y + W) = H(Z, W), for all Y € Py,(X) and for all
Z,W € Py eo(X)

iv) H(convY,convZ) < H(Y, Z), for allY,Z € Py(X)

v) H(@mo Y, eonw Z) < H(Y, Z), for all Y, Z € Pya(X)

vi) H(A,rB + sC)) < rH(A,B) + sH(A,C), for each A,B.C’ €
P (X).

Proof. i) Let € > 0. From the definition of H it follows that there
exists (y1+- - -+y,) € Y1+---+Y,, such that D(y1+- - -+yn, Z1+ - +Z,) >
HY '+ +Y,, Z1+--+2Z,)—corexists (z1+--+2,) € L1+ + 7,
such that D(z;+- - +2,, Y1+---+Y,) > HY1+---+Y,, Z1+- -+ Z,)—¢.
Let us consider the first situation.

For yi,...,y, we get z1 € Zy,...,2, € Z, such that ||y, — z1] <
HY, Z)+ 5, [y — 2ol € H(Y;, Z,) 4 €. Then

[+ 4 yn) = (- Fz)l <y =21l + -+ [yn — 2l <
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<HW,Z\)+ -+ H(Y,, Z,) +e.

Because
HY1+ -4+ Y, 214+ Zy) —e <D+ +yn, 214+ + 20) <

<+ +un) = (4 + 2

we obtain that
HY 2"+ +Y, Z1+-+27Z,)—ec<HY,Z)+---+ HY,, Z,) + ¢,

proving the desired inequality.

iii) From ii) we have H(Y + Z,Y + W) < H(Z,W). For the equality,
let us suppose contrary: H(Y + Z,Y + W) < H(Z,W). Let t € R% such
that HY + Z,Y + W) <t < H(Z,W). Then

Y+WCY+Z+ Bx(0;t) CY + Z + Bx(0;t).

Because W + Bx(0;t), Z + Bx(0;t) € Py(X) and Y € P, (X) it
follows from Lemma 4.1.7(i) that

Z C W+ Bx(0;t) and W C Z+ Bx(0;t).

On the other side,

W + Bx(0;t) = ﬁ (W + Bx(0;t) +27"Bx(0;1)]

n=1

Z + Bx(0;t) = ﬁ[(z + Bx(0;t) + 27" Bx(0;1)]

n=1

and choosing n such that t + 27" < H(Z, W) we get

ZCW+(t+2"Bx(0;1) and W C Z+ (t+2)Bx(0;1).
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Hence we obtain H(Z, W) <t + 2", a contradiction.

iv) Because Y C convY it follows that D(z,convY) < D(z,Y), for
all z € Z. Let A = {a € X| D(a,convY) < H(Y,Z)}. Of course A
is convex and A O Z. we can write conv Z C A and hence for all v €
conv Z we have D(v,convY) < H(Y,Z). A similar procedure produces
that for all u € convY we have D(u,conv Z) < H(Y, Z). In conclusion:
H(convY,convZ) < H(Y, Z).

v) Let Y,Z € P, a(X) and € > 0. Let p € conv Y. Then there exist

Y1, Y2, - Yn €Y and Ay, ..., A, € [0, 1] with Z)\izlsuch that

=1

<€
5

b= Z Aili
i=1

Foreachi=1,2,...,nand yy,...,y, € A there exist (see Lemma 1.1.21.

iii)) 21,...,2, € Z such that ||y; — z|| < H(Y,Z) + 5. Let ¢ = z:)\zzZ
i=1

Obviously g € conv Z and we also have:
p=Y Ngi > A=Y Niz
i=1 i=1 i=1

c n
<G Ml < HOLZ) e

+ <

lp—q| <

Hence
peV(conv Z;H(Y,Z)+¢) = convY C V(conv Z, H(Y, Z) +¢).

Similarly, we can be prove conv Z C V(convY, H(Y, Z) + ¢). In con-
clusion we obtain that H(convY,conv Z) < H(Y,Z) + €, proving the
conclusion.

vi) By the definition of Pompeiu-Hausdorff metric, it suffices to prove
that for any € > 0 with B C V°(A,¢), any u > 0 with A C V°(B, i) and
C Cc VoA, pn) and A C VO(C, 1) we have that:

ACVrB+sC,re+su) and rB 4 sC C VO(A, re + spu).
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For any a € A there exist b € B and ¢ € C such that d(a,b) < € and
d(a,c) < p. Since r + s = 1 it follows that

d(a,rb+ sc) = |la —rb—sc|| < rlla—"0b|| + s|la—c|| < re+ su.

This implies that A C VO(rB + sC,re + su). By the convexity of B
and C' and the similar argument used above, we can also prove that
rB+sC C V(A ,re+ su). O

Remark 1.1.24. Let X be a normed space and A € P,,(X). We
denote ||A|| = H(A,{0}).

Example 1.1.25. a) H([ay,asl, [b1,b2]) = max{|b; — a1], |b2 — a2}
(where ay, as, by, bs € R).

b) If B(z;,r;) are two ball in R" (where z1, 2, € R" and 71,7, € RY),
then H(B(x1,71), B(x1,7r2)) = ||21 — 22| + |11 — 72|

Let us recall that a metric space (X, d) is said to be e-chainable (where
e > 0 is fixed) if and only if given a,b € X there is an e-chain from a
to b, that is a finite set of points xg,x1,...,2, in X such that xy = a,
x, =band d(z;_1,x;) <e forallie{l,2,... ,n}

Some very important properties of the metric space (Py(X), Hy) are
contained in the following result:

Theorem 1.1.26. i) If (X,d) is a complete metric space, then
(P4(X), Hy) is a complete metric space.

it) If (X,d) is a totally bounded metric space, then (Py(X), Hy) is a
totally bounded metric space.

iii) If (X, d) is a compact metric space, then (Py(X), Hq) is a compact
metric space.

) If (X,d) is a separable metric space, then (P, (X), Hy) is a sepa-
rable metric space.

v) If (X,d) is a e-chainable metric space, then (P, (X), Hy) is also

an e-chainable metric space.
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Proof. i) We will prove that each Cauchy sequence in (P (X), Hy)
is convergent. Let (A, ),en be a Cauchy sequence in (Py(X), Hy). Let us

consider the set A defined as follows:

A (T)
n=1 \'m=n

We have two steps in the proof:

1) A£0.

In this respect, consider € > 0. Then for each £ € N there is N, € N
such that for all n,m > Nj we have H(A,, A,) < 2;“. Let (ng)ren

be an increasing sequence of natural numbers such that n, > N;. Let

xg € Ap,. Let us construct inductively a sequence (xj)geny having the
following properties:

a) zp € Ay, foreach k € N

B) d(xg, xpy1) < %, for eachk € N.

Suppose that we have zg, z1, ...,z satisfying ) and §) and we will
generate xj,1 in the following way.

We have:

9
D(l‘k,Ank+1) S H(Ank7ATLk+1) < 2]<;+1‘

It follows that there exists xp,1 € A such that d(zy,zp11) <

e Nk+1
9k+1"
Hence, we have proved that there exist a sequence (xy)ren satisfying
«) and ).

From () we get that (zx)ren is Cauchy in (X, d). Because (X, d) is
complete it follows that there exists x € X such that x = l};@@ xi. We
need to show now that € A. Since (ng)ren is an increasing sequence it
follows that for n € N* there exists &k, € N* such that ng, > n. Then
Ty € U A, for k > k,, n € N* implies that € U A,,,n € N*. Hence

m>n m>n

z e A
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2) In the second step of the proof, we will establish that H(A,, A) — 0
as n — 0o.

The following inequalities hold:

d(2h, Tpgp) < d(@h, Tpgr) + - + d(Tpgp—1, Thpp) <

€ € € 1 1 1 B
<W+W+"'+W<E +§+"'+§+... =
1
=c T = 2¢, for all p € N*.
1- =
2

If in d(xg, vx4p) < 2¢ we are letting p — oo we obtain d(zy,z) <
2¢e, for each k € N. In particular d(z,z) < 2¢. So, for each ny € N,
ng > Ny and for zy € A, there exists x € A such that d(xg,z) < 2¢,
which imply

p(An,, A) < 2e, for all ng > Ny (1).

On the other side, because the sequence (A,,),en is Cauchy, it follows
that there exists N. € N such that for m,n > N, we have H(A,, A,,) <

e. Let © € A be arbitrarily. Then x € U Ay, for n € N*| which implies

that there exist ng € N, ng > N, aIlTiiZ € A,, such that d(x,y) < e.
Hence, there exists m € N, m > N. and there is y € A,, such that
d(z,y) <e.

Then, for n € N*, with n > N, we have:

D(x, Ay) < d(z,y) + D(y, An) < d(w,y) + H(Ap, Ay) <e+e=2e.
So,
p(A, A,) < 2¢, for each n € N with n > N_. (2)

From (1) and (2) and choosing n. := max{Ny, N.} it follows that
H(A,, A) < 2¢, for each n > n.. Hence H(A,,A) — 0 as n — oc.

v) (X, d) being an e-chainable metric space (where € > 0) it follows, by
definition, that for all z,y € X there exists a finite subset (the so-called
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e-net) of X, let say © = zg,x1,...,x, =y such that d(z;_1,xx) < €, for
all k=1,2,...,n.

Let y € X arbitrary and Y = {y}. Obviously, Y € P.,(X). Because
the e-chainability property is transitive, it is sufficient to prove that for
all A € P.,(X) there exist an e-net in P,,(X) linking Y with A. We have
two steps in our proof:

a) Let suppose first that A is a finite set, let say A = {a1, a9, ..., an}
We will use the induction method after the number of elements of A. If
n =1 then A = {a} and the conclusion follows from the e-chainability of
(X, d). Let suppose now that the conclusion holds for each subsets of X
consisting of at most n elements. Let A be a subset of X with n+1 points,
A = {x1,x9,...,Tpy1}. Using the e-chainability of the space (X,d) it
follows that there exist an e-net in X, namely xy = ug, U1, ..., Uy, = 22
linking the points z; and 5. We obtain that the following finite set: A,
{uy, o, .. i1}y ooy {Ume1, T2, .o Tpg1, {T2, ..., Tps1} is an e-net in
P.,(X) from A to B := {xa,...,2,41}. But, from the hypothesis B is
e-chainable with Y, and hence A is e-chainable with Y in P,,(X).

b) Let consider now A € P,,(X) be arbitrary.

A being compact, there exists a finite family of nonempty compact
subsets of A, namely {Ax}7_,, having diam(A;) < e such that A =

U Ag. For each k = 1,2,...n we can choose z; € A and define C' =
k=1
{z1,...,2,}. Then for all z € A there exists k € {1,2,...,n} such that

D(z,C) < §(Ax). We obtain:

H(A,C) = max {sup D(z,C), supyecD(y, A)} =

z€A

=sup D(z,C) < max §(Ax) < ¢,

€A i<k<n

meaning that A is e-chainable by C' in P,.,(X). Using the conclusion a)
of this proof, we get that C is e-chainable by Y in P.,(X) and so we have
proved that A is e-chainable by Y in P, (X). O
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v) (X, d) being an e-chainable metric space (where € > 0) it follows, by
definition, that for all z,y € X there exists a finite subset (the so-called
e-net) of X, let say © = zg,x1,...,2, =y such that d(zx_1,zx) < €, for
allk=1,2,...,n.

Let y € X arbitrary and Y = {y}. Obviously, Y € P, (X). Because
the e-chainability property is transitive, it is sufficient to prove that for
all A € P.,(X) there exist an e-net in P,,(X) linking Y with A. We have
two steps in our proof:

a) Let suppose first that A is a finite set, let say A = {ay, a9, ...,a,}
We will use the induction method after the number of elements of A. If
n = 1 then A = {a} and the conclusion follows from the e-chainability of
(X, d). Let suppose now that the conclusion holds for each subsets of X
consisting of at most n elements. Let A be a subset of X with n+1 points,
A = {x1,29,...,2p41}. Using the e-chainability of the space (X,d) it
follows that there exist an e-net in X, namely x1 = ug, u1, ..., Uy, = 22
linking the points x; and x5. We obtain that the following finite set: A,
{uy, wo, ... i1}y ooy {Ume1, Ty .o Tpa1, {Ta, ..., Tyy1} is an e-net in
P.,(X) from A to B := {x3,...,2,41}. But, from the hypothesis B is
e-chainable with Y, and hence A is e-chainable with Y in P.,(X).

b) Let consider now A € P,.,(X) be arbitrary.

A being compact, there exists a finite family of nonempty compact
subsets of A, namely {A;}?_;, having diam(Ax) < e such that A =

U Ay. For each k = 1,2,...n we can choose x;, € A, and define C' =

k=1
{z1,...,2,}. Then for all z € A there exists k € {1,2,...,n} such that
D(z,C) < §(A). We obtain:

H(A,C) = max {sup D(z,C), supyecD(y, A)} =

zEA

= <
itelgD(z, ) < Iax 0(Ag) <e,

meaning that A is e-chainable by C' in P,,(X). Using the conclusion a)
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of this proof, we get that C is e-chainable by Y in P.,(X) and so we have
proved that A is e-chainable by Y in P, (X). O

1.2 Basic concepts for multi-valued opera-

tors

In this section, we describe some basic concepts and results for multi-

valued operators.

Let X and Y two nonempty sets. A multi-valued operator (or a multi-
function) from X into Y is a correspondence which associates to each
element x € X a subset F'(x) of Y. We will denote this correspondence by
the symbol: F': X — P(Y') or occasionally by: F': X —o Y. Throughout
this book we denote single-valued operators by small letters and multi-
valued operators by capital letters.

Multi-valued operators arises in various branches of pure and applied

mathematics, as we can see from the following examples:

i) The metric projection multi-function. Let (X, d) be a metric
space and Y € P(X). Then the metric projection on Y is the multi-
function Py : X — P(Y') defined by:

Py(zx)={y €Y| D(z,Y) =d(z,y)}.

If X is a Hilbert space, for example, then Py becomes a single-valued

operator.

ii) Implicit differential equations. Consider the implicit differ-
ential equation:
ft,x,2') =0,2(0) = 2°.

This problem may be reduced to a multi-valued initial value problem:

2'(t) € F(t,z(t)), z(0) = 2°
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involving the multi-valued operator F'(¢,z) = {v|f(t,x,v) = 0}.

iii) Differential inequalities. The differential inequality:

I2'(t) — g(t, )| < f(t,2),2(0) = 2"

may be recast into the form:

2'(t) € F(t,z(t)), z(0) = 2°

with F(t,x) = B(g(t, z), f(t,x)).

iv) Control theory. If f : R x R" x R™ — R" determines the

dynamics of a control system having the equations of motion given by:

o' (t) = f(t 2(t), u(t)), 2(0) = 2,

where the control function u may be chosen as any measurable func-
tion from U(t,z(t)). (denote by U : R x R" — P(R™) the feedback
multi-function), then the description of this system can be presented in

a differential inclusion form:
2(t) € F(t, 2()), 2(0) = 2°,

where F(t,x) = {f(t,x(t),u(t))| v e U(t,u(t)}.

v) Variational inequalities. Let E be a Banach space, f : E —
R™ be a differentiable function and C' € P,,(E). Consider the following

problem (called a (differential) variational inequality):
Find zy € C such that (Vf(zo),z — o) > 0, for each x € C.

If we denote by Neo(zp) the normal cone for the set C' at xy (i.e.
Ne(zg) = {w € R*"|(w,z9g —x) > 0,V « € C}), then the above problem

can be written as follows:

Find 2y € X such that 0 € F(x), where F(z¢) = V f(x9) + Nc (o)
is a multi-valued operator.
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More generally, if K := R, is the convex cone of nonnegative vectors
in R" and g : K — R", then a variational inequality means the following
problem:

Find zy € K such that (g(zo),z — x¢) > 0, for each z € K

or, equivalently

Find 2y € K such that 0 € F(x), where F(zq) = g(xo) + Nk(zo).

vi) Mathematical economies. Let us consider now the Arrow-
Debreu model of an economy. Let R" be the commodity space. A vector
x € R" specifies a list of quantities of each commodity. A price p is also
an element of R™, because p lists the value of an unit of each commodity.
The main "actors” in a economy are the consumers. We assume that
there is a given finite number of consumers. If M is the income of the
consumer, then his budget set is B = {x € X|p -2z < M}, where X
denotes the consumption set (i.e. the set of all admissible consumption
vectors of the consumer). The problem faced by a consumer is to choose
a consumption vector or a set of them from the budget set. In order
to do this, the consumer must have some criterion for choosing. Let us

denote by U the preferences multi-valued operator for our consumer:
U:X —P(X), U(x) ={y € X| y is strictly prefered to x}.

An element x* € X is an optimal preference for the consumer if

U(xz*) = 0. This is the so-called consumer’s problem.

Another important question from mathematical economies is the equi-
librium price problem. The set of sums of demand vectors minus sums
of supply vectors is, by definition, the excess-demand multi-function, de-
noted by E(p). A Walrasian equilibrium price problem means the follow-
ing:

find a price p* € R" such that 0 € E(p").

Let us recall now some basic notions in the analysis of multi-valued

operators.
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Definition 1.2.1. Let X, Y be two nonempty sets. For the multi-
valued operator F': X — P(Y) we define:
i) the effective domain: Dom F := {x € X| F(x) # 0}
ii) the graphic: Graf F := {(z,y) € X x Y|y € F(x)}
iii) the range: F(X) := U F(z)
reX
iv) the image of the set A € P(X): F(A) := U F(x)

€A
v) the inverse image of the set B € P(Y):

F~(B) :={z € X| F(z) "B # 0}
vi) the strict inverse image of the set B € P(Y):
F*(B) :={x € Dom F| F(x) C B}.

vii) the inverse multi-valued operator, denoted F'~! : Y — P(X) and
defined by F~!(y) := {x € X| y € F(x)}. The set F~!(y) is called the
fibre of F' at the point y.

Remark 1.2.2. We consider, by convention: F~ () = () and F* (@) =

Definition 1.2.3. Let F,G : X — P(Y) be multi-valued operators.
Then:

i) If ® defines a certain operation between sets, then we will use the
same symbol ® for the corresponding operation between multi-functions,
namely: FRG : X — P(Y), (FRG)(x) := F(z)@G(z), YV € X. (where
® could be N, U, +, etc.)

iii) If n : P(Y) — P(Y), then we define n(F) : X — P(Y) by
n(F)(z) := n(F(z)), for all x € X. In such way, we are able to define
in topological spaces, for example, F : X — P(Y), F(z) = F(x), for all
xe€XorconvF : X —P(Y), (conv F)(x) := conv(F(x)), for all zx € X

in linear spaces, etc.
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Definition 1.2.4. Let X,Y,Z be nonempty sets and ' : X —o Y,
G Y —o Z be multi-valued operators. The composite of G and F is the
multi-valued operator H = G o F', defined by the relation H : X — Z,
H(z):= U G(y).

yEF(z)
If X is a nonempty set, then Y € P(X) is said to be invariant with

respect to a multi-valued operator F' : X — P(X) if F(Y) C Y. The
family of all invariant subsets of F' will be denoted by I(F'). Also, if
f: X — R, then Z; denotes the set of all zero point of f,i.e. Zy = {z €

X|f(x) = 0}.

Definition 1.2.5. Let (X, d), (Y,d’) be metric spaces and F' : X —
P(Y). Then, F is called:

i) a-Lipschitz if a > 0 and H(F(xy), F(z2)) < ad(zy,xs), for all
elements z1, x5 € X.

ii) a-contraction if it is a-Lipschitz, with a < 1.

iii) contractive if H(F (x1), F(z2)) < d(xy, x2), for all zy, z9 € X, 21 #

Zo.

Lemma 1.2.6. Let (X,d), (Y,d') and (Z,d") be metric spaces. Then:

i) If F @ X — Pyu(Y) is a-Lipschitz and G : X — P, 4(Y) is b-
Lipschitz, then F'U G is max{a, b}-Lipschitz.

i) If F + X — P,(Y) is a-Lipschitz and G : 'Y — P.,(Z) is b-
Lipschitz, then G o F' is ab-Lipschitz.

Lemma 1.2.7. Let X be a Banach space and F : X — Py 4(X)
be a-Lipschitz. Then conv F' : X — B, 4(X) defined by (conv F)(z) =
conv(F(x)), for all x € X is a-Lipschitz. Moreover, if F : X — P.,(X
then conv ' : X — P.,(X).

Let us remark now that, if (X, d) is a metric space and Y is a Banach

space, then a multi-function F': X — P(Y) is said to be a -Lipschitz on
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the set K € P(X) if @« > 0 and

F(z1) C F(xg) + ad(xq,22)B(0; 1), for all zq, 29 € K.

It is quite obviously that, if there exists a > 0 such that F'is a-Lipschitz
in the sense of Definition 1.2.5., then F' is a-Lipschitz in the above men-

tioned sense with any o > a and also reversely.

1.3 Continuity of multi-valued operators

Let us consider, for the beginning, the notion of upper semi-continuity
of a multi-function.

Definition 1.3.1. Let X, Y be Hausdorff topological spaces and F :
X — P(Y). Then F is said to be upper semi-continuous in zy € X
(briefly u.s.c.) if and only if for each open subset U of Y with F(zy) C U
there exists an open neighborhood V' of zy such that for all x € V we
have F(x) C U.

Fisu.s.c. on X if it is u.s.c. in each 2y € X.

Remark 1.3.2. If 2y € X has the property F(zo) = () then F is
u.s.c. in xg if and only if there exists a neighborhood V' of z( such that
F(V) = 0.

Remark 1.3.3. If X,Y are metric spaces, then F' : X — P(Y) is
u.s.c. in zg € X if and only if for all U C Y open, with F(zg) C U there
exists 7 > 0 such that for all x € B(xzo;n) we have F(z) C U.

Definition 1.3.4. Let (X, d), (Y,d’) be metric spaces and F' : X —
P(Y). Then F is called H-upper semi-continuous in xy € X (briefly H-
u.s.c.) if and only if for all £ > 0 there exists n > 0 such that for all
x € B(zo;n) we have F(z) C V(F(x0);¢).

Fis H-u.s.c. on X if it is H-u.s.c. in each zy € X.
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Remark 1.3.5. If F': X — P, 4(Y) then F is H-u.s.c. in zy € X if
and only if for all € > 0 there exists 7 > 0 such that for all x € B(z¢;n)
we have pgy (F(z), F(xg)) < e.

The connection between Definition 1.3.1 and Definition 1.3.4 is given
by:

Lemma 1.3.6. Let (X,d),(Y,d') be metric spaces and F : X —
P(Y). If F is u.s.c. in xg € X then F is H-u.s.c. in xy € X.

For a reverse implication, we have:
Lemma 1.3.7. Let (X, d), (Y, d') be metric spaces. If F': X — P.,(Y)

1s H-u.s.c. in xg € X then I is u.s.c. in xg € X.

Remark 1.3.8. ' : X — B, 4(X) is H-us.c. in 2p € X if and
only if for each sequence (z,)pen+ C X such that lim z, = xy we have
n—oo
lim p(F(x,), F(x)) = 0.
n—0o0

For Hausdorff topological spaces, we have the following characteriza-
tion of global upper semi-continuity:

Theorem 1.3.9. Let XY be Hausdorff topological spaces and F' :
X — P(Y). The following assertions are equivalent:

i) Fis u.s.c. on X

ii) FH(V) ={xz € X| F(x) C V'} is open, for each open set V C Y.

i) F~(W) ={z € X| F(x) "W # 0} is closed, for each closed set
Wcy.

Lemma 1.3.10. a) Let X,Y,Z be Hausdorff topological spaces and
F: X —=PY), G:Y — P(Z) be u.s.c. on X respectively on'Y. Then
GoF:X — P(Z) is u.s.c. on X.

b) If X,Y are Hausdorff topological spaces and F : X — Py(Y) is
u.s.c. on X, then Graf F is a closed set in X X Y.

Lemma 1.3.11. Let (X,d),(Y,d') be metric spaces, f : X — Y be

a continuous operator and F : X — P, 4(Y) be a multi-valued operator
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H-u.s.c. on X. then the functional p : X — R, defined by p(x) =
D(f(x), F(x)), for all x € X is lower semi-continuous (briefly l.s.c.) on
X.

Proof. Let x € X be a fixed point and (z,),ey € X convergent
to x. It follows that for all & > 0 there exists N, € N such that
d(f(z), f(zn)) < %, for all n > N.. From the H-us.c. of F' in x we

have that p(F(x,), F(x)) < g, for all n > N.. Hence, for each n > N,
we have: p(z) = D(f(z), F(x)) < d(f(x), f(zn)) + D(f(wn), F(2n)) +
p(F(z,), F(x)) < e+ p(x,). In conclusion, p(x) < liminf, . p(z,) + ¢,
for all € > 0. It follows p(x) < liminf,_, p(x,) proving that p is Ls.c. in
x. O

Lemma 1.3.12. Let (X, d) be a metric space, Y be a Banach space
and F : X — P,(Y) be u.s.c. on X. Then, the multi-valued operator
conv FF: X — P(Y) is u.s.c. on X.

Proof. From Mazur’s theorem (see Dugundji [83]) ¢onv F'(z) is com-
pact, for all z € X and hence ¢onv F' has compact values. Using Lemma
1.3.7. it is sufficient to prove that conv F' is H-u.s.c. on X. Let x € X be

an arbitrary point and (z,),ey C X which converges to x. From
p(conv F(x,),conv F(x)) < p(F(z,), F(z)), for all n € N*

and using the hypothesis that F' is H-u.s.c. on X we got the desired

conclusion.[]

Lemma 1.3.13. Let XY be Hausdorff topological spaces and F' :
X — P,(Y) be u.s.c. on X. Then, for each compact subset K of X,
F(K) is a compact set in'Y.

Lemma 1.3.14. a) Let X,Y be Hausdor[f topological spaces, F; :
X — P,(Y) be u.s.c. on X for each i € I such that ﬂﬂ(x) £ 0 for

i€l
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each v € X and H; : X — P, (Y), be w.s.c. for each j € {1,2,...,n}.
Then:
i) F = ﬂ F; is u.s.c. on X and has compact values.
i€l

ii) H := U H; is u.s.c. on X and has compact values.

j=1
b) If Y is a normed spaces and Fy, Fy : X — P.,(Y') are u.s.c. then,

T:X—=P,Y), T=F+Fisus.c onX.

Another continuity notion for a multi-function is defined as follows:
Definition 1.3.15. Let (X, d), (Y, d’) be metric spaces and F': X —
P(Y). Then F is said to be closed in zp € X if and only if for all
(Tn)nen+ C X such that nh_)rglo x, = xo and for all (y,)nens C Y, with

Yn € F(x,), for all n € N* and hm Yn = Yo we have yo € F(xg).
F'is closed on X if it is closed in each point zy € X.

Remark 1.3.16. An equivalent definition is the following: F': X —
P(Y) is said to be closed in zq € X if and only if for each yo & F(z0)
there exist a neighborhood V' of xy and a neighborhood U of y, such that
for all x € V it follows that F(x) N U = 0.

Lemma 1.3.17. Let (X,d),(Y,d') be metric spaces and F : X —
P(Y) closed on X. Then:

i) F(x) € Py(Y), forallz € X

it) Graf F is a closed set with respect to the Pompeiu-Hausdorff topol-

ogy from X x'Y. Moreover, the condition i) implies that F is closed on
X.

Lemma 1.3.18. Let X,Y be Hausdorff topological spaces, F; : X —
P(Y), i €I be closed on X such that mFZ(x) # 0 for each x € X and

i€l
H;: X = PY),je{l,...,n} be closed on X. Then:
i) F = ﬂFZ is closed on X.

i€l
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ii) H := U H; is closed on X .
j=1
The relation between an upper semi-continuous and a closed multi-
valued operator are given by the following results:
Lemma 1.3.19. Let (X,d),(Y,d') be metric spaces and F : X —
Py y(Y) be H-u.s.c. on X. Then F is closed on X.

Proof. Let z € X and ((zpn,Yn))nen € X x Y such that (z,,y,) —
(r,y) as n — oo with y, € F(x,), for all n € N. F is H-u.s.c. in
x and hence lim p(F(z,), F(x)) = 0. On the other side, D(y, F((z)) <
d(y, yn) —i—D(yT:%O(xn)) +p(F(x,), F(x)), for all n € N. If we take n — oo

it follows that D(y, F(x)) <0 and soy € F(z) = F(z). O

For a reverse proposition, we have:

Theorem 1.3.20. Let (X, d), (Y, d') be metric spaces, Iy : X — P(Y)
closed and Fy : X — P.,(Y) u.s.c.. Suppose that Fy(x) N Fy(x) # O for
each x € X. Then, the multi-valued operator F' = Fy N Fy is u.s.c. and it

has compact values.

Corollary 1.3.21. Let (X, d) be a metric space, (Y,d') be a compact
metric space and F : X — P(Y') closed on X. Then F is u.s.c. on X

and it has compact values.

Definition 1.3.22. Let X, Y be topological spaces. A multi-function
F : X — P(Y) is said to be compact if its range F'(X) is relatively

compact in Y.

Lemma 1.3.23. Let X,Y be metric spaces and F' : X — P, (Y) be

a closed and compact multi-function. Then F is u.s.c.

Lemma 1.3.24. Let X,Y be metric spaces and F : X — P,(Y) be
a closed multi-function. Then for each compact subset K of X its image
F(K) is closed in'Y.
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Let us consider now the concept of lower semi-continuous multi-
function.

Definition 1.3.25. Let X,Y be Hausdorff topological spaces and
F: X — P(Y). Then, F is said to be lower semi-continuous (briefly l.s.c.)
in xy € X if and only if for each open subset U C Y with F(zo) NU # ()
there exists an open neighborhood V' of xq such that F(x) N U = (), for
all z € V.

Fisls.c.on X ifit is l.s.c. in each zg € X.

Remark 1.3.26. If (X,d),(Y,d') are metric spaces and F' : X —
P(Y), then F is ls.c. in g € X if and only if for all (z,)pen € X
such that lim x, = xy and for all yy € F(xo) there exists a sequence

n—oo

(Yn)nen C Y such that y, € F(x,), for all n € N* and lim y,, = .
n—o0

Another lower semi-continuity notion is given by:

Definition 1.3.27. Let (X, d) and (Y, d’) be metric spaces and F :
X — P(Y). Then, F is called H-lower semi-continuous (briefly H-ls.c.)
in o € X if and only if for each € > 0 there exists n > 0 such that
F(xz9) C V(F(x);¢e), for all x € B(xzg;n).

Fis H-1.s.c. on X if it is l.s.c. in each point zy € X.

Remark 1.3.28. F': X — B, 4(Y) is H-ls.c. in xy € X if and only
if for each ¢ > 0 there exists n > 0 such that py (F(x¢), F(x)) < ¢, for all
x € B(xo;n).

Lemma 1.3.29. Let (X,d), (Y,d') be metric spaces and F : X —
P(Y) be H-l.s.c. inxg € X. Then F is Ls.c. inxy € X.

Regarding the reverse implication we have:
Lemma 1.3.30. Let (X,d), (Y,d') be metric spaces and F : X —
P.,(Y) be l.s.c. in xg € X. then F is H-l.s.c. in xo € X.

A characterization result for l.s.c. multi-functions is:
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Theorem 1.3.31. Let X,Y be Hausdorff topological spaces and F' :
X — P(Y). Then, the following assertions are equivalent:

i) Fisl.s.c.on X

i) FH(V) = {& € X| F(z) C V} is closed, for each closed set
Vcy.

iii) F~(W) = {zx € X| F(z) "W # 0} is open, for each open set
Wcy.

Lemma 1.3.32. Let (X, d) be a metric space, Y be a Banach space
and F : X — P(Y) be l.s.c.. Then, the multi-valued operators conv F'

and conv F are l.s.c..

Lemma 1.3.33. Let X, Y, Z be Hausdorff topological spaces. Then:

i)IfF: X — PY)and G:Y — P(Z) are l.s.c. on X respectively
onY then GoF : X — P(Z) is l.s.c. on X.

it) If F; : X — P(Y), are l.s.c. on X, for eachi € I, then F := UE

i€l

15 l.s.c. on X.

An useful result is:

Lemma 1.3.34. Let (X,d), (Y,d') be metric spaces. If Fy : X —
P(Y) is l.s.c. and Fy : X — P(Y) has open graph, such that Fi(x) N
Fy(z) # 0 for each v € X, then the multi-valued operator Fy N Fy is

l.s.c..

Definition 1.3.35. Let X,Y be Hausdorff topological spaces and
F: X — P(Y). Then F is said to be continuous in xy € X if and only

if it is I.s.c. and uw.s.c. in g € X.

Definition 1.3.36. Let (X, d), (Y, d') be metric spaces and F' : X —
P(Y). Then F is called H-continuous in zg € X (briefly H-c.) if and only
if it is H-l.s.c. and H-u.s.c. in o € X.

Remark 1.3.37. If (X,d), (Y,d’) are metric spaces, then F': X —
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P, (YY) is H-c. in 2y € X if and only if for each € > 0 there exists n > 0
such that = € B(xzg;n) implies Hy (F(x), F(z0)) < €.

Theorem 1.3.38. Let (X,d) and (Y,d') be metric spaces. Then F :
X — P, (Y) is continuous on X if and only if F' is H-c. on X.

The relations between H-continuity and lower semi-continuity is given
in:

Lemma 1.3.39. Let (X,d),(Y,d') be metric spaces and F : X —
Py, (Y) be H-c. on X. Then F is l.s.c. on X.

Further on, we will present some properties of multi-valued Lipschitz-
type operators.

Lemma 1.3.40. Let (X,d) be a metric space and F : X — Py 4(X)
be a-Lipschitz. Then:

a) I is closed on X

b) Fis H-l.s.c. on X

¢) Fis H-u.s.c. on X

Proof. a) Let (2, Yn)neny € X X Y such that (z,,y,) — (x,y), when
n — oo and y, € F(x,), for all n € N. It follows that D(y, F(z)) <
Ay, yn) +D(yn, F(2)) < d(y, yn) +H(F(zn), F(2)) < d(y, yn) +ad(z,, ©),
for all n € N. Let us consider n — oo and we obtain D(y, F(x)) < 0,
proving that y € F(z) = F(x).

b) Let x € X such that z, — z. We have: p(F(x), F(z,)) <
H(F(x),F(z,)) < ad(z,z,) — 0. In conclusion, F' is H-l.s.c. on X.

c) Using the relation: p(F(z,),F(x)) < H(F(z,),F(z)) <

ad(x,z,) — 0, the conclusion follows as before. ]

Lemma 1.3.41. Let (X, d) be a metric space and F' : X — P.,(X)

be contractive. Then F is u.s.c. on X.

Proof. Let H C Y be a closed set. We will prove that F~(H) is

closedin X. Let x € F~(H)\ F~(H) and (z,)ney C X such that z,, — x,
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when n — oo, x, # z, for all n € N and z, € F~(H), for all n € N.
It follows F(x,) N H # (), for all n € N. Let y, € F(z,) N H, n €
N. Then D(y,, F(x)) < H(F(z,), F(z)) < d(z,,x). If n — oo we got
that lim, oo D(yn, F(z)) = 0. But D(yn, F(2)) = infyecp@) d(yn,y) =
d(Yn,y.,) (using the compactness of the set F'(z)). When n — oo we have
d(Yn,x),) = 0, n — oo. Because (2,),eny C F(x) we obtain that there
exists a subsequence (z;, )ren Which converges to an element 7 € F(x).
Then:

A(Yny,, T) < d(Yny, 27, ) + d(z),, , Z) — 0 cand k — oo

Hence, y,, — = € F(z), as n — oo. Because, (yn, )ken C H and H is
closed, we got that ¥ € H. So F(x) N H # 0, which implies 2 € F~(H),
a contradiction. In conclusion, F~(H) = F~(H) and hence F~(H) is
closed in X. [J

1.4 Measurability of multi-valued opera-

tors

Let (T,.A) be a measurable space and S be a family of subsets of T
Definition 1.4.1. The o-algebra generated by S is the intersection

of all g-algebras containing S.

Remark 1.4.2. If T" is a topological space, then the Borel o-algebra,
denoted by B(T), is the o-algebra generated by the family of all open

sets from 7T

Remark 1.4.3. If T = R"™ or T' C R" then the o-algebra A is the
family £(7T) of all measurable Lebesgue subsets of T'.

Remark 1.4.4. If (T}, A), (15, As) are measurable spaces, then the
o-algebra generated by the family of sets of the form A; x A,, with
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A; € A and A, € Ay and which will be denoted by A; ® A is called the
product o-algebra of A; with Ay. The measurable space (T} x Ty, A; ®.As)
is said to be the product space of (77,.4;) and (715, .Ay). In particular, if
Ty, T5 are topological spaces, then B(T1) ® B(Ty) = B(Ty x Ty).

Definition 1.4.5. Let (T, A) be a measurable space. Then, the func-
tion p : A — R U {+oo} is said to be a positive measure if for each
sequence of disjoint sets 4, € A, n € N* we have: p (U, An) =

ZneN* M(An)~

Definition 1.4.6. Let (7, .A) be a measurable space. A positive mea-
sure f is called o-finite, if T" can be represented as a countable reunion

of measurable sets having finite measures.

Definition 1.4.7. Let (T, A) be a measurable space and p a positive
measure. Then, the o-algebra A is called u-complete if for each A € A
with p(A) = 0 and for each A; C A, we have that 4; € A.

Remark 1.4.8. If 7" C R™ is open (or closed), then £(T') is complete
with respect to the Lebesgue measure. Moreover, the Lebesgue measure

is o-finite.

Definition 1.4.9. (T, A, u) is said to be a complete space with o-
finite measure if p is a positive and o-finite measure, while A is p-

complete.

Definition 1.4.10. Let (7', .A) be a measurable space, (X,d) be a
separable metric space. Then f : T' — X is called A-measurable (or
measurable) if and only if f~'(A) € A, for each A € P,,(X) (or each
A€ Py(X).

Definition 1.4.11. Let (7', A) be a measurable space, (X,d) be a
separable metric space and F : T' — P(X). Then F is called weak

measurable (respectively measurable, respectively [-measurable) if and
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only if F~(E) :={te T| Ft)NE # 0} € A, for each E C X open

(respectively closed, respectively Borel).

Remark 1.4.12. The [-measurability implies the measurability,

which implies the weak measurability of a multi-function.

Some equivalences between these concepts are included in the follow-
ing lemma:

Lemma 1.4.13. Let (T, A) be a measurable space, (X,d) be a com-
plete and separable metric space and F : T — P, (X). Then:

i) F' is weak measurable if and only if F' is measurable.

it) F is measurable if and only if the single-valued operator F :
(T, A) = (P.,(X), Hy) is measurable.

Definition 1.4.14. Let (7, A) be a measurable space and X,Y be
metric spaces. Then ¢ : T'x X — Y is said to be a Carathéodory mapping
if and only if:

i) for all x € X, (-, x) is measurable.

ii) for all t € T', ¢(t,-) is continuous.

Lemma 1.4.15. Let X and Y be complete and separable metric
spaces, (T, A) be a measurable space and ¢ : T x X — Y be a
Carathéodory mapping. Then:

a) for each measurable function f : T — X we have that t —
o(t, f(t)) is measurable.

b) ¢ is A® B measurable.

In this framework, a very important theorem belong to Kuratowski
and Ryll Nardzewski. It is an existence result of a measurable selection
for a weak measurable multi-function. Let us recall that if X,Y are two
nonempty sets and F' : X — P(Y) is a multi-function, then a single-
valued operator f : X — Y is said to be a selection of F' if and only if
f(z) € F(x), for each z € X.
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Theorem 1.4.16. Let (T, A) be a measurable space, (X,d) be a com-
plete separable metric space and F : T — Py(X) be weak measurable.
Then there exists f : T — X a measurable selection for F.

Proof. Let {x1,25,...} be a countable and dense subset of X. Let
1

B,(i) = {x € X|d(x,x;) < —}, for i,n € N. We will define inductively
n

a sequence of measurable multi-functions (F,,),en such that ﬂ F, will

n=1
be the desired selection.

Let Fy = Fand F,11(t) = F,(t)NBuy1(1,(t)), where I,,(t) := min{i €
N| F(t) N B,y1(i) # 0}, for all n € N. For each t € T the sequence
(F(t))neny C Poa(X) is decreasing and 0(F,(t)) — 0, as n — oo. Using

Cantor’s theorem we obtain that ﬂ F,(t) consist in exactly one point.

n=1
Let us define now f(t) = ﬂ F,(t), for all t € T. Obviously, f is a

n=1
selection for F. Let also prove that f is measurable. We shall prove first
that each F), are measurable, i.e. {t € T| F,,(t) N E # 0} € A, for each
closed subset F of X. From the hypothesis, we have that Fy = F' is

measurable. Let suppose that Fj, is measurable. Then we obtain:

{teT| Foi(t)NE#0}={t €T| F.(t) N Byy1(L,(t)) NE # 0} =

- ﬁ[{t eT| F,(t)NB,y1(i)) NE£0}N{t €T| L,(t) =i}].

But the final set is in A (taking account that {t € T| I,,(t) = i} =
i1
ﬂ[{t €T| F,(t)N Bpy1(i) =0y n{t € T| F,(t) N By11(2) # 0}] € A).
j=1
Hence the induction is finished.

Because X is complete, for each closed subset E of X we have

o0

fTHE) = [t €T Fu(t) N E # 0}

n=0
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and in conclusion f~!(F) € A, proving that f is measurable. (]

The following characterization theorem describe the main properties
of measurable multi-functions:

Theorem 1.4.17. Let (T, A, p) be a complete space with a o-finite
measure, (X,d) be a complete and separable metric space and F : T —
P.(X). Then the following assertions are equivalent:

i) F' is weak measurable

ii) Graf F € A® B(X)

iii) F~(A) € A, for all A € Py(X)

iv) F~(A) € A, for each Borel subset of X

v) for each x € X the mapping D : T — R defined by t — D(x, F(t))
s measurable

vi) There exists a sequence of measurable selections {f,}nen of F
such that for each t € T, F(t) = U fu(t). (Castaing representation of

n>1

F)

Lemma 1.4.18. Let (T, A, 1) be a complete space with a o-finite
measure, (X, d) be a measurable Banach space and F : T — Py(X). Then
the multi-valued operator conv F' : T — X is measurable. Moreover, if
I C R is compact and F : I — P.,(R™) is measurable then conv F : I —o

R™ is measurable.

Lemma 1.4.19. a) Let T be a metric space such that (T, A, ) is
complete with a o-finite measure while A contain all open sets from T.
Let (X, d) be a complete and separable metric space and F : T — P.y(X).
If Fis u.s.c. onT (orl.s.c. onT) then F is weak measurable.

b) Let X be a complete and separable metric space, Y be a metric
space, T a measurable space, f : T x X — Y a Carathéodory mapping,
F: T — P.,(X) be measurable and g : T — Y a measurable mapping
such that g(t) € f(t, F(t)), for allt € T. Then there exists h : T — X
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a measurable selection of F', such that g(t) = f(t,h(t)), for all t € T.
(Fillipov implicit function lemma)

c) Let I be a compact interval of the real azis, X be a complete and
separable metric space, ¢ : I — X a measurable mapping and F : [ x X —
P4 (R™) a multi-valued operator satisfying the conditions:

i) F(-,x) is measurable, for all x € X

it) F(t,-) is H-c, for allt € I.

Then:

1) F is measurable

2) the multi-function G defined by G(t) = F(t,¢(t)), for allt € I
s measurable too.

3)if H : I — P,(R") is measurable then the multifunction
P: 1 — PR"), by P(t) := F(t,H(t)), for each t € I is measurable.
Moreover, same conclusion is true when the conditions i) and ii) are

replaced by the u.s.c. or l.s.c. of the multi-valued operator F.

Lemma 1.4.20. Let I be a compact interval of the real axis, Y a
separable Banach space and Fy, Fy : I — P.,(Y) weak measurable multi-
functions. Then:

a) the deviation functional denoted d* : I — R, and defined by
d*(t) := p(Fi(t), F5(t), for each t € I is measurable.

b) the functional h : I — R, defined by h(t) := H(Fi(t), F5(t)), for

each t € I is measurable.

Definition 1.4.21. Let (7, A, i) be a complete space with a o-finite
measure, X be a separable Banach space and F': T' — P,;(X) a measur-
able multi-function. Let us denote by L'(T, X) the set of all measurable
and Bochner integrable mappings from 7" to X. Then Sg will denote the

set of all integrable selections of F', i.e.:

Sp:={fe LT, X)| f(t) € F(t) apt. t €T}
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Definition 1.4.22. Let (7, A, u) be a complete space with a o-finite
measure, X be a separable Banach space and F' : T' — P,4(X) a mea-
surable multi-function. Then F' is said to be integrably bounded if there
exists a real valued function m : T — R, such that m € L*(T,R) and
F(t) Cc Bx(0,m(t)), a.e. t €T.

Remark 1.4.23. If F : T — P.,(X) is integrably bounded then
|F(t)] <m(t)ae teT.

Remark 1.4.24. If F': T — P,(X) is integrably bounded then for
each measurable selection f : T'— X of F' we have f € Sgp. Moreover, if
F:T — P.,(X) is measurable and integrably bounded, then Sg # (0.

Definition 1.4.25. Let F' : T — P,(X) be a measurable multi-
function. Then F is said to be integrable in Aumann’ sense on 7' if and

only if Sr # (. In this case, the multi-valued integral of F is:
[ Fwini={ [ s re s
T T

Let us report now several properties of the multi-valued integral for
the following particular case: T'= I, I C R compact and X = R".

Lemma 1.4.26. Let K € P, .,(R") and t1,ty € I, t; < t3. Then
[P Kdt = (t, — t))K.

t1

Definition 1.4.27. A set K C L'(I,R™) is said to be decomposable
if and only if for all u,v € K and for each measurable subset E of I we

have that xpu + xngv € K.

Let us remark that, if F': I — P.,(R") is measurable and integrably

bounded then Sp is decomposable.

Lemma 1.4.28. Let K C L'(I,R™) be a decomposable set. Then the

set

80y ={ [ ol £ e )
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is convex in R”.

Proof. Let us suppose that K # () and let z1, 20 € J(K) and A €]0, 1].
Then there exist fi1, fo € K such that

a_zﬁ@ﬁzml@_ﬂﬁ@ﬁ

Let a(I) be the family of all Lebesgue measurable sets of I and denote

—(ﬂﬁ@@[ﬁ@ﬁ)ﬂn@EeAm.

From Lyapunov’s convexity theorem (see for example [100])we obtain
that v(a([)) is a convex compact subset of R*". Because (0,0) and (21, 29)
belong to vy(a([l)) it follows that (Az1, Az2) € y(a(I)). Hence, there exists
F € o) such that (Az1, Azy) = y(F'). Define f = xpfi + xnrfo. Using
the decomposability property of the set K we obtain that f € K and
so [, f(t)dt € J(K). But [, f(t)dt = Az; + (1 — \)z and in conclusion
Az 4+ (1 =Nz € J(K). O

Theorem 1.4.29. Let F' : I — P.,(R™) be a measurable and inte-
grably bounded multi-function. Then

/IF(t)dt = /Iconv F(t)dt

and both are non-empty, convex, compact subset of R™.

In the general case of complete spaces with a o-finite measure we have
the following theorems.

Definition 1.4.30. Let (7', A, ;1) be a complete space with a o-finite
measure. Then the set A € A is said to be an atom with respect to p if
and only if (A) > 0 and for each A; C A measurable we have that p(A4;)
is equal to 0 or p(A). By definition, a measure p is called non-atomic if

A does not contain atoms.



42 CHAPTER 1. MULTI-VALUED ANALYSIS

Remark 1.4.31. The Lebesgue measure is non-atomic, while the

Dirac measure, for example, is atomic.

Theorem 1.4.32. Let (T, A, p) be a complete space with a o-finite
and non-atomic measure and F : T — P,(R™) be measurable. Then the
following assertions hold:

i) /Fd,u is convez in R"

T
i) If F' is integrably bounded, then / Fdu is non-empty and compact

. T
i R™.

For the case of an arbitrary Banach space the following result belong
to Hiai and Umegaki.

Theorem 1.4.33. Let (T, A, n) be a complete space with a o-finite
and non-atomic measure, X separable Banach space and F : T — P, (X)

be measurable. Then:
i) fF )du is conver and [, F(t)dp = conv ([, F(t)du) .

i) IfF is integrably bounded, then [, F(t)du = [, conv F(t)dpu.
iii) If X is reflexive and F : T — Py (X)) is integrably bounded, then

/ F(t)du is closed in X.
T

Bibliographical comments.

The notions and results given in this chapter can be found in books
and papers on multi-valued analysis such as: Aubin-Cellina [15], Aubin-
Frankowska [16], Beer [30], Berge [32], Cernea [56], Deimling [80], Hu-
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[124], Kisielewicz [127], M. Muresan [152], Petrusel [197], I. A. Rus [223]
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Chapter 2
Operatorial inclusions

One of the connections between the "multi-valued analysis” and the
"single-valued analysis” is given by the notion of selection. The first pur-
pose of this chapter is to present continuous selection theorems for l.s.c.
and u.s.c. multi-function with convex values. Then, the case of multi-
functions with decomposable values is considered. Second, we will dis-
cuss the fixed point and the coincidence point theory for multi-valued
operators. In this respect, we will report first the basic theory of the
fixed points for multi-functions. Then, we will focus our interest on the
main properties of the fixed point set of some multi-valued generalized
contractions. In the third section, single-valued and multi-valued Caristi
type operators are considered. Then, the connection between Meir-Keeler
type operators and fractals is discussed. Coincidence theorems is the
subject of the next paragraph. Finally, Krasnoselskii type theorems for
multi-functions and the topological dimension of the fixed point set for
several classes of multi-valued operators are the main topics of the last
sections. Some applications to integral and differential inclusions are also

presented.

43
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2.1 Continuous selection theorems

In what follows, we will consider the basic selection theorems for
l.s.c. and u.s.c. multi-functions.
Definition 2.1.1. Let X,Y be nonempty sets and F' : X — P(Y).
Then the single-valued operator f : X — Y is called a selection of F' if
and only if f(z) € F(x), for each z € X.

Recall that, if X is a topological space, then a set K C X is called
compact if every open covering of K admits a finite subcovering. More-
over, if (U;);er and (V) e are two coverings of X, then (Uj;);e; is said to
be a refinement of (V});e if, for every ¢ € I there exists j € J such that
U; CVj.

An open covering (V});es of a topological space X is called locally
finite if for every x € X there exists a neigherhood V' € V(x) such that

card{i € I|V; NV # (0}

is finite.

A space X is called paracompact if every open covering of it has a
locally finite refinement.

For example, every compact set is paracompact and every metrizable
space is paracompact. In particular, every metric space is paracompact.

For every topological space X and for f : X — R the set supp(f) is
defined by

supp(f) == {r € X|f(z) # 0}.

Let X be a topological space and (U;);c; be an open covering of X.
Then, a continuous partition of unity subordinate to (U;);c; means a
family of continuous functions «a; : X — [0, 1] such that:

(i) supp(a;) C U;, for each i € I

(ii) (supp(ay))ier is a closed locally finite covering of X;
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(i) > ait) = 1.

Reml;'k. Let X be a paracompact space and (U;);c; be an open
covering of X. Then:

(a) (Ui)ier admits an open locally finite refinement (V;);c; with V; C
U;, for every 1 € I

(b) (U,)ier has a subordinate partition of unity.

In particular, if X is compact, then the open locally finite refinement
is actually a finite one. As a consequence, the subordinate partition of

unity consists in a finite number of maps.

Let us consider now the selection theorem of Browder.

Theorem 2.1.2. (Browder’ selection theorem) Let X and Y be Haus-
dorff topological vectorial space and K € P,,(X). Let F : K — P.,(Y') be
a multi-valued operator such that F~1(y) is open, for eachy € Y. Then

there exists a continuous selection f of F.

Proof. Because (F~'(y)),ey is an open covering of K, there exists
a finite refinement of it, denoted by (F~'(y;));—15- Let (@)t be the
continuous partition of unity corresponding to this finite covering. We
define f : K — Y by the following relation: f(z) = >, a;(x)y;. Then
f is continuous and each time when «;(z) > 0 it follows y; € F(x).

But for each z € X, the set F(x) is convex, and hence we obtain that
f(z) € F(z), for all x € X. O

A very famous result is the so-called Michael” selection theorem. We
start by proving the following auxiliary result:

Lemma 2.1.3. Let (X,d) be a metric space, Y a Banach space and
F: X — P,(Y) be lLs.c. on X. Then, for each ¢ > 0 there exists

f- + X = Y a continuous function such that for all x € X, we have:
fe(x) € V(F(x);¢).

Proof. Because F is l.s.c. we associate to each € X and to each y, €
F(z) an open neighborhood U, of x such that F(2') N B(y,;e) # 0, for
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all 2 € U,. X is a paracompact space and so there exists a locally finite
refinement {U.},ex of {U,}rex. Let us recall that {€2;}ier is a locally
finite covering of X if for each z € X there exists V' a neighborhood of
r satisfying Q; NV # 0, for all i = 1, k. Moreover, to each locally finite
covering it is possible to associate a continuous partition of unity, let say
{72 tzex. We define: fo(t) = > .y 7e(t)y,. Then f; is continuous, being,
locally, a finite sum of continuous functions. Moreover, if m,(t) > 0, for
t € U, C U, then y, € V(F\(t),e) implies that f.(t) € V(F(t),e). O

Theorem 2.1.4. (Michael’ selection theorem) Let (X, d) be a metric
space, Y be a Banach space and F : X — Py ,(Y) be l.s.c. on X. Then

there exists f : X — 'Y a continuous selection of F.

Proof. Let us define inductively a sequence of continuous functions
u, : X =Y, n=12 ... satisfying the following assertions:
1
i) for all z € X, D(un(x), F(z)) < o for each n € N*

1
ii) for all z € X, ||up(x) — up—1(2)| < STt for each n=2,3,...

1

1. Case n = 1. The conclusion follows from Lemma 2.1.3 with ¢ = —.
2. Case n = n—+ 1. Let us suppose that we have defined the mappings
Uy, ..., u, and we will construct the map w,1 such that i) and ii) hold.

For this purpose, we consider the multi-valued operator F},,; given by:
1
Fo(z)=F(x)NB <un(:c), 2—n) , for each z € X.

From i) we obtain that F,i(z) # 0, for all € X. Moreover F,;;(z)
is convex, for all x € X. Using Lemma 1.3.34., we have that Fj, 4
is l.s.c.. From Lemma 2.1.3.; applied for F,.; (with € := #), we
obtain the existence of a continuous function u,y; : X — Y such
that: D(upt1(2), Fup(z)) < zapr, for each 2 € X. It follows that
D(upi1(x), F(z)) < zarr- On the same time, by the above relation we

have: .
Upy1(z) € VO (Fn+1(x), W) :
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Then ] )
Uny1(x) € Blup(x); o T 2n+1).
Thus
1 3 1

1
Junsa () = un(@)] < 5 + 57 = 57 < o

This completes the induction.

Further on, from ii) we obtain that (u,),ey is a uniform Cauchy se-
quence convergent to a continuous function u : X — Y. From i) and the
fact that F'(z) are closed for each x € X, we obtain that u(z) € F(x),
for all x € X. Hence, u is the desired continuous selection and the proof

is complete. [

Corollary 2.1.5. 1) Let (X,d) be a metric space, Y a Banach space
and F : X — Py oY) be ls.c. on X. Let Z C X be a nonempty set and
v : Z =Y a continuous selection of F|z. Then ¢ admits an extension
to a continuous selection of F'. In particular, we have that for each yo €
F(xg), with xy € X arbitrary, there exists a continuous selection ¢ of F
such that o(zo) = yo.

ii) Let X be a metric space, Y be a Banach space, F : X — Py .,(Y)
be L.s.c. on X and G : X — P(Y') with open graph. If F(x) N G(x) # 0,

for all x € X, then FNG has a continuous selection.

For u.s.c. multi-functions we have the following approximate selection
theorem given by Cellina [15]:

Theorem 2.1.6. (Cellina’s approximate selection theorem) Let
(X,d) be a metric space, Y be a Banach space and F : X — P.(Y)
be u.s.c. on X. Then for each € > 0 there exists f. : X — Y locally
Lipschitz such that:

a) fo(X) € conv F(X),

b) Graf f. C V(Graf F,e).

The concept of locally selectionable multi-function characterize the
multi-valued operators having ”exact” continuous selections. More pre-

cisely, we define:
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Definition 2.1.7. Let X, Y be Hausdorff topological spaces and F' :
X — P(Y). Then F is called locally selectionable at xy € X if for each
Yo € F(z0) there exist an open neighborhood V' of zy and a continuous
mapping f : V — Y such that f(z9) = yo and f(x) € F(z), for all
x € X. F is said to be locally selectionable if it is locally selectionable at

every xo € X.
Remark 2.1.8. Any locally selectionable multi-function is l.s.c.

Some examples of locally selectionable multi-functions are:
Lemma 2.1.9. Let XY be Hausdorff topological spaces and F : X —
P(Y) such that F~'(y) is open for each y € Y. Then F is locally selec-

tionable.

We note that a similar result hold for multi-functions with open graph.
(It is easy to see that if the graph of F' is open then F~!(y) is open for
each y € X.)

Lemma 2.1.10. Let X,Y be Hausdorff topological spaces and F,G :
X — P(Y) such that F(z) N G(x) # 0, for each x € X. If F is locally
selectionable and G has open graph then the multi-valued operator FNG

15 locally selectionable.

A global continuous selection theorem for a locally selectionable
multi-function is:

Theorem 2.1.11. (Aubin-Cellina [15])Let X be a paracompact space
and Y a Hausdorff topological vector space. Then any locally selectionable

multi-function F : X — P.,(Y) has a continuous selection.

Proof We associate with each y € X an element z € F(z) and a
continuous selection f, : V' — Y such that f,(z) € F(z) and f(y) = 2.
Since the space X is paracompact there exists a continuous partition of
unity (a,)yex associated with the open covering of X given by V(y),y €
X. Denote by I(z) the non-empty finite set of points y € X having the
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property that a,(x) > 0. Let us define the function f: X — Y by

f(x) = ay@)fyle) = > ay(2)f,(x).

yeX yel(x)

Obviously, f is continuous as a finite sum of continuous functions and

because F(x) is convex, the convex combination f(z) is also in F(x). O

A very interesting selection result for a continuous multi-function with
not necessarily convex values is the following:

Theorem 2.1.12. (Strother [251]) Let F' : [0,1] — P([0,1]) be a con-
tinuous multi-valued operator. Then there exists a continuous selection

of F.

Proof. Let us define f : [0,1] — [0,1], by f(x) :=inf{yly € F(z)}.
We will prove that f is a continuous selection of F. Let 2" € [0, 1] be
arbitrary and » > 0 be a real positive number. Denote by V5, an open
interval of length 2r with center f(z'). Obviously, V; is also an open
set containing f(z'). Using the Ls.c. of F there exists an open set U;
containing g such that F(z) NV, # (), for each x € U;. Hence x € U;
implies that inf{yly € F(x)} = f(z) > f(2') — r. On the other side,
consider V = {yly < r + f(2')}. The set V is open and it contains
F(2"). From the w.s.c. of I there exists an open set U, containing  such
that F(z) C V, for each x € U,. Then for each # € U, we have that
fl@) =inf{yly € F(z)} < f(2') + 7.

Let consider now U := U; N Us. Then for each x € U we obtain that
|f(z) — f(2")| < r and therefore f(z) € V,, proving that f is continuous

. !
in z. .

Let us consider now the problem of the existence of a Lipschitz selec-

tion for a multi-function.

Definition 2.1.13. Let F' : R* — P,,(B(0;R))) be a H-c. multi-
function and let S = B(y%b) C R™ Let ¢ be any finite collection of
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k
points 1, Ta, ..., Tr41 in S such that Z |zpi1 —x,| < band @ denote the
p=1

set of all such collections. Let V(F, S, q) ZH (1), F(z;)) and

V(F,S) := sup{V(F, S,q)|q € Q}. If V(F,S5) < 00, then we say that F
has bounded variation in S.

Moreover, if F' : [0,T] — P.,(B(0;R))) then, by definition, the
variation of F' on the subinterval [t — ¢,t], where ¢ > 0, denoted by
Vi (F) is defined as follows: let R be a partition of [t — ¢,t] (i.e.
t—q = to,t1 < ... <t = t) and let R be the set of all such

partitions. Then V' ( = ZH tpi1), F(tp)) and Vi (F) =
sup{VL(F.R)R € R).

Theorem 2.1.14. (Hermes [98], [99]) Let T" > 0 and F : [0,T] —
P.,(B(0; R))). Then:

i) If F'is H-c and has bounded variation in [0,T], then F admits a
continuous selection.

it) If F' is a-Lipschitz, then there exists an a-Lipschitz selection of F.

Proof. For each positive integer k, consider the points 0, % ?T, vy 1.
Choose zf € F(O) x{ € F(T) such that |zf —af| = D(af, F(%)) and then
inductively z} € F(25) such that 2f | — 2% = D(ah_,, F(25)). Define
fF0,7] — R be the polygonal arc joining the points xj,j € {0,1,..,k}.
Then:

i) For each t € [0,7] and each k there exists an integer j = j(k) such
that |t — 'T|, . We can assume, without any loss of generality, that ¢ €
(92 ). Then D(¥(0). F(0) < |1¥(0) = (D) + DU FIo) <
H(F(ET) F(ITY) § H(P(T), (1),

ii) For each t and s from [0,7] and each k, let j,1 be integers such

that: |t — 2| < L and |s — | < L. We have: |f*(t) — f*(s)| <



2.1. CONTINUOUS SELECTION THEOREMS 51

740) - fk%!+§]ﬁ “*)> PO 1D = 1)l <

H(F( \+ZH L) Dy s meees), m(C).

Now, we are able to prove a) Let us first remark that the sequence
(f*)rewn~ is equicontinuous. Indeed, for any € > 0 choose k* sufficiently
large such that if k < k* and |t; —t»|, = we have H(t;), F(t3)) < £. Next,
since F' is of bounded variation, we obtain that V{(F) is continuous as
a function of ¢ on [0, 7] and hence uniformly continuous. We can choose
6 > 0 such that V(F) < £, for |a—b| < 4. Since |28 L) < |t —s|+ 2L if
kAL and [t — s| < £, we obtain VET < 5. Then, from ii) we have for k >
max(%, k*) and |t —s| < 0 that |;k(t) — f*(s)| < & and equicontinuity is
shown. The sequence (f¥) being bounded, it has an uniformly convergent
subsequence converging to f € C[0,T]. let t € [0,7] and j(k) be an
integer such that [t — k)T| < Z. Using i) and the fact that the images
F(t) are closed, we obtain by taklng k — 400 f(t) € F(t).

For b), let us assume in ii) that t < L& < .. < £ < 5. From the
Lipschitz condition, relation ii) becomes: |f¥(t) — f¥(s)| < a[(ZF —t) +
-1
Z(w—%)+(s—%ﬂ = a|s—t|. Thus (f*)rewn~ is equicontinu-
gué, bounded and has a subsequence converging uniformly to f € C[0, T
and |f(t) — f(s)| < a|t — s|. From i) we conclude again that f(t) € F(t),
for each ¢t € [0,77]. O

For more general spaces, the Steiner point approach generate a Lip-
schitz selection as follows:

Theorem 2.1.15. Let X be a metric space and F : X — P,, .,(R™)
be a-Lipschitz. Then F' admits a b-Lipschitz selection with b = ak(n) and

k(n) = (n’j—q),, if n is odd and k(n) = if n is even.

nl!
m(n—1)N

Finally, let us remark that the problem of existence of a Lipschitz se-
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lection for a Lipschitz multi-function was settled by Yost (see for example
Hu-Papageorgiou [105]) as follows:

Theorem 2.1.16. (Yost) Let X be a metric space andY be a Banach
space. Then every a-Lipschitz multi-function F 1 X — Py .0 (Y) admits

a Lipschitz selection if and only if Y s finite dimensional.

A extension of the concept of selection is given by Deguire-Lassonde
as follows:

Definition 2.1.17. Let X be a topological space and (Y;);c;r an
arbitrary family of topological spaces. The family of continuous func-
tions {f; : X — Y;}ier is called a selecting family for the family
{F; : X — P(Y;) }ies of multi-functions if for each z € X there exists
i € I such that f;(x) € Fi(z).

One easily observe that the notion of selecting family reduces to the

concept of continuous selection when I has only one element.

Definition 2.1.18. Let X be a topological space, (F;);c; be an arbi-
trary family of Hausdorff topological vector spaces and Y; € P,,(E;), for
all i € I. Then the family {F; : X — P(Y;) }iesr of multi-functions is said
to be a Ky Fan family if the following are verified:

i) Fi(z) is convex for each x € X and each i € I.
ii) F~!(y;) is open for each y; € Y; and each i € I.
iii) for each x € X there exists i € I such that F;(x) # (.

In this setting, an important result is:

Theorem 2.1.19. (Deguire-Lassonde [79]) Let X be a paracompact
space, (E;)ier be an arbitrary family of Hausdorff topological vector spaces
and Y; € P (E;), for alli € I. Then any Ky Fan family of multi-valued
operators {F; : X — P(Y:)}ier admits a selecting family {f; : X —
Yitier-

Proof. From the definition of the Ky Fan family of multi-functions,

we have that the system (DomF;(x));cs is an open covering of X. Using
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the paracompactness of the space X it follows the existence of a closed
refinement (U;);es such that U; C Dom(F;), for each i € I. Let us define,
for each ¢ € I the multi-valued operator G; : X — Y;,by the relation:

A I % if £ ¢V,

Then, for each ¢ € I, G; has nonempty and closed values and the sets
F'(y) are open for each y € Y;. From Browder selection theorem, we
have the existence of a continuous selection f; : X — Y; of Fj, for each
1 € I. Because for each x € X there exists ¢ € I such that x € U; implies
fi(z) € Gi(x) = Fi(x), we obtain that {f; : X — Y;|i € I} is a selecting
family for {F; : X — P(Y;)}icr. The proof is complete. [J

Using a similar argument (via Michael’ selection theorem), we have:
Theorem 2.1.20. (Deguire-Lassonde [79]) Let X be a paracompact
space, (E;)ier be an arbitrary family of Hausdorff topological vector spaces
and Y; € P (E;), for all i € I. Then any family of l.s.c. multi-valued
operators {F; : X — P(Y;) }ier having the property that for each x € X
there is i € I with F;(x) # 0 admits a selecting family {f; - X — Y} ier.

Bibliographical comments. Basic continuous selections theorems
can be found in many books on multi-valued analysis such as: Aubin [14],
Aubin-Cellina [15], Aubin-Frankowska [16], Border [36], Deimling [80],
Gorniewicz [92], Hu-Papageorgiou [105], Kamenskii-Obuhovskii-Zecca
[118], Kisielewicz [127], Repovs-Simeonov [214] Tolstonogov [257] and
Yuan [270]. Theorem 2.1.12. belong to Strother [251], meanwhile results
regarding the existence of Lipschitz selections for multi-functions maybe
found in Hermes [98] and [99]. The notion of selecting family and the
corresponding results were given by Deguire and Lassonde in [78] and
[79].
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2.2 Selection theorems. The decomposable

case

Throughout this section (7, A, 1) is a complete o-finite non-atomic mea-
sure space and E is a Banach space. Let L!(T, E) be the Banach space
of all measurable functions u : T' — E which are Bochner u-integrable.
We recall that a set K C L'(T, F) is said to be decomposable if for all
u,v € K and each A € A:

uxa+vxra € K,

where x4 stands for the characteristic function of the set A.

This notion is, somehow, similar to convexity, but there exist also
major differences. However, in several cases the decomposability condi-
tion is a good substitute for convexity. The purpose of this section is to
present some results in the field of multi-valued analysis related to this
topic: convexity replaced by decomposability.

A decomposable set has been considered for the first time in the field
of multi-valued analysis by Antosiewicz and Cellina [12] in connection
with the problem of the existence of a continuous selection for a contin-
uous multifunction with not necessarily convex values.

There are several results in the analysis of multi-valued operators
where in the assumptions, convexity can be replaced by decomposability.
Some of these theorems will be considered in what follows.

First theorem is a ”decomposable” version of the Michael’s selection
theorem for l.s.c. multi-functions with convex values.

Let consider, without proofs, two technical auxiliary results.

Lemma 2.2.1. Let (gn)neny € LT, E), with go = 1. Then there
erists S : RY x [0,1] — A, such that for all T,7,79 € RT and all
A AL, A € [0, 1] we have:

a)S(1, A1) C S(1,\a), if A1 < Ay
b)p(S(11, \)AS (12, X2)) < |A1 — Ao + 2|71 — 7o
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(¢) [sirry it = A [g Gndy, for alln < 7.

Lemma 2.2.2. Let X be a separable metric space, E be a separable
Banach space and let F : X — Py gee(LN(T, E)) be a l.s.c. multi-valued
operator. Then for every € > 0 there exist f. : X — LYT,E) and a
continuous mapping g. : X — LY T,E) such that the multi-function
F.(x) :={u € F(z)| || u(t) — fo(x)(t) ||< ge(x)(t),a.e.} has nonempty
values and ||g-(z)|| < € for each x € X.

Now we present the decomposable version of Michael’ selection theo-
rem:

Theorem 2.2.3. (Fryszkowski [89], Bressan-Colombo [40]) Let (X, d)
be a separable metric space, E a separable Banach space and let F :
X = Puaec(LYT,E)) be a l.s.c. multi-valued operator. Then F has a

continuous selection.

Proof. Using Lemma 2.2.2.; by induction we will generate two se-
quences of continuous functions (f, : X — LYT, F)) and (g, : X —
L}(T, E)) and a sequence of L.s.c. multi-functions F,, : X — Py (LY(T, E))
such that:

i) gn ()] <27

i) [l £2(@)(8) = a1 (@)D < gal&) + gur(2)]], a-e. and for each
n>2

iii) Fo(2) :={u € F(z)| || u(t) = fu(2)(t) | < gn(2)(t), a.e.} # 0,
for each v € X

Indeed, for the first step of the induction let us consider f; and g; be
defined by Lemma 2.2.2. with F and ¢ = 27!, Suppose that f,,, ., F}), have
been defined satisfying the conditions i)-iii). Using again Lemma 2.2.2.
for F,,_1(x) and € = 27" we complete the induction. Because (f,(x))nen is
uniformly Cauchy in L'(T, E), we have that f,(x) converges to f(x), with
f a continuous function from X to L'(T, E). Also since D(f,(z), F,,(z)) <
27" for each n > 1, and F has closed values we conclude that f is the

desired continuous selection of F'. [J
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For the u.s.c. case we have:

Theorem 2.2.4. (Bressan-Colombo [40]) Let (X,d) be a separable
metric space and let F : X — Py LN(T, E)) be a H-u.s.c. multi-
valued operator. If either X or LYT,E) is separable, then for each
e > 0 there is a continuous function f. : X — LYT,E) such that
Graph f. C V(Graph F,e) and f-(X) € Puec(F(X)).

Remark 2.2.5. As we have seen, the main tool for the decompos-
able case is to consider instead of convex combinations some continuous
interpolations between different elements of a decomposable set. More
precisely, consider an increasing family {Ay | A € [0,1]} (where A, € A
with p(Ay) = A\u(T), for every A € [0,1]) and let uy, ..., u, be elements
of a decomposable set K C L'(T, E). Let )\; be p nonnegative numbers

P i
such that > A\; = 1. Setting o = 0 and n; = > N\, (@ € {1,2,...,p}
i=1 j=1
P
then the decomposable combination > u; - x A\ A lies inside K. For
i=1
the compact case the construction below is given by Fryszkowski in [89]
and the extension for the paracompact case appear in Bressan-Colombo
in [40]. (They consider continuous combinations of an infinite family of
functions, taking advantage of the fact that at any given time only a

finite number of u; enter in a decomposable combination).

Let us prove now an auxiliary result, concerning the existence of con-
tinuous selections for a locally selectionable multi-function with decom-
posable values.

Lemma 2.2.6. Let (X,d) be a separable metric space, (T, A, 1) be
a complete o-finite and non-atomic measure space and E be a Banach
space. Let F : X — Puo.(LY(T, E)) be a locally selectionable multi-valued

operator. Then F' has a continuous selection.

Proof. We associate to any y € X and z € F(y) an open neigh-
borhood N(y) and a local continuous selection f, : N(y) — LYT, E),
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satisfying f,(y) = z and f,(x) € F(x) when z € N(y). We denote by
{Vy}nen+ a countable locally finite open refinement of the open covering
{N(y)| y € X} and by {1, }nen+ a continuous partition of unity associ-
ated to {V, }nens-

Then, for each n € N* there exist y, € X such that V,, C N(y,)
and a continuous function f,, : N(y,) — LY (T, E) with f, (y,) = zn,
fy(x) € F(x), for all x € N(y,). We define A\o(z) = 0 and \,(z) =
> Ym(z), n € N*. Let g, € L'(T,R.) be the function defined by

m<n

Gmn(t) = ||20(t) — 2 (t)]], for each m,n > 1.
We arrange these functions into a sequence {gx }ren--
Consider the function 7(x) = Z U (2)Yn(z). From Lemma 2.2.1.,

m,n>1

there exists a family {7'(7, )} of measurable subsets of 7" such that:

(a) T'(1, A1) CT(1,A2), if Ay < Ay

(b) u(T (711, \)AT (12, X2)) < [N — Ao| + 2|11 — 7o

(c) fT(T’/\) gndpy = X [ gnd,, ¥ 0 < 19 for all X\, A\, Xy € [0,1], and all
To, T1, T2 > 0.

Define f,(x) = fy.(x) and xn(T) = X7(r (@) A0 (@)\T(+(2), A1 ()) TOT €ach
n € N*.

Let us consider the single-valued operator f : X — LY(T, F), defined
by f(z) = > ,51 fa(@)xn(z), x € X.Then, f is continuous because the
functions 7 and_)\n are continuous, the characteristic function of the set
T(7,\) varies continuously in L'(T, E) with respect to the parameters
7 and A and because the summation defining f is locally finite. On the
other hand, from the properties of the sets T'(7, \) (see Remark 2.2.5.
and Hu-Papageorgiou [105], 241-244pp. for more details) and because F

has decomposable values, it follows that f is a selection of F. [

The following result is similar to Corollary 2.1.4.(ii).
Theorem 2.2.7. Let (X, d) be a separable metric space, E a separable
Banach space, F : X — Py geo(LN(T, E)) be a l.s.c. multi-valued operator
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and G : X — Puo(LY(T, E)) be with open graph. If F(x) NG(x) # 0 for
each x € X then there exists a continuous selection of FF'NG.

Proof. Let 2y € X and for each yg € F(z() we define the multifunc-

Fyo(z) = {wo}, ifx=m
0 F(x), if z # 0.

tion

Obviously Fy : X = Pugec(L* (T, E)) is 1.s.c. From Theorem 2.2.3. there
exists a continuous selection f of Fp, i.e. fo(xo) = yo and fo(z) € F(x),
for each z € X, x # . Using Lemma 2.1.10. it follows that F' N G is
locally selectionable at xy and has decomposable values. From Lemma

2.2.6. the conclusion follows. O

An important result is the following Browder-type selection theorem:
Theorem 2.2.8. Let E be a Banach space such that L'(T, E) is
separable. Let K be a nonempty, paracompact, decomposable subset of
LYT,E) and let F : K — Py..(K) be a multi-valued operator with open

fibres. Then F has a continuous selection.

Proof. For each y € K, F~'(y) is an open subset of K. Since K
is paracompact it follows that the open covering {F~'(y)},ecx admits a

locally finite open refinement, let say K = U F _l(yj), with y; € K. Let
jeJ

{1,}jes be a continuous partition of unity subordinate to {F~(y;)};es.

Using the same construction as in the proof of Lemma 2.2.6., one can con-

struct a continuous function f : K — K, f(z) = ij (z)x;(z), where
jeJ

fj(x) € F(x) for each z € K. This function is a continuous selection for

F. 0O

The following results are decomposable versions of Deguire-Lassonde
theorems. (see Theorem 2.1.19 and Theorem 2.1.20.)
Theorem 2.2.9. Let E be a Banach space such that L*(T, E) is

separable. Let I be an arbitrary set of indices, {K;|i € I} be a family
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of nonempty, decomposable subsets of LY(T,E) and X a paracompact
space. Let us suppose that the family {F; : X — Pae.(K;)|i € I} is of Ky
Fan-type. Then there exists a selecting family for {F;}icr.

Proof. Let {U;};c; be the open covering of the paracompact space
X given by U; = {x € X| F;(z) # 0} for each i € I. It follows that there
exists a locally finite open cover {W;}ic; such that W; C U, for i € I.
Let V; = W,. For each i € I let us consider the multi-valued operator
G : X — P(K;), defined by the relation

Gi(x) Fi(x), ifz eV
i\r) =
K; if x ¢V,

Then G; is a multifunction with nonempty and decomposable values
having open fibres (indeed, G;*(y) = F;, ' (y) U (X\V;)) , for each i € I.

Using Theorem 2.2.8. we have that there exists f; : X — K, continu-
ous selection for G; (i € I), for each i € I. It follows that for each x € X
there exists ¢ € I such that € V; and hence f;(z) € G;(x) = Fy(x),

proving that {f;}ies is a selecting family for {F;};c;. O

Using a similar argument we have:

Theorem 2.2.10. Let E be a separable Banach space and X a sep-
arable metric space. Let I be an arbitrary set of indices, {K;|li € I}
be a family of nonempty, closed, decomposable subsets of L'(T, E). Let
{F; : X = Paec(K;)|i € I} be a family of I.s.c. multi-valued operators
such that for each x € X there isi € I such that F;(z) # 0. Then {F;}icr

has a selecting family.

Proof. There are only minor modifications of the above arguments.
More precisely, the proof runs exactly as in the previous theorem, but

instead of using Theorem 2.2.8., the conclusion follows from Theorem
2.2.3.0

Bibliographical comments. Mainly, this section is based on the
works of Fryszkowski [89], Bressan-Colombo [40], Petrugel-Muntean [201]
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and Petrugel-Mot; [198]. Further results can be found in Aubin-Cellina
[15], Bressan-Colombo-Fryszkowski [41], Browder [44], Cellina-Colombo
[55], Deguire [78], Deguire-Lassonde [79], Fryskowski [90], Hiai-Umegaki
[100], Hu-Papageorgiou [105], Kisielewicz [127], Marano [138], Olech
[158], Petrusel [187].

2.3 Basic fixed point theorems

The aim of this section is to report some basic theorems of the fixed point

theory for multi-functions.

Let us recall first some basic notations and concepts.

Definition 2.3.1. Let X be a metric space. If F' : X — P(X) is
a multi-valued operator and xy € X is an arbitrary point, then the se-
quence (x,)nen 18, by definition, the successive approximations sequence
of F starting from z; if and only if x; € F(xy_1), for all £ € N*. Let us re-
mark that in the theory of dynamical systems, the sequence of successive
approximations is called the motion of the system F' at xg or a dynamic
process of F' starting at xg. The set T(zg) := {xy, : ny1 € F(z,),n € N}

is called the trajectory of this motion and the space X is the phase space.

Definition 2.3.2. Let (X, d) be a generalized metric space and let
F: X — P,(X) be a multi-valued operator. Then F' is said to be:

i) a-contraction if and only if a € [0,1] and H(F(z1), F(z2)) <
ad(xy,z3), for all z1, 2o € X with d(xq,z5) < 0.

ii) (e,a)-contraction if and only if ¢ > 0, a € [0,1] and
H(F(x1), F(x9)) < ad(zy,x2), for all x1, 29 € X with d(z1,29) < €.

Remark 2.3.3. Obviously, each multi-valued a-contraction is an

(¢, a)-contraction.

Theorem 2.3.4. (Covitz-Nadler [71]) Let (X, d) be a generalized com-
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plete metric space. Let ©o € X arbitrary and F : X — Py(X) be a
multi-valued (e, a)-contraction. Then the following alternative holds:

(1) for each sequence of successive approximations of F' starting from
xo we have d(x;_1,x;) > €, for all i € N*

or

(2) there exists a sequence of successive approximations of F starting

from xo which converges to a fixed point of F.

Corollary 2.3.5. Let (X,d) be a generalized complete metric space
and xy € X be arbitrary. If F : X — Py(X) is a multi-valued a-
contraction, then the following alternative holds:

(1) for each sequence of successive approximations of F' starting from
xo we have d(x;_q1,x;) = o0, for all i € N*

or

(2) there exists a sequence of successive approzimations of F starting

from xq which converges to a fixed point of F.

The following result is known in the literature as Covitz-Nadler the-
orem (see [71]):

Theorem 2.3.6. (Covitz-Nadler [71]) Let (X, d) be a complete metric
space and xy € X be arbitrary. If F 1 X — Py(X) is a multi-valued a-
contraction, then there exists a sequence of successive approximations of

F starting from xo which converges to a fized point of F'.

As regards to the strict fixed points set of a multi-valued a-
contraction, we have the following result of I. A. Rus ([223]):

Theorem 2.3.7. (Rus [223]) Let (X, d) be a complete metric space
and F : X — Py(X) be a multi-valued a-contraction. If SFixF # () then
FizF = SFizF = {z*}.

Definition 2.3.8. Let (X, d) be a metric space and F': X — Py(X)
be a multi-valued operator. If there exists a,b,c € R, , with a+b+c¢ < 1
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such that for all z;, 29 € X we have:
H(F(x1), F(22)) < ad(zy,x2) +bD(xy, F(x1)) + cD(x2, F(x3))
then F'is called a Reich type multi-valued operator.

Reich’s fixed point theorem (see [213]) is an extension of the Covitz-
Nadler principle:

Theorem 2.3.9. (Reich [213]) Let (X,d) be a complete metric space
and F : X — P,(X) be a Reich type multi-valued operator. Then FixF #
0.

If the multi-valued operator is contractive and the space is compact,
then we have the following result:

Theorem 2.3.10. (Smithson [249]) Let (X, d) be a compact metric
space and F : X — P,(X) be a contractive multi-valued operator. Then
FizF # 0.

Another generalization of the Covitz-Nadler principle is:

Theorem 2.3.11. (Mizoguchi-Takahashi (see [147]) Let (X,d) be a
complete metric space and F : X — Py(X) a multi-function such that
H(F(x),F(y)) < k(d(x,y))d(x,y), for each x,y € X with x # vy, where
k :]0,00[— [0, 1] satisfies lim,_+k(r) < 1, for every t € [0,00[. Then
FixF # .

For the case of multi-functions from a closed ball of a metric space
X into X, Frigon and Granas (see [88]) proved the following extension
of Covitz-Nadler principle:

Theorem 2.3.12. (Frigon and Granas [88]) Let (X, d) be a complete
metric space, zg € X, r > 0 and F : B(zg;r) — Pa(X) be an a-
contraction such that D(xg, F(xg)) < (1 — a)r. Then FixF # 0.

Using the above theorem, Frigon and Granas have proved some con-

tinuation results for multi-functions on complete metric spaces.
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Definition 2.3.13 If X,Y are metric spaces and F; : X — Py(Y) is
a family of multi-functions depending on a parameter ¢ € [0, 1] then, by
definition, (F})scpo,1] is said to be a family of k-contractions if:

i) F} is a k-contraction, for each ¢t € [0,1].

i) H(Fi(z), Fs(x)) < |p(t) — ¢(s)|, for each t,s € [0,1] and each
x € X, where ¢ : [0,1] — R is a continuous and strictly increasing

function.

If (X, d) is a complete metric space and U is an open connected sub-
set of X, then we will denote by K (U, X) the set of all k-contractions
F : U — Py(X). Also, denote by Ko(U,X) = {F € K(U,X)|x ¢
F(z), for each x € OU}.

Definition 2.3.14. F € Ko(U, X) is called essential if and only if
FixF # (). Otherwise F is said to be inessential.

Definition 2.3.15. A family of k-contractions (F})cjoq is called a
homotopy of contractions if and only if F, € KCo(U, X), for each t € [0, 1].
The multi-functions S and T are said to be homotopic if there exists a

homotopy of contractions (F})icp,1) such that [y = S and Fy =T

The topological transversality theorem read as follows:
Theorem 2.3.16. (Frigon-Granas [88]) Let S, T € Ko(U, X) two ho-

motopic multi-functions. Then S is essential if and only if T is essential.

The non-linear alternative for multi-valued contractions was proved
by Frigon and Granas:

Theorem 2.3.17. (Frigon-Granas [88]) Let X be a Banach space
and U € P,,(X) such that 0 € U. If T : U — Py(X) is a multi-valued
k-contraction such that T(U) is bounded, then either:

i) there exists v € U such that x € T(x).
or

ii) there exists y € OU and X €]0, 1] such that y € XT (y).
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Let us present now the Leray-Schauder principle for multi-valued con-
tractions:

Theorem 2.3.18. (Frigon-Granas [88]) Let X be a Banach space and
T: X — Py(X) such that for each r > 0 the multi-function T'|g, , is a
k-contraction. Denote by Er = {x € X|z € XT'(x), for some A €]0,1[}.
Then at least one of the following assertions hold:

i) Er is unbounded
ii) FizT # 0.

Corollary 2.3.19. Let X be a Banach space and T : U — Py(X) be
a k-contractions such that for each x € OU at least one of the following
assertions hold:
i) [T ()| < [l
i) | T (@)l < D(x, T(x))
iti) ||T(x)|| < (D(x,T(x))? + ||z]*)
iv) IT(@)]| < maz(|lz]., D(z, T(2)))
Then FixT # ()

In case F'is a nonexpansive (i.e. 1-Lipschitz) multi-function, we have:

Theorem 2.3.20. (Lim [135]) Let X be an uniformly convexr Ba-
nach space Y € Ppow(X) and F 1Y — P, (Y') be nonexpansive. Then
FixF # .

Definition 2.3.21. Let X be a real Banach space, Y € P,(X) and
€Y. We let:

Ty (x) = {y € X Jim inf D(w + hy, Y)h~! = 0}

Iy(z) =2z + Ty (2)
Iy(z) ={z+Ay—2)[ A >0, ye Y}, for Y € Pye(X).

The set Iy (x) is called the inward set at 2. Notice that Iy (z) = Iy ()

for convex subset Y of X.
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Definition 2.3.22. Let X be a real Banach space, Y € P, (X) and
the mappings f:Y — X and F : Y — P(X). Then:

i) f is called weakly inward if f(z) € Iy (), for each z € Y’

ii) F is called weakly inward if F/(x) C Iy (z), for each z € Y

iit) F is called inward if F(z) N Iy (z) # 0, for each z € Y

For weakly inward multi-valued contractions we have the following
recent result of T. -C. Lim ([134]):

Theorem 2.3.23. (Lim [134]) Let X be a Banach space and Y be a
nonempty closed subset of X. Assume that F 1Y — Py(X) is a weakly

wnward multi-valued contraction. Then I has a fixed point in'Y .

Let us consider now some basic topological fixed point principles.

For the beginning, we define the notion of Kakutani-type multi-
function:

Definition 2.3.24. Let X, Y be two vector topological spaces. Then
F: X — P(Y) is said to be a Kakutani-type multi-function if and only
if:

i) F(z) € Pope(Y), forall z € X

ii) F'is u.s.c. on X.

Definition 2.3.25. Let X be a vector topological space and Y €
P(X). Then, by definition, Y has the Kakutani fixed point property
(briefly K.f.p.p.) if and only if each Kakutani-type multi-function F' :
Y — P(Y) has at least a fixed point in Y.

The most famous topological fixed point result is the Kakutani-Fan
theorem (see [117]):

Theorem 2.3.26. (Kakutani-Fan [117]) Any compact convex subset
K of a Banach space has the K.f.p.p.

For the infinite dimensional case we also have the following result (see
for example Kirk-Sims [124]) of Bohnenblust-Karlin:
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Theorem 2.3.27. (Bohnenblust-Karlin) Let X be a Banach space
and Y € Pypayc(X). The any u.s.c. multi-function F :'Y — Py (Y)

with relatively compact range has at least a fixed point in Y .

As consequence of the Kakutani-Fan result, Browder and Fan proved:

Theorem 2.3.28. (Browder-Fan [44]) Let X be a Hausdorff vector
topological space and K be a nonempty compact and convexr subset of X .
Let F : K — P.,(K) be a multi-valued operator with open fibres. Then
FizF # 0.

Another generalization of the Kakutani-Fan fixed point principle has
been proved by Himmelberg as follows:

Theorem 2.3.29. (Himmelberg [103]) Let X be a convex subset of
a locally convex Hausdorff topological vector space and'Y be a nonempty
compact subset of X. Let F': X — Py ,(Y) be an u.s.c. multi-function.
Then there ezists a point T € Y such that T € F(Z).

Recently, X. Wu (see [264]) proved a fixed point theorem for lower
semi-continuous multivalued operators in locally convex Hausdorff topo-
logical vector spaces. This theorem is the lower semi-continuous version
of Himmelberg’s fixed point theorem.

Theorem 2.3.30. (Wu [264]) Let X be a nonempty convex subset of a
locally convex Hausdorff topological vector space, Y a nonempty compact
metrizable subset of X and F : X — Py (Y) a l.s.c. multi-function.
Then the exists a point T € Y such that T € F(T).

We recall now the definitions of Kuratowski and Hausdorff noncom-
pactness measures o, respectively ay:

Definition 2.3.31. Let X be a metric space and S a bounded subset
of X. We set:
ag(S) = inf{e > 0] there exists m € N* such that S = U Si, Si €

i<m

P(X), diam(S;) < e}.
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Definition 2.3.32. Let X be a metric space and S a bounded subset
of X. Then
ag(S) = inf{e > 0| there exist m € N* and z; € X such that S =

| B(zi.9)}.
i<m
Definition 2.3.33. Let (X,d) be a metric space. A multi-valued
operator F': X — P.(X) is called:
i) y-condensing if and only if v(F(A)) < v(A)), for each A €
Py(X), with y(A) > 0.
ii) (v, a)-contraction if and only if a € [0,1] and y(F(A)) <
ay(A), for each A € P,(X).
(where v is ax or ay. Moreover, v could be an abstract measure

of noncompactness, see for example Ayerbe Toledano, Dominguez Bena-
vides, Lépez Acedo [23]).

The following results can be found, for example, in Deimling [80] and
81].

Theorem 2.3.34. Let X be a Banach space andY € Py o ..(X). Let
F:Y = Py.(X) be u.s.c. , y-condensing and inward. Then FixzF # ().

As a consequence of the degree theory for multi-functions one can
prove:

Theorem 2.3.35. Let X be a Banach space, Y € Py(X) and F :
Y — Puo(X) an w.s.c. and (v, a)-contraction multi-function. Suppose
that one of the following conditions holds:

i)Y is open and there exists xo € Y such that xo+ N x —x0) ¢ F(x),
for each x € 9Y and each A > 1

i) Y is closed, convex and F(Y) CY
Then FixF # 0.

Finally, let us consider some fixed point principles for single-valued

operators.
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Definition 2.3.36. Let (X, d) be a metric space and f: X — X a
single-valued operator. Then:

i) f is a Meir-Keeler type operator if and only if for each n > 0 there
exists 0 > Osuch that x,y € X, n < d(z,y) <n+d = d(f(x), f(y)) <n.

ii) f is a e-locally Meir-Keeler type operator (where € > 0) if and only
if for each 0 < 1 < ¢ there is § > 0 such that z,y € X, n < d(z,y) <

n+d = d(f(z), f(y) <n.

Let us remark that each Meir-Keeler type operator is contractive, i.e.
d(f(x), f(y)) < d(x,y), for each z,y € X with x # y .

Theorem 2.3.37. (Meir-Keeler [144]) Let (X, d) be a complete metric
space and f a mapping from X into itself. If f is a Meir-Keeler-type
operator then f has a unique fized point, i.e. Fixf = {x*}. Moreover for

any v € X, lim f*(z) = a*.
n—oo

Theorem 2.3.38. (Xu [267]) Let (X,d) be a complete e-chainable
metric space and f : X — X be a e-locally Meir-Keeler type operator.
Then f has at least a fized point in X.

For single-valued operators satisfying to a Boyd-Wong type condition
we have:

Theorem 2.3.39. (Boyd-Wong [39] and H. K. Xu [267]) Let (X,d)
be a complete metric space, € > 0 and f : X — X be a single-valued
operator such that:

d(f(z), fy) < k(d(z,y))d(z,y), for all z,y € X with 0 < d(x,y) <
e, where k :)0,00[—]0, 1] is a real function with the property:

(P) For each 0 <t < € there exist e(t) > 0 and s(t) < 1
such that k(r) < s(t) provided t <r <t+e(t)
Then Fixf # 0.

Combining a metrical fixed point result (namely, the Banach contrac-

tion principle) with a topological ones (Schauder’s theorem), Krasnosel-
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skii (see for example [128])proved the following fixed point principle for
the sum of two single-valued operators:

Theorem 2.3.40. (Krasnoselskii [128]) Let X be a Banach space,
Y € Pyo(X) and consider f Y — X, g: Y — X two single-valued
operators. If the following conditions are satisfied:

i) fly) +9(y) €Y, for eachy €Y

it) f is a-contraction

iii) g is continuous and has relatively compact range

then Fix(f + g) # 0.

Bibliographical comments. Basic fixed point theorems for multi-
function can be found in several sources, such as: Agarwal-Meehan-
O’Regan [1], Border [36], Covitz-Nadler [71], Deimling [80], [81], Frigon-
Granas [88], Hu-Papageorgiou [105], M. Kamenskii-Obuhovskii-Zecca
[118], Kirk-Sims [124], I. A. Rus [223], Smithson [249], X. Wu [264], Z.
Wu [265], Yuan [270].

2.4 The fixed point set

The purpose of this section is to present several properties of the fixed

point set for some multi-valued generalized contractions.

Throughout this section, the symbol M indicates the family of all
metric spaces. Let X € M.

The following notions appear in Rus- Petrugel-Sintamarian (see [228]
and [229)).

Definition 2.4.1. Let (X, d) be a metric space and T': X — P(X) a
multi-valued operator. By definition, 7" is a multi-valued weakly Picard
(briefly MWP) operator if and only if for all z € X and all y € T(x)
there exists a sequence (z,)nen such that:

Haxg=x, 1=y

i) zp1 € T'(zy), for alln € N
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iii) the sequence (2, )nen is convergent and its limit is a fixed point of

the multi-valued operator 7.

Let us remark that a sequence (z,)nen satisfying the conditions (i)
and (ii) in the previous definition is, by definition, a sequence of successive
approximations of 7', starting from (z,y).

We can illustrate this notions by several examples.

Example 2.4.2. (Covitz-Nadler [71]) Let (X, d) be a complete metric
space and T': X — P,(X) be a multi-valued a-contraction. Then T is a
MWP operator.

Example 2.4.3. (Reich [213]) Let (X, d) be a complete metric space
and T : X — P4(X) be a multi-valued Reich-type operator. Then T is a
MWP operator.

Example 2.4.4. (I. A. Rus [224]) Let (X, d) be a complete metric
space. A multi-valued operator 7' : X — P,4(X) is said to be a multi-
valued Rus-type graphic-contraction if Graf(T) is closed and the follow-
ing condition is satisfied: there exist o, € R, o + f < 1 such that:
H(T(x),T(y)) < ad(z,y)+ BD(y, T(y)), for every x € X and every y €
T(z)

Then T is a MWP operator.

Example 2.4.5. (Petrusel [182]) Let (X,d) be a complete metric
space, o € X and r > 0. The multi-valued operator T is called a Frigon-
Cranas type operator if T': B(xo;7) — P,(X) and satisfies the following
assertion:

i) there exist o, 8,7 € R, a4+ §+ v < 1 such that:

H(T(x), T(y)) < ad(z,y)+BD(x,T(x))+yD(y, T(y)), for all z,y € B(xo;r)

If T is a Frigon-Granas type operator such that:
ii) 0(xo, T'(20)) < [1 = (v + B+ 7)](L =)',
then 7" is a MWP operator.
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Let us recall that in 1985, T. -C. Lim (see [132]) proved that if T}
and 75 are multi-valued contractions on a complete metric space X with
a same contraction constant o < 1 and if H(7T1(x),T2(x)) < n, for all

xr € X, then the data dependence phenomenon for the fixed point set
holds, i.e.

H(FizTy, FizTy) < n{l —a} .

We will show now that the data dependence problem for the fixed point
set for some generalized multi-valued contractions has also a positive
answer.

Definition 2.4.6. Let (X, d) be a metric space and 7' : X — P(X)
a MWP operator. Then we define the multi-valued operator T
Graf(T) — P(FizT) by the formula:

T>(z,y) := {z € FizT| there exists a sequence of successive approx-

imations of T" starting from (x,y) that converges to z}.

An important abstract concept in this approach is the following:

Definition 2.4.7. Let (X, d) be a metric space and T : X — P(X)
a MWP operator. Then T is a c-multi-valued weakly Picard operator
(briefly ¢-MWP operator) if there is a selection t> of T°° such that:
d(z,t>®(x,y)) < cd(z,y), for all (z,y) € Graf(T).

Further on we shall present several examples of c-MWP operators.
Example 2.4.8. A multi-valued a-contraction on a complete metric

space is a c-MWP operator with ¢ = (1 —a) ™.

Example 2.4.9. A multi-valued Reich type operator on a complete
metric space is a c-MWP operator with ¢ = [1 — (a+ 8+ )] (1 — 7).

Example 2.4.10. A multi-valued Rus-type graphic contraction on a
complete metric space is a c-MWP operator with ¢ = (1—8)[1—(a+3)] "
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Example 2.4.11. A multi-valued Frigon-Granas type operator T :
B(xo;7) — Py(X) satisfying the condition &(zq, T(x0)) < [1 — (o + 5 +
)1 —~)"1r is a -MWP operator.

An important abstract result of is the following:

Theorem 2.4.12. Let (X,d) be a metric space and T, T, : X —
P(X). We suppose that:

i) T; is a ¢;-MWP operator for i € {1,2}

ii) there exists n > 0 such that H(T\(z),Ta(x)) <mn, for all z € X.

Then H(FixTy, FizTy) < nmax{cy,co}.

Proof. Let t; : X — X be a selection of T; for i € {1,2}. Let us
remark that
H(FizFy, FizTy) < max{ sup d(z,t7°(z,t1(x))), sup d(m,tgo(x,tg(x)))}
€ FixTs € FixTs

Let ¢ > 1. Then we can choose t; (i € {1,2}) such that
d(z,t5°(x, t1(2))) < c1gH (Ta(x), T1(x)), for all z € FixTy
and
d(x, t5°(x, ta(x)) < coqH(Ty(x), To(x)), for all x € FizT;.

Thus we have H(FizT, FixTy) < gnmax{cy, ca}. Letting ¢ N\ 1, the

proof is complete. [

Remark 2.4.13. As consequences of this abstract principle, we de-
duce that the data dependence phenomenon regarding the fixed points
set for some generalized multi-valued contractions (such as Reich-type
operators, Rus-type graphic contractions, Frigon-Granas type operators)
holds.

Contrary to the single-valued case, if T : X — Py(X) is a multi-
valued contraction on a complete metric space, then FizT" is not nec-
essarily a singleton and hence it is of interest to study the topological

properties of it.
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Let us recall that a metric space X is called an absolute retract for
metric spaces (briefly X € AR(M)) if, for any Y € M and any Y; €
P,(X), every continuous function fy : Yo — X has a continuous extension
over Y, that is f : ¥ — X. Obviously, any absolute retract is arcwise
connected. In this setting, B. Ricceri (see [215]), stated the following
important theorem:

Theorem 2.4.14. (Ricceri) Let E be a Banach space and let X be
a nonempty, closed, convex subset of E. Suppose T : X — P (X)) is
a multi-valued contraction. Then FixT s an absolute retract for metric

spaces.

A decomposable version of this result was proved by Bressan-Cellina-
Fryszkowski (see [41]):

Theorem 2.4.15. (Bressan-Cellina-Fryszkowski) Let F' : L'(T, E) —
Py ergec(LNT, E)) be a multi-valued a-contraction. Then FixF is an ab-

solute retract for metric spaces.

We establish the following result on the structure of the fixed point
set for a multi-valued Reich type operator with convex values.

Theorem 2.4.16. Let E be a Banach space, X € Pueo(E) and
T : X = Pyw(X) be a ls.c. multi-valued Reich-type operator. Then
FixT € AR(M).

Proof. Let us remark first that FizT € P,(X). (see for example
Reich [213]) Let K be a paracompact topological space, A € P.,(K) and
¥ A — FizT a continuous mapping. Using Theorem 2 from B. Ricceri
[215] (taking G(t) = X, for each t € K) it follows the existence of a
continuous function ¢y : K — X such that ¢g|a = 1. We next consider
q €]1,(a + B+ v)7}[. We claim that there exists a sequence (¢, )nen of
continuous functions from K to X with the following properties:

(i) nla =7

(ii) pn(t) € T(pn-1(t)), for all t € K

(1) lon () = en1 (B < [(+B+7)g]" " @1 () —@o(t)]], for all t € K.
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To see this, we proceed by induction on n. Clearly, for each t € A
we have that ¢(t) € T'(¢o(t)). On the other hand, the multi-function
t — T(po(t)) is Ls.c. on K with closed, convex values and hence using
again Theorem 2 in [215] it follows that there is a continuous function
1+ K — X such that p1|4 = ¢ and ¢1(t) € T(po(t)), for all t € K.
Hence, the conditions (i), (ii), (iii) are true for ¢;. Suppose now we have
constructed p continuous functions ¢y, ¢s, ..., ¢, from K to X in such a
way that (i), (ii), (iii) are true for n € {1,2,...,p}. Using the Reich type

contraction condition for T', we have

D(p(A), T(0p(t))) < H(T(pp-1(1)), T(ipp(1))) <

< allpp-1(t) = pp)]| + BD(pp-1(t), T(pp-1(1))) + 7D (p(1), T(p(1))) <
< allpp-1(t) — wp)|l + Bllep-1(t) — @p(®)l| +7D(wp(t), T(p(t)))
so that

D(py(t), T(p(t))) < (a+ B)(L =) pp(t) — epr ()] <

< (a+B)1 ="+ B+7)a" e t) — o)
<(a+B8+7)¢" ler(t) = o®)] < [(a+ B+l ller(t) = wo(t)]].
We next define, for each t € K

0.8 = { B(gy(t), (e + B+ 1)l l1(t) = oI, i o1(t) # wo(t)
’ {ep(®)}, if @1(t) = @o(t)

Obviously T'(¢,(t)) N Q,(t) # 0, for all t € K. We can apply now (tak-

ing G(t) = F(pp(t), [(t) = ¢p(t) and the mapping (1) = [(a + 5 +

Y)qPll1(t) — wo(t)]], for all t € K). Proposition 3 from Ricceri [215], we

obtain that the multi-function ¢ — T'(p,(t)) N Q,(t) is Ls.c. on K with

nonempty, closed, convex values. Because of Theorem 2 in [215], this pro-

duces a continuous function ¢,y : K — X such that ¢,41]; = ¢ and
wpt1(t) € T(pp(H)) N Qy(t), for all t € T. Thus the existence of the se-
quence {,} is established. Consider now the open covering of K defined
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by the formula: ({t € K| [|¢1(t) — wo(t)]] < A})as0. Moreover, because
of (iii) and the fact that X is complete, the sequence {p,, },en converges
uniformly on each of the following set K = {t € K| ||¢1(t) —wo(t)|| < A}
(A >0). Let ¢ : K — X be the pointwise limit of (¢, )nen. Obviously ¢
is continuous and ¢|4 = 1. Moreover, a simple computation ensures that
t@(t) € T(p(t)) for all t € K and this completes the proof. [

Remark 2.4.17 If 8 = v = 0 then the previous theorem coincides
with B. Ricceri’s result (Theorem 2.4.14. below).

Remark 2.4.18. Of course, it is also possible to formulate version
of Theorem 2.4.16. for multi-valued Rus type graphic contraction. It is
an open question if such a result holds for a Frigon-Granas type multi-

function.

Several paper have been devoted to some extensions and generaliza-
tions of the previous results to a larger family of multi-valued contrac-
tions defined on arbitrary complete absolute retracts. For this purpose,
an important abstract notion is:

Definition 2.4.19. Let (X, d) be a metric space, F': X — P,4(X) be
l.s.c. and U4 C X be an arbitrary family of metric spaces. We say that F’
has the selection property with respect to U when for any Y € U, any
pair of continuous functions f : Y — X and r : Y —]0, oo such that:

G(y) = F(f(y)) N B(f(y),r(y)) #0, foreachy € Y

and any nonempty closed set Z C Y, every continuous selection gy of
G |z admits a continuous extension g over Y fulfilling g(y) € G(y), for
ally € Y. When U = X we say that G has the selection property (briefly
G € SP(X)).

Some examples illustrating this notion are:
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Example 2.4.20. Let X be a nonempty closed convex subset of a
Banach space E and F : X — P, .,(X) be Ls.c.. From Michael’s selection
theorem it follows that F' € SP(X).

Example 2.4.21. Let X be a nonempty closed decomposable subset
of LY(T, E) and let F': X — P 4ec(X) be Ls.c.. Gorniewicz and Marano
proved (see [94]) that F has the selection property with respect to the

family of all separable metric spaces.

Using this abstract setting the following results was proved in
Gorniewicz-Marano [94]:

Theorem 2.4.22. (Gorniewicz-Marano) Let X be a complete absolute
abstract and let F': X — P,(X) be a multi-valued contraction. Suppose
that F € SP(X). Then FixF is a complete absolute retract.

Remark 2.4.23. Theorem 2.4.22. contains as particular cases both
Theorem 2.4.14. and Theorem 2.4.15.

An important result is the following generalization of Theorem 2.4.22.

Theorem 2.4.24. Let X be a complete absolute retract and F : X —
P, (X)be a Reich type multi-function such that F € SP(X). Then the

fixed point set FixF is a complete absolute retract.

Regarding to the compactness property of the fixed point set of a
multi-valued contraction mapping, J. Saint Raymond (see [237]) estab-
lished the following theorem:

Theorem 2.4.25. (Saint Raymond) Let T' be a multi-valued contrac-
tion from the complete metric space X to itself. If T' takes compact values,
the fized point set FixT is compact too.

An extension of the previous result is:
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Theorem 2.4.26. Let (X, d) be a complete metric space, xg € X and
r > 0. Let us suppose that T : B(z;1) — P.,(X) satisfies the following
two conditions:

i) there exist a, f € Ry, a+ 20 < 1 such that

H(T'(x),T(y)) < ad(z,y) + BID(z, T(z)) + D(y, T(y))],

for each z,y € B(xo;7)
ii) D(zo, T(10)) < [1 — (o +28)](1 — )" tr.
Then the fixed points set FixT is compact.

Proof. From Reich’s theorem [213] it follows that FiaT €

P.(B(z0;7)). Assume that FizT is not compact. Because FizT is com-
plete, it cannot be precompact, so there exist 6 > 0 and a sequence
(%;)ien C FliaT such that d(x;,x;) >, for each i # j. Put p = inf{R|

there exists a € B(zo;r) such that B(a, R) contains infinitely many z;;s}.
1—a—24
~ 1+«

a € B(xzo;r) such that the set J = {i: z; € B(a,p+ ¢)} is infinite.

For each i € J, we have

Obviously p > 3 > (. Let € > 0 such that € < p and choose

D(;,T(a)) < H(T(2:), T(a)) < ad(zi, a)+5:[D(ws, T(2:))+D(a, T(a))] =

= ad(z;,a) + fD(a,T(a)) < a(p+¢€) + pd(a,y), for every y € T'(a).
Then

D(z;,T(a)) < alpte)+B[d(a, x;)+d(z;, y)] < alpte)+L(p+e)+8d(x;, y),

for every y € T(a). Taking igf) we get : D(z;,T(a)) <
yel(a

(a+B)(p+e)(1—p)"", for each i € J. So, we can choose some y; € T'(a)
such that d(z;,v;) < (a+p)(p+e)(1 — B)7!, foreach i € J. By the
compactness of T'(a) there exists b € T(a) such that the following
set: J' = {i € J| d(y;,b) < ¢} is infinite. Then, for each i € J’

we get d(z;,b) < d(xi,y) + d(yi,b) < (a+B8)(p+e)(1 —B)' + ¢
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= (a+B8)1-=8)"tp+e(l+(a+pB)(1—p)"1) < p. This contradicts
the definition of p, because the set B(b, R) contains infinitely many x;’s
(where R= (a4 B)p(1 = B) " +e(1+ (a+8)(1-p5)"")). O

The purpose of the last part of this section is to study the measurabil-
ity of the fixed point set for some multi-valued generalized contractions.

Let (X, d) be a complete separable metric space and (€2, Y) be a mea-
surable space. Recall also that a multi-valued operator 7" : Qx X — P(X)
is said to be a random operator if, for any z € X T'(-,z) : Q@ — P(X) is
measurable. We will denote by F'(w) the fixed points set of T'(w,-), i.e.
F(w) :={z € X| 2 € T(w,z)}. A random fixed point of 7" is a measur-
able function x :  — X such that z(w) € T'(w, z(w)), for all w € €, or
equivalently, x is a measurable selection for F.

IET:QxX — Py(X) is a random contraction (that is, for each
x € X, T(-,x) is measurable and for each w € € there exists a number
k(w) € [0, 1] such that

H(T(w,z),T(w,y)) < k(w)d(x,y), for all z,y € X)

then Xu and Beg (see [18]) proved that the multi-function F' is measur-

able and hence T" admits a random fixed point.

Let us start with the following lemma.
Lemma 2.4.27. Let (X,d) be a complete metric space and let T :
X = Py u(X) be a multi-valued Reich type operator. Then for each p > 0

we have

H(Fy, FiaT) < (1= 9)p[l = (a+ S +9)]™
where F, == {x € X| D(z,T(x)) < p}.

Proof. Obviously F,, O FizT and hence H (F,, FizT) = p(F,, FizT).
Let z € F, and € > 0 be arbitrarily. We can choose z; € T'(z) such that
d(xz,z1) < (1 +¢)p.
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Starting from xy = = and z;, we can construct a sequence {z,} of

successive approximation of 7" starting from (xg, z1) such that
d(z,, z*) < L™(q)(1 — L(q)) 'd(z1, z0), for each n >0

where ¢ € |1, (a+ 3 +~)~'[ is arbitrary, L(q) = g+ 8)(1 —¢v)~! and
lim z, = 2* € FixT.
n—oo

For n = 0 we obtain d(zg,z*) < (1 — L(q)) " 'd(z1, 7o) < (1 +¢)p(1 —
L(q))™". Letting € \, 0 and ¢ \, 1 we have

p I € o)
(@+B)(1=7)" 1—(a+B8+7)

d f) <
(r,3%) < 1=

Definition 2.4.28. Let (X, d) be a complete separable metric space,
(2,%) is a measurable space. Then T': Q x X — B, 4(X) is a random
Reich type operator, if for each x € X, T'(-, x) is measurable and for each
w € Q there exist a(w), f(w),v(w) € Ry with a(w) + f(w) + y(w) < 1
such that

H(T(w,2), T(w,y)) < a(w)d(z, y)+8(w)D(x, T (w, x))+7(w)D(y, T'(w,y))
for each z,y € X.

Main result of the last part of this section is:

Theorem 2.4.29. Suppose that (X, d) is a complete separable metric
space, (€2, X) is a measurable space and T : Qx X — Py, (X) is a random
continuous Reich type operator. Then the multi-function F of the fixed

point set is measurable.

Proof. By Reich’s theorem [213] the set F'(w) is nonempty for every

w € €. For each n > 1 we consider

Fy(w) = {x € X| D(z,T(w,x)) < %}
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Using Proposition 1.5 in Xu-Beg [268], each F},(w) is measurable and
by Lemma 2.4.27. we have

1—7 1
H(F,(w), F(w)) < T Py -E—>O, as n — 00.

So F'is measurable. The proof is now complete. [

Theorem 2.4.30. Suppose that (X, d) is a complete separable metric
space, (€2, %) is a measurable space and T : Qx X — P, (X) is a random
continuous Reich-type operator. Then the multi-function T has a random

fixed point.

Proof. The conclusion follows from Theorem 2.4.29. via Kuratowski
and Ryll Nardzewski selection theorem. (see Theorem 1.4.16.) O

Bibliographical comments. The approach of this paragraph fol-
lows mainly Petrusel [174] and Rus-Petrugel-Sintamarian [229]. There is
an extensive literature on the subject of multi-valued generalized contrac-
tions. Excellent sources for the properties of the fixed point set are the fol-
lowing: Anisiu-Mark [7], Deimling [80], Gorniewicz-Marano-Slosarki [93],
Gorniewicz-Marano [94], Kamenskii-Obuhovskii-Zecca [118], Lim [133],
Marano [137], Markin [138], Naselli Ricceri and B. Ricceri [156], Ricceri
[215], Rybinski [235], Saint Raymond [237], Schirmer [246], Wang [261],
Xu-Beg [268].

2.5 Caristi type operators

Caristi’s fixed point theorem states that each operator f from a complete
metric space (X, d) into itself satisfying the condition:

there exists a lower semi-continuous function ¢ : X — R, U {400}
such that:

(2.5.1.)  d(z, f(z)) +¢(f(x)) < p(z), for cach x € X,
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has at least a fixed point z* € X, i. e. * = f(2*) (see Caristi [52]).

There are several extensions and generalizations of this important
principle of the nonlinear analysis (see for example Jachymski [111], Ciric
[62] etc.).

One of them, asserts that if (X, d) is a complete metric space, zo € X,

¢ : X = Ry U{+o00} is lower semi-continuous and h : Ry — R} is a

continuous function such that fooo Hde(s) = 00, then each single-valued

operator f from X to itself satisfying the condition:

d(z, f(x))

(2.5.2.) for each x € X, T+ h(d(ze, 2)) + o(f(x)) < (),

has at least a fixed point. (see Zhong-Zhu-Zhao [274])

For the multi-valued case, if F' is an operator of the complete metric
space X into the space of all nonempty subsets of X and there exists a

lower semi-continuous function ¢ : X — R, U {400} such that:

(2.5.3.) for each x € X, there is y € F(x) so that d(z,y) + ¢(y) < ¢(z),

then the multi-valued map F' has at least a fixed point x* € X, i. e.
x* € F(x*). (see for example [147])

Moreover, if F' satisfies the stronger condition:

(2.5.4.) for each z € X and each y € F(z) we have d(z,y)+¢(y) < p(x),

then the multi-valued map F' has at least a strict fixed point z* € X,
i.e. {a*} = F(z*). (see [18])

On the other hand, if F' is a multi-valued operator with nonempty
closed values and ¢ : X — R, U {400} is a lower semi-continuous func-
tion such that the following condition holds:



82 CHAPTER 2. OPERATORIAL INCLUSIONS

(2.5.5.) for each z € X,inf { d(z,y) +¢(y) : vy € F(z) } < ¢(x),

then F' has at least a fixed point.(see [104])

In this framework, let us remark that if we replace condition (2.5.5.)
by a weaker condition (see (2.5.6.) below), then the conjecture stated by
J.-P. Penot in [171] as follows:

Let (X, d) be a complete metric space, ¢ : X — R, be a lower semi-
continuous function and F' be a multi-valued operator of X into the family

of all nonempty closed subsets of X satisfying the following condition:

(2.5.6.) D(z,F(z)) +inf { p(y) : y € F(z) } < p(z),

then F has at least a fized point.

is false. (see van Hot [104] for a counterexample).

It is easy to see that (2.5.4.) = (2.5.3.) = 2.5.5.) and (2.5.5.) =
(2.5.3.) provided that F' has nonempty compact values.

The purpose of this section is to present several new results in con-
nection with the above mentioned single-valued and multi-valued Caristi
type operators in complete metric spaces.

Let (X, d) be a metric space and F' : X — P(X) be a multi-valued
map.

Definition 2.5.1. A function ¢ : X — R, U {+oc} is called:

(i) a weak entropy of F if the condition (2.5.3) holds.

(ii) an entropy of F'if the condition (2.5.4.) holds.

Moreover, the map F' : X — P(X) is said to be weakly dissipative if
there exists a weak entropy of I’ and it is said to be dissipative if there

is an entropy of it.

Definition 2.5.2. Let (X, d) be a metric space and F' : X — P, 4(X)

be a multi-valued operator. Then F' is said to be a d-Reich type operator
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if there exist a,b,c € R, , with a + b+ ¢ < 1 such that

I(F(x), F(y)) <ad(z,y)+bD(x, F(x))+c D(y, F(y)), for eachz,y € X.

Let us remark now, that if f is a (single-valued) a-contraction in
a complete metric space X, then f satisfies condition (2.5.1.) with
o(x) = (1 —a)td(z, f(x)), for each x € X, so that part of the Banach
contraction principle which says about the existence of a fixed point can
be obtained by Caristi’s theorem. For the multi-valued case we have the
following result:

Theorem 2.5.3. Let (X, d) be a complete metric space and F : X —
P.,(X) be an a-contraction (0 < a < 1). Then:

(a) F satisfies the condition (2.5.5.) with o(z) = (1—a)™ D(z, F(z)),
for each x € X.

(b) If, in addition F(x) € P,(X), for each x € X, then F is
weakly dissipative with a weak entropy given by the formula o(x) =
(1—a)™' D(x, F(x)), for each z € X.

Proof. a) is Corollary 1 in [104] and b) follows immediately from a)
and the conditions (2.5.3.) < (2.5.5.). O

Remark 2.5.4. It is an open question if a multi-valued a-contraction
(0 < a < 1) is dissipative.

First main result of this section is:

Theorem 2.5.5. Let (X, d) be a metric space and F' : X — Py(X) be
a Reich type multi-valued map. Then there exists f : X — X a selection
of F satisfying the Caristi type condition (2.5.1.).

Proof. Let ¢ > 0 such that a < ¢ <1 —b— c. We denote by U, =
{yeFx) : edlz,y) < (1—-b—c) D(z,F(zx)) }, for each z € X.
Obviously, for each z € X, the set U, is nonempty (otherwise, if x € X
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is not a fixed point of F' and we suppose that for each y € F(x) we
have ed(z,y) > (1 — b — ¢) D(z, F(x)), then we reach the contradiction
eD(x,F(z)) > (1—b—c) D(x, F(z)); if v € X is a fixed point of F', then
clearly U, # ().

We can choose a single-valued mapping f : X — X such that f(x) €
Ug,i.e. f(z) € F(z) and € d(z, f(z)) < (1 =b—c¢) D(z, F(z)), for each
reX.

Then we have successively: D(f(x), F(f(x))) < H(F(z), F(f(x))) <
ad(x, f(z))+b Dz, F(x))+c D(f(x), F(f(x))) and hence

f
(1—=¢) D(f(z), F(f(z))) = b D(z, F(z)) < a d(z, f(z)).
In view of this we obtain:
A, f(@)) = (e — )" [¢ dx, f(2)) - a d(z, f(z))] <

< (e=a) " [(1=b=c) D(=, F(x))~(1=c) D(f (), F(f(2)))+b D(=, F(x))] =
= (1=0¢)/(e = a) [D(z, F(x)) = D(f(z), F(f(x)))].
If we define p : X — Ry by ¢(x) = (1 —¢)/(e — a) D(z, F(z)), for

each x € X, then it is easy to see that

d(z, f(x)) < ¢(x) — p(f(x)), for each z € X.

Moreover,
jp(x) —e(y)l = (1 —¢)/(e —a) [D(z, F(z)) = D(y, F(y))| <

< (1 —0o)/(e—a) |d(z,y) + H(F(x), F(y))| <
< (1 —0o)/(e —a) [d(z,y) +ad(z,y) + b D(x, F(z)) +c D(y, Fy))] =

= (1= (1 +a)/(z — a) d(z,y) + b(1 — )/( — a) D(w, F(z)) + (1 -
c)/(e —a) D(y, F(y)), proving the fact that the selection f is a kind of
single-valued Reich type operator. [
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Remark 2.5.6. If the multi-valued operator F' : X — P,(X) is
an upper semi-continuous Reich type operator, then ¢ is a lower semi-
continuous entropy of f. (because the map = — D(x, F(x)) is lower

semi-continuous.)

Remark 2.5.7. If in Theorem 2.5.5. we take b = ¢ = 0, then we
obtain a result of Jachymski, see [111]. Moreover, we get that a multi-

valued a-contraction (0 < a < 1) is weakly dissipative.

Theorem 2.5.8. Let (X, d) be a metric space and F : X — P(X) be

a 0-Reich type operator. Then the multi-valued operator F' is dissipative.

Proof. Let ¢ > Osuch thata < e <1—b—c.Let x € X and y € F(x).
It is not difficult to see that

ed(z,y) < (1—=b—c) d(z, F(x)).

Using the fact that y € F(z) and the condition from hypothesis we

have
0y, Fy) < 6(F(x), F(y) < ad(z,y)+bd(z, Fz)) +cdly, F(y)).
It follows that
—a d($7y) <b 5(1’, F(x)) - (1 - C) 5(y7F(y))
So, we have
d(l’,y) - (8 - a’)_l [6 d(x7y> —a d(ZL’,y)] <
<(e—a) (1 =b—c) 8z, F(x)) +bd(z, F(z)) = (1 —¢) oy, Fy))] =

= (1 =¢c)/(e —a) [6(z, F(x)) = 6(y, F(y))].
We define p(z) : X — R, as follows: ¢(z) = (1—c¢)/(e—a) 6(z, F(z)),
for each x € X and we get

d(z,y) + o(y) < ¢(x), for each z € X and for all y € F(x),
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i. e. the multi-valued operator F' is dissipative. []

The following result is an extension of Proposition 1 in van Hot [104].
Theorem 2.5.9. Let (X,d) a complete metric space, xy € X be
arbitrarily, ¢ : X — Ry U {+oc0} a lower semi-continuous function
and h : Ry — R, a continuous non-decreasing function such that
I 1+d,f(8) = o00. Let F' 1 X — Py(X) be a multi-valued operator such

: d(z,y)
nf{ 17 h(d(zo, @)

Then F has at least a fized point.

+o(y) ry € F(z)} < (), for each x € X.

Proof. We shall prove that for each x € X there exists f(z) € F(z)

such that: dlo, F@)
1+ h(’d(Io,x)) +2¢(f(z)) < 2p(x).

If D(z, F(z)) =0 then x € F(x) and put z = f(z).
If D(z, F(z)) > 0 then we get successively:

D Fla) o )
1+ h(d(xg, x) 1+ h(d(zo, x))

+20(y) 1y € F(xr)}

d(z,y)
1+ h(d(zo,x))

It follows that:
. d(z, y)
f
- {1 + h(d(xo, x
and hence there exists f(x) € F'(x) such that:
d(z, f(x))
1+ h(d(xg,x))

If we define ¥ (t) = 2¢(t) we get that f satisfies the hypothesis of Lemma
1.2.in [274] and hence there exists * € X such that z* = f(z*) € F(z*).
U

< 2inf{

+o(y):y € F(x)} < 2¢(x),for each v € X.

M +20(y) 1y € F(r)} < 2¢p(x)

+20(f(x)) < 2p(z).
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In what follows we shall discuss the data dependence of the fixed
points set of multi-valued operators which satisfy the Caristi type con-
dition (2.5.3) and the data dependence of the strict fixed points set of
multi-valued operators which satisfy the Caristi type condition (2.5.4).

Theorem 2.5.10. Let (X,d) be a complete metric space and Fy, Fy :
X — P(X) be two multi-valued operators. We suppose that:

(i) there exist two lower semi-continuous functions p1, s : X — Ry
such that for all x € X, there exists y € Fi(x) so that

d(z,y) < ¢i(x) — wily), i € {1,2}
(i) there exists ¢; € ]0,+o0[ such that
vi(x) < ¢ d(z,y), for each x € X and for ally € Fi(z), i € {1,2};
(i11) there exists n > 0 such that
H(Fi(x), Fy(x)) <n, foralze X.

Then
H(Fix(Fy), Fiz(Fy)) <n max { ¢, ¢ }.

Proof. From the condition (i) we have that Fiz(F;) # 0, i € {1,2}.
Let ¢ € ]10,1] and zy € Fiz(F}). It follows, from Ekeland variational
principle (see for example [81]), that there exists z* € X such that

e d(zg, ") < pa(x0) — pa(z”)

and
wa(x*) — pa(x) < e d(x,x%), for each x € X \ {z"}.

For z* € X, there exists y € Fy(z*) so that

d(x,y) < pa(2") — @a(y).
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If we suppose that y # x*, then we reach the contradiction

d(z*,y) < pa(x™) — paly) < e d(y,x").

So y = z* and therefore z* € Fy(2*), i. e. a* € Fiz(F).
Let ¢ € R, ¢ > 1. Then, there exists x; € Fy(z) such that

d((lf(],xl) S q H(Fl(])o),FQ(Io)).

Taking into account the conditions (ii) and (iii) we are able to

write € d(zo,2*) < @a(zo) — @ao(z*) wo(z0) < o d(xg, 1) <

ca q H(Fi(xg), F5(z0)) < 2 ¢ n. Hence
d(zg,x") <nmecaq/ e
Analogously, for all yy € Fiz(F), there exists y* € Fixz(F}) such that
d(yo,y*) <meiq/ e
Using the last two inequalities, we obtain
H(Fiz(F), Fiz(Fy)) <nqe ! max { ¢, ¢ }.
From this, letting ¢ \, 1 and ¢ * 1, the conclusion follows. [J

Remark 2.5.11. In the condition (ii) of the Theorem 2.5.10. it is
sufficient to ask that ¢;(x) = 0, for all z € Fiz(F;) and the existence of
¢; € 10, 400[ such that

(:OZ(*I) <G d(ZL‘,y),
for each x € Fixz(F;) and for all y € F;(z), i,5 € {1,2}, i # j.

Theorem 2.5.12. Let (X,d) be a complete metric space and F :

X — P(X) be a multi-valued operator. We suppose that:

(i) there exists ¢ : X — Ry a lower semi-continuous function such
that

d(z,y) < p(z) —v(y), for each x € X and for all y € F(z);
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(ii)there exists ¢ € |0,4o00|, such that
o(x) <cd(z,y), for each x € X and for all y € F(x).
Then Fiz(F) = SFix(F) # 0.

Proof. From the condition (i) we have that SFixz(F) # 0. Let z* €
Fix(F) and y € F(z*). It follows that

d(z*,y) < (") — o(y) = —p(y) < 0.
Hence d(z*,y) = 0 and therefore y = z*. So F(z*) = {z*}, i. e. z* €
SFiz(F) and thus we are able to write that Fiz(F) C SFiz(F). O

Remark 2.5.13. In condition (ii) of Theorem 2.5.12. it is sufficient
to ask that p(z) =0, for all x € Fiz(F).

Example 2.5.14. Let F' : [0,1] — P([0,1]), F(z) = [z/3,2/2], for
each x € [0,1] and ¢ : X — Ry, p(z) = kx, for each = € [0, 1], where
ke R, k> 1. It is not difficult to see that |z — y| < p(x) — p(y), for
each x € [0,1] and for all y € F(x) and there exists ¢ = 2k > 0 such that
o(z) < ¢ |z —y| for each z € [0, 1] and for all y € F(z). From Theorem
2.5.12. we have Fiz(F) = SFix(F) # (.

Theorem 2.5.15. Let (X, d) be a complete metric space and Fy, Fy :
X — P(X) be two multi-valued operators. We suppose that:

(i) there exist two lower semi-continuous functions p1, s : X — R,
such that

d(z,y) < pi(z) —wily), for each x € X and for ally € Fi(x), i € {1,2};
(ii) there exists ¢; € ]0,+00[ such that
vi(z) < ¢ d(z,y), for each x € X and for all y € Fi(x), i € {1,2};
(iii) there exists n > 0 such that

H(Fi(z), Fa(x)) <mn, foralze X.
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Then

H(Fix(Fy), Fix(Fy)) = H(SFix(Fy), SFix(Fy)) <n max { ¢1, ¢ }.

Proof. From Theorem 2.5.12. we have Fix(F;) = SFiz(F;) # 0,
i € {1,2} and applying Theorem 2.5.10. the conclusion follows. [J

Example 2.5.16. Let Fy, Fy : [0,1] — P([0,1]), Fi(z) = [x/3,2/2],
for each x € [0,1] and Fy(x) = [(x+1)/2, (z+2)/3], for each x € [0, 1]. Let
01,02 [0,1] = Ry, p1(z) = x, for each z € [0,1] and po(z) = 1 — 2, for
each x € [0, 1]. By an easy calculation we get that |z —y| < p;(z) —pi(y),
for each z € [0,1] and for all y € Fi(z), i € {1,2} and there exist
¢ = 2 and ¢ = 2 such that p;(z) < ¢ |v — y|, for each x € [0, 1] and
for all y € Fi(z), i € {1,2}. Also, there exists n = 2/3 > 0 so that
H(Fi(x), F3(x)) < n, for all x € [0,1]. Then, from Theorem 2.5.15. we
have H(Fixz(Fy), Fix(Fy)) = H(SFix(Fy), SFix(Fy)) < 4/3.

Bibliographical comments. For the results of this section and more
details see Petrugel-Sintamarian [203]. Also, the works of Aubin-Siegel
[18], Bae-Cho-Yeom [24], Caristi [52], Ciric [62], van Hot [104], Mizoguchi-
Takahashi [147], Penot [172], Zhong-Zhu-Zhao [274] are important for the

topic of single-valued and multi-valued Caristi operators.

2.6 Meir-Keeler type operators and frac-
tals

It is well-known that, initiated by Mandelbrot and then developed by
Barnsley, Hutchinson and Hata the mathematical study of self-similar
sets is in connection with the mathematics of fractals. In few words, a self-
similar set is a set consisting of retorts of itself. More precisely, let f;, 1 €

{1,...,m} be continuous operators of X into itself. A nonempty compact
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set Y in X is, by definition, self-similar if it satisfies the condition Y =
U, fi(Y). Obviously, we may regard the above relation as a fixed point
problem for an appropriate operator. More precisely, if T : (P.,(X), H) —
(Pep(X), H) is defined by T'(Y) = .-, f:(Y), then the self-similar sets in
X are the fixed points of T'. If X = R", it is well known that a self-similar
set is a global attractor with respect to the dynamics generated by 7" in
the phase set P.,(X) and its Hausdorff dimension is not, in general, an
integer. For this reason, Y is a fractal and P,,(.X) is the space of fractals.
Moreover, self-similar sets among the fractals form an important class,
since many of them have computable Hausdorff dimensions. For example,
if f; are a-contractions for ¢ € {1,...,m} then the operator 7T is also an
a-contraction and hence has a unique fixed point.

The purpose of this section is to present similar results for the case

of single-valued and multi-valued Meir-Keeler type operators.

Definition 2.6.1. Let f; : X — X, i € {1,...,m} be a finite family
of continuous operators. Let us define Ty : (P, (X), H) = (Pop(X), H) by
Tp(Y) = U, f;(Y). The operator T} is the so-called Barnsley-Hutchinson

operator or the fractal operator generated by the iterated function system

f = (fla f2> fm)

First result of this section is:

Theorem 2.6.2. Let (X, d) be a complete metric space and f; : X —
X, forie{1,2,...,m} are Meir-Keeler type operators. Then the fractal
operator Ty : (Py(X), H) — (P.p(X), H) is a Meir-Keller type operator
and hence FixTy = {A*} and (T} (A))nen converges to A*, for each
Ae P,(X)

Proof. We shall prove that for each 7 > 0 there is § > 0 such that

the following implication holds
n < H(A,B) <n+ 4§ we have H(T¢(A),T¢(B)) < n.

Let us consider A, B € P.,(X) such that n < H(A,B) <n+9.
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If u € Ty(A) then there exists j € {1,...,m} and x € A such that
u= fj(x).

For x € A we can choose y € B such that d(z,y) < H(A, B) < n+ 0.
We have the following alternative:

1) If d(x,y) = n then n < d(z,y) < n+4 implies d(f;(x), f;(y)) <n.
Hence D(u,Ty(B)) < d(u, f;(y)) <.

2) If d(x,y) < n then from the definition of Meir-Keeler oper-
ator we have d(f;(x), f;(y)) < d(xz,y) < n and again the conclusion
D(u,T¢(B)) < n.

Because T7(A) is compact we have that p(T¢(A),T¢(B)) < n.

Interchanging the roles of Tj(A) and Ty(B) we obtain
p(T(B),Tf(A)) < n and hence H(Ty(A),T¢(B)) < mn, showing the
fact that T% is a Meir-Keeler-type operator. From Meir-Keeler fixed
point result (see Theorem 2.3.37.), we obtain that there exists an unique
A* € Py(X) such that Tf(A*) = A* and (T} (A))nen converges to A%,
for each A € P.,(X). O

Remark 2.6.3. By definition, the set A* is called the attractor of the
system f = (f1, f2, .., fm). Hence, Theorem 2.6.2. is an existence result

of an attractor.

Next we will prove a local version of the previous result:

Theorem 2.6.4. Let (X,d) be a complete e-chainable metric space
and fi : X — X, fori € {1,...,m} be e-locally-Meir-Keeler type opera-
tors. Then the fractal operator Ty is an e-locally-Meir-Keeler type oper-

ator, having at least a fived point.

Proof. Let us consider 0 < n < € and 6 > 0 such that A, B € P.,(X)
and n < H(A, B) < n+4. We shall prove that H(T¢(A),T¢(B)) < n. For
this purpose, let v € T¢(A) arbitrarily. Then there is j € {1,...,m} and
x € A such that v = f;(x). For x € A we can choose y € B such that
d(z,y) < H(A,B) <n+§.
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If d(x,y) > n then from the hypothesis we get d(f;(z), f;(y)) < n and
hence D(u, Ty(B)) < d(f;(x), f;(3)) < 1.

If on the other hand d(z,y) < n < € then d(f;(x), f;(y)) < d(z,y)
implies again that D(u, T¢(B)) < 7.

As before we deduce that H(T(A),T¢(B)) < n thus T} is an e-locally
Meir-Keeler type operator. The existence of the fixed point for T is now

an easy application of Theorem 2.3.38. [J

Remark 2.6.5. Jachymski (see [112]), C. S. Wong (in [263]) and T.
-C. Lim [134] proved that the Meir-Keeler type condition is equivalent
to other conditions of this type:

(a) for any n > 0 there exists a § > 0 such that z,y € X, 0 <

d(x,y) <n+ 6 we have d(f(z), f(y)) <n
(b) for any n > 0 there exists a 6 > 0 such that z,y € X, 0 <

d(z,y) <n+ 6 we have d(f(z), f(y)) <n

(c) 6(n) > 0, for each n > 0, where 6(n) denotes the modulus of
uniform continuity of f.

(d) there exists a lower semi-continuous function ¥ : R, — R such
that 1(0) = 0, () > 0, for every € > 0 and ¥(d(f(x), f(v))) < d(z,y),
for every z,y € X

(e) there exists a function A : R, — Ry with the properties A(0) = 0,
A(e) > 0, for every € > 0 and for each s > 0 there exists u > s with
A(t) < s, for each t € [s,u] such that d(f(z), f(y)) < Ad(z,vy)), for
every x,y € X, x # y.

Obviously, similar theorems for operators f;, i € {1,...m} satisfying

the condition (a)-(e) can be proved.

Let us consider now the multi-valued case. In this respect, we need
some definitions.

Definition 2.6.6. Let X be a metric space and Fy,..., F,, : X —
P.,(X) be a finite family of upper semi-continuous multi-valued opera-

tors. We define the multi-fractal operator generated by F' = (Fi, ..., Fy,)
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as follows: T : Poy(X) — Pop(X), Tp(Y)=U™,F(Y).
Also, by definition, A* € P.,(X) is a multi-self-similar set if A* =
Tr(A*).

Let us consider now some generalized contraction conditions for a
multi-valued operator on a metric space (X, d).

Definition 2.6.7. The multi-valued operator F': X — P(X) is said
to be:

i) a Meir-Keeler type operator if:

for each n > 0 there is 6 > 0 such that n < d(z,y) < n+ § implies
H(F(z), F(y)) <n.

ii) an e-locally Meir-Keeler type operator (where € > 0) if:

for each n €]0, €[ there is § > 0 such that n < d(z,y) < n+ ¢ implies
H(F(x), F(y)) <n.

It is easy to prove that a multi-valued Meir-Keeler operator is con-
tractive and hence u.s.c. on X.

An existence and uniqueness result for a multi-self-similar set is:

Theorem 2.6.8. Let (X, d) be a complete metric space and F; : X —
P.,(X), i € {1,...,m} be a finite family of multi-valued Meir-Keeler
type operators. Then the multi-fractal operator Tr : P.,(X) — P, (X) is
a single-valued Meir-Keeler type operator and FixTp = {A*}.

Proof. Let us suppose that for each n > 0 there exists 6 > 0 such
that n < d(x,y) < n+ 0 implies H(F;(z), F;(y)) <nforie{1,...,m}.

Obviously, F; is contractive and hence upper semi-continuous, for
ie{l,...,m}. As consequence T : P.,(X) — P.,(X).

Let us consider n > 0 and Y3,Y3 € P.,(X) such that n < H(Y1,Y,) <
n+ 6. We will prove that H(Tr(Y1), Tr(Y2)) < n.

For this purpose, let u € Tr(Y7) be arbitrary. Then there exist k €
{1,...,m} and y; € Y such that u € Fj(Y7). For this y; € Y; there is
Y2 € Yy such that d(y;,y2) < H(Y1,Ys) <n+ 4.

If d(y;,y2) > m, then from Meir-Keeler condition we get that
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H(Fy(y1), Fr(y2)) < n. It follows that there is v € Fy(ys) such that
d(u,v) < n and hence D(u, Tr(Y3)) < d(u,v) <.

On the other hand if 0 < d(y;,y2) < 7, using again Meir-Keeler
condition we deduce that:

H(Fx(y1), Fr(y2)) < d(y1,92) <n

and as before D(u, Tr(Y2)) < .

Because Tr(Y7) is a compact set, we have that p(Tr (Y1), Tr(Y2)) <
n. Interchanging the roles of Tg(Y;) and Tg(Ys) we obtain
p(Tr(Y2),Tr(Y1)) < n and the conclusion H(Tr(Y1),Tr(Y2)) < n fol-
lows.

So Tr : P.,(X) — P,(X) is a Meir-Keeler type operator and by
Theorem 2.3.37. has a unique fixed point, i.e. A* € P,,(X) such that
Tp(A*) = A*. O

The following abstract notion is giving by Rus (see [223] for example):

Definition 2.6.9. Let (X, d) be a metric space and f : X — X an
operator. By definition, f is a Picard operator if for each z € X, the
sequence (I, )nen defined by:

i) xg=x

i) zpe1 = f(xy,), foralln € N

is convergent and its limit is the unique fixed point of f.

Corollary 2.6.10. Let (X,d) be a complete metric space and F; :
X — Pp(X), i € {l,...,m} be a finite family of multi-valued Meir-
Keeler type operators. Then the multi-fractal operator Ty is a Picard

operator.

For multi-valued operators satisfying to some locally contractive type
conditions, we have the following results:

Theorem 2.6.11. Let (X,d) be a complete e-chainable metric space
(where € > 0) and F; : X — P.,(X), i € {1,...,m} be a finite family of

multi-valued e-locally Meir-Keeler type operators.
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Then the multi-fractal operator Tr : P.,(X) — P, (X) is an single-

valued e-locally Meir-Keeler type operator, having a fixed point.

Proof. The proof runs exactly as in Theorem 2.6.8., but this time
via Xu’s Theorem 2.3.38. [

Using an e-locally Boyd-Wong type condition (see Theorem 2.3.39.)
one can also prove:

Theorem 2.6.12. Let (X,d) be a complete e-chainable metric and
let F; : X — P(X), i € {1,...,m} be multi-valued operators such that
H(Fi(x), Fi(y)) < k(d(z,y))d(x,y), foralx,y € X, with 0 < d(z,y) <
e, where k : (0,00) — (0,1) is a real function with the property:

(P) For each 0 <t < € there exist e(t) > 0 and s(t) < 1
such that k(r) < s(t) provided t <r <t+ e(t)

Then, the multi-fractal operator Tr : P.,(X) — P.,(X) satisfy the

condition:

H(Tp(Y1),Tr(Y2)) < k(H(Y1,Y2))H(Y1, Y2),

for allY1,Ys € P, (X) with 0 < H(Y1,Ys) < € and has a fizved point.
Proof. Let Y1, Y, € P, (X) such that 0 < H(Y},Ys) < e. Then
H(Tp(V1), Tr(V2)) < max{H(Fu(Yi), Fu(Ya))| k € {1,....m}} <
< K(H(Y:, Y2) H(Y:, Ya).
The conclusion follows now from Theorem 2.3.39. [

Bibliographical comments. The theory of self-similar sets in con-
nection with Meir-Keeler type operators can be found in Petrusel [183],
[197] and Petrugel-Rus [204]. For the topics of iterated function systems,
self-similarity and fractals we refer the works of Barnsley [28], Hutchin-
son [106], Jachymski [114], M4té [140], Rus [227], Yamaguti-Hata-Kigami
[271]. Regarding the Meir-Keeler type operators the following papers
should be mentioned: Meir-Keeler [144], Boyd-Wong [39], Lim [134], Kirk-
Sims [124], Jachymski [112], [113].
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2.7 Coincidence theorems

S. Sessa and G. Mehta (see [242]) established some general coincidence
theorems for upper semi-continuous multi-functions using Himmelberg’s
fixed point principle.

The first aim of this section is to prove some coincidence theorems
for lower semi-continuous multi-functions on locally convex Hausdorff
topological vector spaces using, instead of Himmelberg’s result, the new
fixed point principle of X. Wu (see Theorem 2.3.30.). We also show that
a lower semi-continuous version of the well-known Browder’s coincidence

theorem is an easy consequence of our main result.

Theorem 2.7.1. Let X be a nonempty convex and paracompact subset
of a locally convexr Hausdorff topological vector space E, D a nonempty
set of a topological vector space Y. If S : D — P(X) and T : X — P(D)
are such that:

(a) S is l.s.c.

(b) S(y) € Paeo(X)

(c) Q(x) = convT(x) is a subset of D

(d) S(D) C C, where C' is a compact metrizable subset of X

(e) for each x € X there exists y € D such that x € int Q™' (y).

Then there exist T € X andy € D such that T € S(y) and g € Q(T).

Proof. We denote by U(y) = int Q '(y), for each y € D. Then the
family (U(y))yep is an open covering of the paracompact space X (see
(e)). Let (U(y;))ier be an open locally finite covering of X and {f,,|i € I}
a partition of unity by continuous nonnegative real functions defined on

X subordinate to the covering (U(y;))ic;. We can define a continuous

function f: X — D by f(z) = Z fy:(@)y; for each x € X. If f,, (z) #0
el

then = € suppf,, C U(y;)) C Q (), that is y; € Q(x). Since Q(x)

is convex for each x € X by (c) and f(z) is a convex combination of
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elements from Q(x), it follows that f(x) € Q(z), for each x € X. We
consider now the multi-valued operator W : X — P(X) by W(x) =
S(f(x)), for each z € X. Then W is Ls.c. since f is continuous and
S is l.s.c. Moreover by (b) W has nonempty, closed, convex values and
W(X) C S(D) C C. Since C is compact and metrizable, then using
Theorem 2.3.30. we get that there exists T € C such that 7 € W(Z).
It follow that 7 € S(f(Z)) and hence § = f(Z) € Q(T), proving the
conclusion of this theorem. [J

If £ =Y and T'(x) is convex for each x € X then we get the following
coincidence result, similar to Sessa’s coincidence theorem for u.s.c. multi-
functions (see [241]).

Corollary 2.7.2. Let X be a nonempty convex and paracompact sub-
set of a locally convexr Hausdorff topological vector space E, D a nonempty
set of E and S: D — P(X), T : X — P(D) two multi-valued operators
satisfying the following assertions:

a) S is l.s.c.

b) S(y) € Pun(X)

c) T(x) € P.,(D)

d) S(D) C C, where C' is a nonempty compact, metrizable subset of
the space X

e) for each x € X there exists y € D such that x € int T~ (y).

Then there existT € X andy € D such thatT € S(y) andy € T(T).

Remark 2.7.3. Condition (e) from Corollary 2.7.2. appears in Taraf-
dar [254] and it generalize the well-known Browder’s condition:

(f) for each y € D the set T~!(y) is open in X.

Using condition (f) instead of (e) we deduce from Theorem 2.7.1. the

following result:

Theorem 2.7.4. Let X be a nonempty conver compact and metriz-

able subset of a locally convex Hausdorff topological vector space E, D
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a nonempty set of a topological vector space Y, and S : D — P(X),
T : X — P(D) two multi-valued operators satisfying:

a) S is l.s.c.

b) S(y) € Puew(X), for eachy € D

c) T'(z) € P.(D), for each x € X

d) T~ (y) is open in X, for each y € D.

Then there exist T € X andy € D such thatT € S(y) andy € T(T).

As consequence of the previous result we get:

Theorem 2.7.5. Let X be a nonempty conver compact and metriz-
able subset of a locally convexr Hausdorff topological vector space E, D a
nonempty subset of a topological vector space Y and S,T : D — P(X)
be multi-functions such that:

a) S is l.s.c.

b) S(y) € Puco(X) for each y € D

c) T~(z) is a nonempty convex subset of D for each x € X

d) T(y) is open in X for eachy € D.

Then there exists § € D such that S(y) N T(g) # 0.

Proof. Let us define the multifunction 7' : X — P(D) by T(z) =
T-Y(z), for each z € D. Then S and T satisfy all the hypothesis of
Theorem 2.7.4. and hence there exist T € X and y € D such that * €
S() and 7 € T(Z). From the definition of T' we obtain 7 € T~(%) and
soT e S(y)NT(y). O

Remark 2.7.6. Theorem 2.7.5. is a L.s.c. version of Browder’s coin-

cidence theorem (see [44]).

Bibliographical comments. The results given here extent to the
l.s.c. multi-functions case some results from Sessa-Mehta (see [242]).
Mainly, this section follow the paper Muntean-Petrusel [150]. For other
results and interesting applications see: Ansari-Idzik-Yao [10], Buica [45],
[46], Dugundji-Granas [84], Petrusel [190], [191], O’Regan [161], Rus
220], [223).
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2.8 Fixed points and integral inclusions

First purpose of this section is to present some fixed point theorems for
the sum of two multi-valued operators. Secondly, several applications to
integral inclusions are given.
Let us start with some auxiliary results that will be used in the follow-
ing proofs. (see Rybinski [235], Deimling [80], Petrusel [176] and [222])
Theorem 2.8.1. Let X be a metric space and'Y be a closed subset of
a Banach space Z. Assume that the multi-valued operator F': X XY —
P, (Y satisfies the following conditions:
i) H(F(x,31), F(x,y2)) < Lllyr—w2l|, for each (z,11), (x,32) € X xV;
ii) for every y € Y, F(-,y) is lower semi-continuous ( briefly Ls.c.)
on the space X .
Then there exists a continuous mapping f : X XY — 'Y such that :

f(z,y) € F(z, f(x,y)), foreach (xz,y) € X xY.

Theorem 2.8.2. Let X be a Banach space and Fy, Fy : X — P.,(X)
be two multi-valued operators, such that Fy is an L-contraction and Fy is

compact. Then Fy + Fy is («, L)-contraction.

Theorem 2.8.3. Let X be a Banach space andY € Py o(X). If F
Y = P,o(Y) is an u.s.c. and (o, L)-contraction multi-valued operator
then FixF # ().

A first multi-valued version of the Krasnoselskii’s fixed point principle
is:

Theorem 2.8.4. Let X be a Banach space, Y € Puyo(X) and A :
Y = Baw(X), B:Y — P, .(X) two multi-valued operators. If the
following conditions are satisfied:

(i) A(y) + Blys) C Y, for cach yu,ys € Y
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(i) A is L-contraction
(#ii) B is l.s.c. and B(Y') is relatively compact
Then Fiz(A+ B) # 0.

Proof. Let C' : Y — P(Y) be a multi-valued operator defined as
follows:

a) For each x € Y consider the multi-valued operator 7, : ¥ —

P.,.Y), T.(y) = A(y) + B(x). Since T, is multi-valued L-contraction
(indeed, on have:
H(To(n), Tole)) = H(A(y)+ B(w), Alya)+ B(x)) < H(A(y), () <
L||ly1 — y2||, for each y1, 3o € Y), from Covitz-Nadler fixed point theorem
it follows that for every x € Y the fixed point set for the multifunction
T,, FizT, ={y € Y| y € A(y) + B(z)} is nonempty and closed.

b) From Theorem 2.8.1. it follows that there exists a continuous map-
ping f: Y xY — Y such that f(z,y) € A(f(x,y)) + B(z). Let us ob-
serve that the multi-valued operator F': Y X Y — P, (Y) defined by
F(z,y) = A(y) + B(x), for each (x,y) € Y x Y satisfies the hypothesis
of Theorem 2.8.1.

Let us define C(z) = FizT,, C : Y — Py(Y) and consider the
single-valued operator ¢ : Y — Y defined by c¢(z) = f(z,x), for each
x €Y. Then c is a continuous mapping having the property that c(z) =
fz,z) € A(f(z,z)) + B(x) = A(c(z)) + B(x), for each x € Y.

Now, we will prove that ¢(Y") is relatively compact. For this purpose
it is sufficient to show that C'(Y') is relatively compact. Let us observe
that C'(Y) is totally bounded:

Indeed B(Y') being relatively compact it is also totally bounded. So,
there exists Z = {z1,...,z,} C Y such that B(Y) C {z1,...,2,} +
B(0,(1 —L)e) C U B(z;) + B(0,(1 — L)e) (where z; € B(z;), for each

i=1
i =1,2,...,n). It follows that, for each z € Y, B(z) C UB(:L‘Z) +
i=1

B(0,(1 — L)e) and hence there exists an element z;, € Z such that



102 CHAPTER 2. OPERATORIAL INCLUSIONS
p(B(z), B(zy)) < (1 — L)e. Then:

p(C(z),C(xy)) = p(Fix Ty, Fiz T,,) <

sup p(1:(y), Tx,. (y)) =

—1-L yey
- Lilelypp(A(y) +B(z), Aly) + Blax)) < 1— Liggp(B(x),B(xk)) <
1
< ﬁ(l —Le=ce¢

It follows that for each u € C(z) there is vy € C(xy) such that
|lu — vg]| < €. Hence, for each x € Y, C(x) C @ + B(0,¢), where
Q=Av1,.. ., 0p,..., 0}, v, €Clxy), i =1,2,... n.

Since in a Banach space a totally bounded set is relatively compact
the conclusion follows.

Finally, let us observe that the mapping ¢ : Y — Y satisfies the
assumptions of Schauder’s fixed point theorem. Let z* € Y be a fixed
point for c. On have that z* = ¢(z*) € A(c(z*))+B(x*) = A(x*)+ B(z*).
O

Using the abstract measures of noncompactness technique another
fixed point result for the sum of two multi-valued operators is the follow-
ing:

Theorem 2.8.5. Let X be a Banach space, Y € Py 0o(X) and A, B :
Y — Py eo(X) two multi-valued operators. If the following conditions are
satisfied:

(i) A(ty) + B(y) C Y, for eachy €Y

(ii) A is L-contraction

(iii) B is u.s.c. and compact

Then Fix(A+ B) # 0.

Proof. Since A is L-contraction it follows that A is u.s.c. The multi-
valued operator T'= A+ B (i.e. T(x) = A(x) + B(z), for each x € Y) is
(o, L)-contraction from Y into the space P, (Y). On the same time, T

is u.s.c. The conclusion follows by Theorem 2.8.3. [
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Following a idea from T.A. Burton [48], let us observe that the con-
dition i) in Theorem 2.8.4. can be relaxed as follows:

Theorem 2.8.6. Let X be a Banach space, Y € Pyo(X) and A :
X = Poaw(X), B:Y — P, .(X) two multi-valued operators. Suppose
that:

i)Ifye A(ly)+ B(z), z €Y theny €Y

it) A is L-contraction

iii) B is l.s.c. and B(Y') is relatively compact.

Then Fiz(A+ B) # 0.

Proof. Let consider now the multi-valued operator C' : Y — P(Y)
as follows:

a) for each € Y consider the multi-valued mapping 7, : X —
P., .(X) defined by T,(y) = A(y) + B(z). As in the proof of Theorem
4.1 we have that T, is L-contraction and hence for each z € Y the fixed
points set FizT, = {y € X| y € A(y) + B(x)} is nonempty and closed.
Moreover from i) we have that FizT, C Y.

b) Using Theorem 2.8.1. one obtain a continuous function f : Y x X —
X such that f(z,y) € A(f(z,y)) + B(z). Let us define C(z) = FizT,,
for each z € Y. From a) we have that C': Y — P, (Y'). Let consider now
the single-valued operator ¢ : Y — Y defined by c(z) = f(z,z), for all
x €Y. Of course ¢(z) = f(z,z) € A(f(z,x)) + B(z) = A(c(z)) + B(x),
reY.

The rest of the proof is now identically with that of Theorem 2.8.4.
O

Remark 2.8.7. Suppose that the conditions ii) and iii) from Theorem
2.8.6. hold. If there exists > 0 such that for Y = {x € X| ||z]| < r}
we have B(Y) C Y and ||y|| < D(y, A(y)), y € Y then the conclusion of
Theorem 2.8.6. holds.

Indeed, let y € A(y) + B(z), x € Y. Then there exists u € A(y) such
that y —u € B(z), z € Y. Thus [ly| < D(y, A(y)) < lly—u| < [[B(z)] <
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r. Hence y € Y. [

As applications, some existence results for integral inclusions are now
presented.

Using Theorem 2.8.5. we have the following existence result for a
Fredholm-Volterra integral inclusion:

Theorem 2.8.8. Let us consider the following inclusion:

t) € /\1/ Ki(s,y(s))ds + )xg/ Ks(t,s,y(s))ds, t € [a,b]

(where A\, A2 € R).

We assume that:

i) K1 [a,b] x R" = Py (R™) is a Ls.c., measurable and integrably
bounded multi-valued operator.

ii) Ky : [a,b] x [a,b] x R* = P, .,(R") is an u.s.c., measurable and
integrably bounded (by an integrable function my, ) multi-valued operator.

iii) there exists L > 0 such that

H(K(t,uy), K1(t,u2)) < L||uy—us||, for each (t,uy), (t,us) € [a,b] xR™.

iv) Ay satisfy the following relation:

R
N < ———— where R> —————
Aol = 2Mp, (b — a) ~ L
2T
(with Mk, = m[a)bc] mr,(t), 7 > |M|L and § is an upper bound for
te|a,

the set of continuous selections for the multi-valued operator t

/ Ks(t,s,y(s))ds, with y € Cla,b]).

Then, there exists yo € Cla,b] such that the integral inclusion has at
least a solution y* € B(yo, R) C Cla,b].

Proof. Let A, B : C[a,b] — P(Cla,b]) be two multi-valued operators
given by

Aly) = {u € Cla,bl| ult) € M / ' Ky(s.y(s))ds ne. on [a, b]}
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Bly) = {v € Cla,b]| v(t) € X /ab Ks(s,y(s))ds a.e. on [a,b]}

Obviously y* € Fizx(A + B) if and only if y* is a solution for the
considered integral inclusion. We need to show that the multi-valued
operators A and B satisfies the assumptions of Theorem 2.8.5.

Clearly, from the Ascoli-Arzela theorem we have that A : Cla,b] —
Ppeo(Cla, b]).

We shall prove that A is a multi-valued contraction. To see this,
let y,z € Cla,b] be and u; € A(y). Then u; € Cla,b] and uy(t) €

t
/\1/ Ki(s,y(s))ds a.e. on [a,b]. It follows that there is a mapping
k, € S}(l(.7y(.)) such that wi(t) = A /t k,(s)ds a.e. on [a,b]. Since
H(Kq(t,y(t)), Kq(t, 2(t)) < Ll||ly(t) — z(ta)H, one obtain that there ex-
ists w € Ky(t,2(t)) such that ||k)(t) — w|] < Lly(t) — 2(¢)||. Thus
the multi-valued operator G defined by G(t) = K!(t) N K(t) (where
K(t) = Ku(t, 2(t)) and K(t) = {w] ||k, (t) — w|]| < L]ly(t) — (1)} has
nonempty values and is measurable. Let k! be a measurable selection for
G (which exists by Kuratowski and Ryll Nardzewski’selection theorem).
Then kl(t) € Ki(t,2(t)) and ||k)(t) — k1(t)|| < Llly(t) — 2(t)] a.e. on
la, b].

t
Define us(t) = /\1/ k!(s)ds. It follows that uy € A(2) and
t t
Jua6) = wale)] < Il [ k3() = K2 (s) s < WL [ (o) = 2()]ds =

t t
=ML [ ls) = )l O < Nl — 2la [ s <

1 —a
< alLzer =y = 2|,

(Here || - || denote the Bielecki-type norm on C|a, b].) Finally, we have
[ A1 |L

that [|u; — us|lp < ly — z||p. From this and the analogous in-
T

equality obtained by interchanging the roles of y and z we get that
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Hp(A(y), A(2)) < |)7\_—1|LHy—ZHB, for each y, z € C[z, b]. Taking 7 > |\;|L
it follows that A is multi-valued contraction.
By Covitz-Nadler fixed point theorem one obtain yy € Fix A.
Considers Y = B(yo, R). We can choose R > 0 such that A(Y) C

_ A
B (yo, g) (namely, one take R > diam(A(yo))

L where 7 > |\{|L).
1

1

2T
The multi-valued operator B is u.s.c. and compact. Let choose \y € R

such that B(Y) C B (O, g) Let y € Y and v € B(y) be arbitrarily
b
chosen. Then v(t) € )\2/ Ks(t,s,y(s))ds a.e. on [a,b]. It follows that

b
v(t) = )\2/ fy(t, s)ds, where f,(t,s) € Ks(t,s,y(s)) a.e. on [a,b] X [a,b].
¢ b
Clearly [o(0)] < el [ 15(t,9)lds < el(b = )My, < 5. So v €

. R ‘
B (0,5 .

Then, the multi-valued operator T" = A + B has the property T :
Y = Ppow(Y), le. A(y) + B(y) CY foreach y € Y.

The conclusion follows by Theorem 2.8.5. [

An auxiliary result is:

Lema 2.8.9. (Rybinski [233]) Let S be a complete measurable space,
X a complete separable metric space and Y a separable Banach space.
Suppose that F' : S x X — Py (Y) is measurable and F(t,-) is ls.c.,
for each t € S.

Then, there exists f : S x X — Y selection for F such that [ is

measurable and f(t,-) is continuous, for eacht € S.

Some existence results for Fredholm and Volterra type integral inclu-

sions via fixed point technique are the following theorems.

Theorem 2.8.10. Consider the following Fredholm-type integral in-
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clusion:
b
S / K(t,s,z(s))ds +g(t), t€la,b],

where K : [a,b] X [a,b] x R" = P, .,(R™) and g : [a,b] — R™.
If the following conditions are satisfied:

(i) there exists an integrable function M : [a,b] — R, such that for
each t € [a,b] and each u € R™ we have K(t,s,u) C M(s)B(0;1), a. e
s € [a,b] (i. e. for each t € [a,b] and each u € R" if v(s) € K(t,s,u),
s € [a,b] then we have ||v(s)|| < M(s), a. e. s € [a,b])

(i1) for each x € C([a,b],R"™) we have that the multivalued operator
K.(t,s) = K(t,s,z(s)) : [a,b] X [a,b] = Pucp(R™) is measurable

(i) for each (s,u) € |a,b] x R™ the multivalued operator K(-,s,u) :
la,b] = Py o(R™) is Ls.c.

(w) g € C([a, b], R")

(v) H(K(t,s,u), K(t,s,v)) < I(t,s)||lu— v, bfor each t,s € la,b

and u,v € R", where | € Cla,b] X |a,b] and max/ [(t,s)ds < 1,

tela,b] J,

then the integral inclusion has at least a solution in Cla,b] and its

solution set is stable with respect to small perturbations of the free term.

Proof. Consider the multi-valued operator T : Cla,b] — P(Cla,b]),
given by the formula:

T(x):{UEC[a | v /Kt,s,x( ))ds + g(t), t € [a, b]}

We prove successively:

a) T(x) # 0, for each z € Cla, b].

Indeed, from Lemma 2.8.9 we have that for each z € Cla, b there
is k : [a,b] x [a,b] — R™ such that k(¢,s) is a selection of K,(t,s) :=
K(t,s,z(s)), t,s € [a,b] with k measurable and k(-,s) continuous, for
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each s € [a,b]. From (i) we get that k(t,-) is integrable and so

b
v(t) :/ k(t,s)ds +g(t) € / K(t,s,xz(s))ds +g(t), te€la,b.

Hence, (see also (iv)) v € T'(x).
b) T'(z) € P,4(Cla,b]), for each x € C|[a,b].
The fact that T'(z) is closed for each = € Cla, b] follows from (i), (ii)
and Teorema 8.6.3. from Aubin-Frankowska [16].
Clad] .

(indeed, let (xn)n>o € T(x) such that x, —> Z. Then Z €
Cla,b] and z,(t / K(t,s,xz(s))ds + g(t), for each t € [a,b]. Be-

cause / K(t,s,z(s))ds is compact, for every t then z,(t) — Z(t) €
b a
K(t,s,x(s))ds + g(t), t € [a,b]. So & € T'(z)).

’ c) H(T(x1),T(z2)) < L||zy — 23], for each x1,29 € Cla,b] (where

L<1).
b

Let x1,29 € Cla,b] and vy € T'(x1). Then vy(t) € / K(t,s,z(s))ds+
g(t), t € [a,b]. It follows that there exists ki(t, g) € K, (ts) =

b
K(t,s,z1(s)),such that vy (t) = [ ki(t,s)ds+g(t),t € |a,b]. From (iii) it
follows that H (K (t,s,x1(s )),K(t s,x9(8))) < IU(t, 8)||x1(s) — z2(s)|| and
hence there is w € K (t, s, z9(s)) such that ||k1(¢,s) —w|| < U(t, s)||x1(s) —

xo(s)]], (¢, 8) € [a,b] x [a,b]. Consider U : [a,b] x [a,b] — P(R™), given by
U(t,s) = {w] [[k1(t,8) — w]| <1t s)[|w1(s) = w2(s)]]}-

Define the multi-valued operator V (t,s) = U(t,s) N K,,(t,s). From
the Proposition 3.4 a) from Deimling ([80], pp. 25) we have that V' is
measurable. From Proposition 15.6. from Gorniewicz [92], we get that
V(-,s) is l.s.c. Hence, from Lemma 2.8.9, there exists ky a measurable
selection for V' such that ks(-, s) is continuous. So, ka(t, s) € K,,(t,s) =
K(t,s,z2(s)) and [|ki(t,s) — ko(t,s)|| < I(t,s)||x1(s) — z2(s)]|, for each
t,s € [a,bl.
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b
Let us define vy(t) = / ko(t, s)ds + g(t) € Cla,b].

One have

b b
Joa(t) —us(8)] < / Ik (t, )= ka(t, 5)|ds < / I(t, 9)l|1(5) —a(s) | ds <

b b
< ||x1—x2]|/ I(t,s)ds < (sup / l(t,s)ds) ||x1—z2||, for each t € [a, b].

tela,b]

b
Consider L = max/ [(t,s)ds < 1. Hence |lv; — vq]| < Lljzy — x|

te(a,b]
By the analogous relation obtained by interchanging the roles of x; and

xo it follows that H(T'(z1),T(x2)) < L||z1 — x5||. So T satisfy all the
hypothesis of Covitz-Nadler fixed point principle, having a fixed point,
b
let say * € T'(z*). Then 2*(¢) € / K(t,s,z*(s))ds, t € [a,b)].
So, the integral inclusion has at least a solution.

If S, is the solution set for the considered integral inclusion and S,

is the solution set for

z(t) € /b K(t,s,z(s))ds+ h(t), t€[a,b]

we estimate the distance H (S, Sp).
Since S, = FliaT, (where T, is given by (3.2)) and S), = FizT), using

Lemma 1.1 from Lim [132] one obtain:

H(S,, Sy) = H(FixT,, FizT),) <

sup H(T,(z),Th(x)).
z€Cla,b]

Let z € Cla,b] and v € Ty(x). Then v € Cla,b] and v(t)
b b

€
K(t,s,z(s))ds + g(t), t € [a,b]. Of course, v(t) = / k(t,s)ds + g(t),
Wcigh k(t,s) € K(t,s,z(s)), (t,s) € [a,b] x [a,b]. Consider w(t) =

/ k(t,s)ds + h(t) € /bK(t, s,x(s))ds + h(t), t € [a,b].

a
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Then [lo(t) —w(®)|| = llg(t) = A(#)]| and hence [jv —w[| = g — A].
From the analogous relation obtained for each w € Ty(z) it follows that

sup H(Ty(x), Tu(@)| = [lg — All-
z€Cla,b]

1
As consequence H(S,, Sy) < ﬁ“ g — hl|, showing the stability of

the solution set with respect to small perturbation of the free term. [J

Remark 2.8.11. If K is a single-valued operator then Theorem 2.8.9.

is Theorem 1 from Constantin [65].

Theorem 2.8.12. Consider the following Volterra-type integral in-

clusion:

€ /tK(t,s,x(s))ds +g(t), te€la,bl,

where K : [a,b] X [a,b] X R" = Py ,(R™) and g : [a,b] — R™.
If the following conditions are satisfied:

(i) there exists an integrable function M : [a,b] — R, such that for
each t € [a,b] and each u € R™ we have K(t,s,u) C M(s)B(0;1), a. e
s € [a,b]

(i1) for each x € C([a,b],R"™) we have that the multivalued operator
K, (t,s) = K(t,s,2(s)) : [a,b] X [a,b] = Puc(R™) is measurable

(#1) for each (s,u) € [a,b] x R™ the multivalued operator K(-,s,u) :
[a,b] = Py (R™) is Ls.c.

(i) g € C([a, b], R")

(v) H(K(t,s,u), K(t,s,v)) < k(s)||u—vl|, for each t,s € [a,b] and
u,v € R™ (where k € L'[a,b]),

then the integral inclusion has at least a solution in Cla,b] and the

solution set is stable with respect to small perturbations of the free term.

Proof. Consider the multi-valued operator 7" : C|a,b] — P(C|a,b])
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given by:

T(x)= {U € Cla,b]| v(t) € / K(t,s,z(s))ds + g(t), t € [a,b]}.

We prove successively:

a) T(x) # 0, for each = € C|a,b].

Indeed, let = € C|a, b] be arbitrarily. Since the multi-valued operator
K,.(t,s) = K(t,s,z(s)) is (jointly) measurable for (¢,s) € [a,b] X [a, D]
and K, (-, s) is Ls.c., for each s € [a,b], we get from Lemma 2.8.9 that
there exists a measurable selection of K, say k(t,s) € K,(t,s), for each
(t,s) € [a,b] x [a,b] such that k(-,s) is continuous for each s € [a,b].
From (i) each measurable selection of K,(t,s) is integrable with respect
to s. Let

v(t) = /tk(t, s)ds + g(t) € /tK(t, s,x(s))ds + g(t), tela,b].

So, v € T(x).

b) T'(x) € P,(Cla,b]). The proof is similar with the proof of b) from
Theorem 2.8.10.

c) H(T(x1),T(z2)) < L||z1 — 22]|, for each x1,25 € Cla,b] (where
L<1).

¢
Let z1, 25 € Cla, bl and v; € T'(z1). Then vy (t) € / K(t,s,z1(s))ds+
b
g(t), t € [a,b]. It follows that v(t) = / ki(t,s)ds + g(t), t € [a,b],
where ki(t,s) € K, (t,s), (t,s) € |a,b] B [a,b]. From (iii) it follows
H(K(t,s,z1(5)), K(t,s,22(s)) < k(s)||z1(s) — z2(s)|| and hence there
exists w € K(t,s,x2(s)) such that ||ki(t,s) — w|| < k(s)||x1(s) — z2(s)]],
t,s € [a,bl.
Consider U : [a,b] x [a,b] — P(R"), given by the formula U(t,s) =
{w] ||k1(t, s)—w]|| < k(s)||x1(s)—x2(s)||}. Since the multi-valued operator
V(t,s) = Ul(t,s) N K,,(t,s) is measurable and V(-,s) is Ls.c., for each

s € la,b], there exists ko(t,s) a measurable selection for V' such that
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ka(-, s) is continuous for each s € [a,b]. So, kao(t,s) € K(t,s,x5(s)) and
k1 (t, s) — ka(t, 8)|| < k(s)||x1(s) — z2(s)]|| for each t, s € [a, b].
t

Let us define vy(t) = / ko(t, s)ds + g(t), t € [a,b]. One have:

a

M@—MMS/HMm%thWS/MMM®—MﬂW=

t t
— / k(s)e’fp(s)em(s)||x1(s) — xo(s)||ds < ||z — xgHB/ k(s)eTp(S)ds =

< |21 — 5172||BeTp(t)
- T

)

t
1 [t _

= [jz1 — l’zHB—/ (eTp(S))’dg = Mem(S)
T a T

¢
for each t, s € [a, b] (here p(t) = / k(s)ds, t € [a,b] and 7 > 1).

Then [|v; —vs|| g < —||z1 — 22| 5. By the analogous inequality obtained
T

by interchanging the roles of x; and x5 it follows that
1
H(T (1), T(22)) < —llz1 — 22l

(here || - ||p is the Bielecki-type norm on Cfa,b] given by the formula
Jolle = mass ()=,

So T satisfy the hypothesis of Covitz-Nadler fixed point principle and
hence there is x* € T'(x*). Then z* is a solution for the integral inclusion.
As before, one can prove the stability of the solution set with respect to

small perturbation of the free term. [

Let us consider now the following integral inclusion with delay:

x(t) € /t_ F(s,z(s))ds, t€[0,T]
x(t) = p(t), te[—7,0]

(2.8.1.)

where
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F:[-1,T]| xRy — P(R,),
0
(2.8.2.) ¢:[-7,0] = Ry is continuous, such that ¢(0) = / F(s,p(s))ds

—T

and T, 7 > 0 are given.

A solution for this integral inclusion is a continuous function z :
[—7,T] — R such that x satisfies the relations (2.8.1.) for each t.

An existence result for (2.8.1.) is the following:
Theorem 2.8.13. Consider the problem (2.8.1.), with F,p,T,T sat-

isfying (2.8.2.).
If F:[-71,T] x Ry — Pya(Ry) is a multi-valued operator such that:
i) F' is measurable and integrably bounded
i1) there exists k € L'[—7,T] such that

H(F(S, u)7 F(S, U)) < ]{Z(S)|U - U’,
for each s € [—7,T] and every u,v € R;.

Then the problem (2.8.1.) has at least a solution.

Proof. Let us define the multi-valued operator A : C[0,7] —
P(C10,T]) by the formula

Az = {v e C[0,T) v(t) € /:T F(s,%(s))ds, t € [O,T]}

where

i(s) = { o(s), se€[-T1,0]

z(s), s€0,7T].
Let Y = {v € C[0,T]] v(t) > 0 for each t € [0,7] and v(0) = (0)}.
We shall prove:
a) Ax € Y, for each x € Y. Indeed, let x € Y be arbitrarily and v €

Az. Then v € C[0,T] and v(t) = /t fz(s)ds, where fz(s) € F(s,Z(s)),
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s € [-7,T]. Since F(s,Z(s)) € P(R4), for each s € [—7,T] we have that
v(t) > 0 for each t € [0,T].
On the other side:

o) = [ OTff(smse / OTF(S,:Z“(s))ds: / iF(s,w(S))dSZSO(U)-

b) A:Y — P,(Y) is a multi-valued contraction. Indeed, by standard
argument, one can prove that A(z) € P, (Y), for every z € Y.

Let us demonstrate that there exist L €]0, 1[ such that || Az — Ay||p <
L||z — y||p for each x,y € Y (where || - ||5 is the classical Bielecki-type
norm on C10,T7).

¢
Let v; € Ax be arbitrarily. Then vy(t) € / F(s,%(s))ds, t € [0,T]
t—r1
¢
and hence vy (t) = fz(s)ds, with fz(s) € F(s,2(s)), s € [-7,T].

t—1

Using the condition ii) we obtain that there exist w € F(s,g(s)) such
that || fz(s) — w|| < k(s)||Z(s) — g(s)||. As before, we can construct an
integrable selection f; for F'(s,(s)), such that

1/2(s) = fa(s)ll < R(s)l[2(s) = G(s)ll, for s € [=7,T].

¢
Let us define vy(t) = / f3(s)ds, t € [0,T]. Then
t—1

lon(t) — wa(t)]] < / 1a(s) — £o(s)llds <

< [ R = a6)ds = [ 13) = il h(s)as <

t 1 t
<1l - il / K(s)e™Ods = || — |5~ / (PO ds =
t—T1 T t—1

1 1
= || — g||gle™® — et < 2|7 — G| ge™®
T T

S

where p(s) = / k(u)du, s € [—T,T].

—T
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1,. . 1
Hence [jv1 — vollp < |12 = glls = =[lz — y|[5.
From the analogous inequality obtained by interchanging the roles of
x and y, we get the conclusion.
From a), b) and using Covitz-Nadler’s fixed point theorem we have
that there exists z* € Y such that 2* € Ax*. Then

x*(t)E/tt F(s,2%(s))ds, te]0,7]. O

Bibliographical comments. This section uses results from Petrusel
[175] and [176]. For the theory of integral inclusions via fixed point prin-
ciples we refer to: Appell- de Pascale-Nguyén-Zabreiko [13], Burton [49],
Constantin [65], Corduneanu [67], Couchouron-Precup [70], Czerwik [74],
Himmelberg-van Vleck [101], Kannai [121], Petrusel [192], [193], Precup
[208], O’Regan [161], O'Regan-Precup [163], O’'Regan-Precup [166].

2.9 Fixed points and differential inclu-

sions.

Let X be a nonempty set, F' : X — P(X) be a multi-valued operator
and f : X — X be a selection for F. By FixF' (respectively Fixf) we
denote the fixed points set of the multi-valued (respectively single-valued)
operator. Obviously Fixf C FixF and hence the following implication
holds:

(29.1.) Fixf #0 = FixF # 0.

We are now interested about the reverse implication:

(29.2.) FixF #0 = Fixf #0,

where f is an arbitrary selection with a certain property.
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The first purpose of this section is to give some abstract results for the
problem (2.9.2.) in the setting of the multi-valued fixed points structures
(see Rus [222]).

Then, we will apply some of these abstract results to the problem
of the topological dimension of the fixed point set of some contractive
type multi-valued operators. Further applications to some multi-valued
Cauchy and Darboux problems are also discussed.

Our results generalize and extend some theorems of this type obtained
by J. Saint Raymond in [237] and Z. Dzedzej and B. D. Gelman in [85].

For the beginning we need some known notions and results.

Definition 2.9.1. Let ¢ : R, — R, be a mapping. Then ¢ is said
to be:

i) a comparison function if ¢ is strictly increasing and nlgg(} ©"(t) =0,

for each t €]0, oof;

ii) a strong comparison function if ¢ is strictly increasing and
o
> @"(t) < oo, for each t €]0, ocol;
n=1

iii) a strict comparison function if ¢ is a strong comparison function

and lim (¢t — p(t)) = +o0.
t—o00

Remark 2.9.2.1) ¢ : R, — Ry, ¢(t) = at (where a €]0,1]) is a
strict comparison function.

i) o : Ry — Ry, ¢(t) = In(1 +¢) is a strong comparison function.

Definition 2.9.3. Let (X, d) be a metric space. A multi-valued op-
erator F': X — Py(X) is called:

i) p-contraction if there exists a comparison function ¢ such that
H(F(x),F(y)) < ¢(d(z,y)), for each z,y € X.

ii) (o, p)-contraction if there exists a comparison function ¢ such that
a(F(A)) < p(a(A)), for each A € P(X)NI(F) (where o denote an ab-
stract measure of noncompactness for example « is o or oy, Kuratowski

and respectively Hausdorff measure of noncompactness).
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The notion of fixed point structure for multi-valued mappings has
been introduced by Rus in [222]. For the convenience of the reader we
recall some basic notions and results. For this purpose, let X,Y be two
nonempty sets and M°(X,Y") be the set of all multi-valued operators T'
from X to Y. Denote by M°(X) := MY(X, X).

Definition 2.9.3. A triple (X, S, M?) is a fixed point structure if:

(i) S c P(X),S # 0.
(i) M®: P(X) — | M(Y),Y — M°(Y), is a mapping such
YeP(X)

that if Z C Y, Z # 0, then M®(Z) > {T|z|T € M°(Y) and Z € I(T)}.
(iii) every Y € S has the strict fixed point property with respect
to MO(Y).

Definition 2.9.4. Let (X, S, M°) be a fixed point structure, 6 : Z —
R, (where S € Z C P(X)) and p: P(X) — P(X). The pair (0, ) is a
compatible pair with (X, S, M?) if:

a) i is a closure operator, S C u(Z) C Z and 0(u(Y)) = 0(Y), for
each Y € Z.
b) FizpNZy C S.

Definition 2.9.5. Let ¢ : Ry — R, be a comparison function and
0 : Z — R,. A multi-valued mapping 7" : ¥ — P(X) is said to be a
(0, ¢)- contraction if:
i) Ae P(Y)N Z implies T(A) € Z.
ii) 0(T(A)) < p(0(A)), for each A€ P(Y)NZNI(T).

Definition 2.9.5. A multi-valued operator T': Y — P(X) is said to
be #-condensing if:
i) Ae P(Y)N Z implies T'(A) € Z.
ii) Ae P(Y)N Z,0(A) # () implies 0(T(A)) < 6(A).

Definition 2.9.6. Let X be a nonempty set, Z C P(X),Z # () and
0 : Z — R,. Then 0 has the intersection property if Y,, € Z,Y,,,1 C Y,
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n € N and 6(Y,,) — 0, as n — oo implies ﬂ Y, # 0.

neN

Theorem 2.9.7. ([222]) Let (X, S(X), M°) be a fized point structure
and (0, 1) a compatible pair with (X, S(X), M°). Let Y € u(Z) and F €
M°(Y'). We suppose that:

(1) 0| u(z) has the intersection property

it) Fis a (0, p)-contraction.

Then FixF # 0.

Theorem 2.9.8. ([222]) Let (X, S(X), M°) be a fived point structure
and (0, 1) a compatible pair with (X, S(X), M°). Let Y € u(Z) and F €
MO(Y). We suppose that:

i)AeZ, xeY imply AU{z} € Z and (AU {x}) = 0(A)

i1) F is 0-condensing.

Then FixF # ().

An auxiliary result is:

Lemma 2.9.9 Let X be a nonempty set, pu a closure operator, Y €
Fizp and T Y — P(Y) a multi-valued operator. Let A C Y be a
nonempty subset of Y. Then there exists Ag CY such that:

a) A C Ay

b) Ap € Fizp

c) Ayg € I(T)

4) 1(T(Ao) U A) = Ay,

If F:X — P(Y) is a multi-valued operator and f : X — Y is a
selection for F, then we denote by f the multi-valued operator defined
by f(z) = {f(z)}, # € X. The first general result is:

Theorem 2.9.10. Let (X, S(X), M) be a fized point structure and
(0, 1) a compatible pair with (X,S(X), M°). Let Y € u(Z) and F €
MO(Y). We suppose that:
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i) 0]u(z) has the intersection property

it) F is a (0, )-contraction

ii) f is a selection of F such that f € M°(Y).
Then Fixf # 0.

Proof. From Lemma 2.9.9. we have that there exists Ay € I(F) N
S(X) N Z. From (iii) it follows that f]4, € M°(Ag). This implies (see
Theorem 2.9.7.) Fizf # 0 and hence Fizf # §. O

Another result of this type is:

Theorem 2.9.11. Let (X, S(X), M°) be a fized point structure and
(0, 1) a compatible pair with (X,S(X), M®). Let Y € u(Z) and F €
MO(Y). We suppose that:

i) Ae Z, xeY implies AU{x} € Z and (AU {x}) = 6(A)

it) F' is O-condensing

iii) f is a selection of F such that f € M°(Y).

Then Fixf # (.

Proof. From Lemma 2.9.9. we have that there exists Ay € I(F) N
S(x) N Z. From iii) it follows that f|4, € M°(Ap) and hence Fizf #
(see Theorem 2.9.8.). This imply Fizf # (. O

Some important consequences of these abstract results are:

Corollary 2.9.12. Let X be a real Banach space and F' : X — P, (X)
be a multi-valued p-contraction with a strict comparison function ¢. If
f: X — X is a continuous selection of F then Fixf # (.

Proof. Let S(X) = P;(X) and M°(Y) be the set of the operators F :
Y — P.,(Y) such that F' is a multi-valued p-contraction, with ¢ a strong
comparison function. Then (X, S(X), M?) is a fixed point structure. F'
being a multi-valued ¢-contraction is #-condensing with respect to 6 =

ayg and u(Y') = convY . The conclusion follows now from Theorem 2.9.11.
0
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Corollary 2.9.13. Let X be a real Banach space, Y a nonempty,
bounded, closed, convex subset of X and F 'Y — Pu.o(Y) a u.s.c.
multi-valued (o, )-contraction. If f 1Y — Y is a continuous selection
of F' then Fixf # 0.

Proof. Let S(X) = Pyo(X), 2 = B(X) and M°(Y) = {F : Y —
P.o(Y)| Fisus.c.}. Let § = a (an abstract measure of noncompact-
ness) and p(Y) = convY. The result is an easy application of Theorem
2.9.10. O

Other results of this type are:
Theorem 2.9.14. Let X be a real Banach space, Y € Py(X) and F' :
Y — P.,(X) be weakly inward multi-valued a-contraction. If f:Y — X

is a continuous selection of F then Fixf # (.

Proof. By Theorem 11.4 from Deimlimg [80] on have that FixF' # .
Let xy € FixF. The closed ball B(zo, R) = {y € Y| ||z — y|| < R}, with
R > sL6(F(xy)), is invariant with respect to F' and so F B(zo; R) —
Py a(B(xo, R)). F being a multi-valued a-contraction is ay-condensing
and therefore f is a-condensing. The conclusion that Fixf # () follows

by Sadovskii’s fixed point theorem, see for example [81]. O

Theorem 2.9.15. Let X be a real Banach space, Y € P, .,(X) and
F:Y — Pyo(X) be an u.s.c. weakly inward multi-valued operator. If
f:Y — X is a continuous selection of F then Fixf # (.

Proof. By Halpern’s fixed point theorem (see [95]) it follows that
FixF # (. Let f : Y — X be a continuous selection of F. Using the
fact that F' is weakly inward one obtain that f is weakly inward (since
f(z) € F(z) C Iy(x), for each x € Y). The conclusion follows from a
fixed point theorem given by Deimling (see [81] pp.210). OJ

The following problem appear in Saint Raymond [237] and Dzedzej-
Gelman [85] :
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If X is a Banach space and F : X — P(X) is a multi-valued operator
then when dimF(x) > n, for each x € X imply that dim FixF > n? (By

dimY we denote the topological (covering) dimension of the space Y ).

Some answers to this question are given in what follows.

An auxiliary result is the following:

Lemma 2.9.16. ([85]). Let X be a Banach space, T be a compact
metric space with dimT < n and F : T — Py .0(X) be a Ls.c. operator
such that 0 € F(z) and dimF(x) > n, for each x € T. Then there exists
a continuous selection f of F' such that f(x) # 0 for each x € T.

The following results generalize and complete some results given in
[237] and [85].

Theorem 2.9.17. Let X be a Banach space and F : X — Py .,(X)
be a multi-valued p-contraction, with @ a strict comparison function. If
dimF(xz) > n for each v € X then dim FixF' > n.

Proof. Since F' : X — P, .,(X) is a multi-valued ¢-contraction and
FixzF is bounded (see Proposition 3.1 from [85]) it follows that FixF is
compact (otherwise ay(FixF') < ay(F(FixF)) < ag(FixF'), a contra-
diction). Consider the multi-valued operator G : FixF' — P, .,(X) given
by G(z) = x — F(x), for each x € X.

Suppose, by contradiction, that dim FixF < n. Then by Lemma
2.9.16. there is a continuous selection g of G such that g(z) # 0 for
each x € FixF'. It follows that there exists a continuous selection fy of
F|pixr with no fixed points. Using Michael’s selection theorem we extend
fotoamap f: X — X which is a selection of F without fixed points,
contradiction with Corollary 2.9.11.. [J

By the same technique one obtain the following results on the di-
mension of the fixed points set of some contractive type multi-valued
operators.

Theorem 2.9.18. Let X be a Banach space, ¥ € Py(X) and
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F Y — P,o(X) be a weakly inward multi-valued a-contraction. If
dimF(x) > n, for each v € X then dim FixF' > n.

Theorem 2.9.19. Let X be a Banach space, Y € Pyoo(X) and
F :Y — P,.(X) be a continuous y-condensing and weakly inward
multi-valued operator (where 7y is ax or ag). If dimF(x) > n for each
z € X then dimFixF > n.

Finally, we give some examples illustrating the usefulness of these
theorems.
Example 2.9.20. Consider the multi-valued Cauchy problem:

7' (t) € F(t,z(t)), x(0)=2°,

where F': [0,a] x R" — P, ,(R") is a multi-valued operator satisfying
the following conditions:
(a) F' is upper semi-continuous and integrably bounded
(b) F(-,z) :[0,h] = P (R™) is measurable, for all z € R"
(¢) H(F(t,u), F(t,v)) < k(t)p(Ju — v|), for each t € [0,a], for all u,v €
R"™ and some ¢ a strict ccimparison function, where for each ¢t € [0, a],
k(t) € L'[0,a] and sup}/ k(s)ds < 1.

0

te(0,a
Denote by S,, the solutions set for the Cauchy problem . Con-

sider also, the following integral operator: 7' : C([0,a],R") —
Pcp,cv(c([ov a]v Rn)) defined by

T(x)= {v c C([0,a],R")| v(t) € 2° +/0 F(s,x(s))ds, t € [O,a]}

Obviously FizT = S,,. By standard arguments on have that for
every x1,x2 € C([0,a],R") and every x1,zo € C([0,a],R") and every
vy € T(xy) there exists v € T'(x2) such that

01 () — v2(t)| < @(||xr — xQH)/O k(s)ds, for every t € [0, al.
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Then ||v; —vs|| < @(||x1 — x2||). By the analogous inequality obtained
by interchanging the roles of z; and x5 we obtain H (7T (z1),T(x2)) <
o(||xy — x2||) for each z1, 25 € C([0, a], R™).

From the above relation, using Lemma 2.6. and the same argument
as in Theorem 2.7. (both results in Dzedzej-Gelman [85]), from Theorem
2.9.17. we obtain:

Theorem 2.9.21. Let F : [0,a] x R* — P, ,(R") be a
multi-valued operator satisfying the assertions (a)-(c). Assume that
p({t] dim F(t,z) < 1, for any x € R™}) = 0. Then the solution set

for the Cauchy problem has an infinite dimension for all 2° € R™.

Example 2.9.22. Consider the following multi-valued Darboux prob-
lem:

0%u

0xdy

where  (z,y) € D = [0,a] x [0,0].

As before, the following result on the topological dimension of the

€ F(x,y,u(z,y)), u(z,0)=0, u(0,y)=0,

solutions set is an application of Theorem 2.9.17.

Theorem 2.9.23. Let F : D x R — P.poo(R) be a multi-valued
operator satisfying the following conditions:

i) F'is u.s.c. and integrably bounded;

i) F(-,-,u) : D — Py o(R) is measurable, for all u € R;

iii) H(F(t,s,u), F(t,s,v)) < k(t,s)o(|lu—uv|), for each (t,s) € D, for
all u,v € R and for some ¢ a strict comparison function (where for each

(t,s) € D k(t,s) € L*(D) and Sup// (z,t)dsdt < 1).

(z,y)€D
w) u({(t,s) € D| dim F(t,s,u) <1, for allu € R}) = 0.
Then the solutions set S for the Darboux problem has an infinite

dimension.

Proof. If we consider the multi-valued operator T : C(D) —
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Pcp,cv(C(D))7 given by

T(u) = {z € O(D)| z(z,y) € /090 /Oy F(s,t,u(s,t))dsdt, (x,y) € ﬁ}

then it is obviously that FiaxT = S. T is a multi-valued ¢-contraction

and the conclusion follows from Lemma 2.6. in [85]. [

Bibliographical comments. Following the method from Saint Ray-
mond [237] and Dzedzej-Gelman [85], results of this section can be found
in Petrusel [177] and [180]. We mention also the papers: Anello [3], An-
tosiewicz-Cellina [12], Aubin-Cellina [15], Cellina-Colombo [55], Cernea
[56], [58], Constantin [65], Deimling [80], Kisielewicz [127], Lakshmikan-
tham-Wen-Zhang [130], Naselli Ricceri [156], Petrusel [178], [180], Ricceri

[218], for similar results and interesting applications.
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