
Chapter 1

Optimization problems

Let X, Y be topological vector spaces. Consider A ⊂ X, B, C ⊂ Y ,

f : X → Y a singlevalued operator and F : Y → P (Y ) a multivalued

operator.

Let us show now that maximization with respect to a cone, which

subsumes ordinary and Pareto optimization, is equivalent to a strict fixed

point problem of the following type:

find y ∈ Y such that {y} = F (y).

Pareto efficiency, or Pareto optimality, is a concept in economics with

applications in engineering and social sciences. The term is named after

Vilfredo Pareto, an Italian economist who used the concept in his studies

of economic efficiency and income distribution.

An economic system that is not Pareto efficient implies that a certain

change in allocation of goods (for example) may result in some individ-

uals being made ”better off” with no individual being made ”worse off”,

and therefore can be made more Pareto efficient through a Pareto im-
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provement. Here ”better off” is often interpreted as ”put in a preferred

position.” It is commonly accepted that outcomes that are not Pareto ef-

ficient are to be avoided, and therefore Pareto efficiency is an important

criterion for evaluating economic systems and public policies.

If economic allocation in any system is not Pareto efficient, there

is potential for a Pareto improvement-an increase in Pareto efficiency:

through reallocation, improvements to at least one participant’s well-

being can be made without reducing any other participant’s well-being.

In the real world ensuring that nobody is disadvantaged by a change

aimed at improving economic efficiency may require compensation of

one or more parties. For instance, if a change in economic policy dictates

that a legally protected monopoly ceases to exist and that market subse-

quently becomes competitive and more efficient, the monopolist will be

made worse off. However, the loss to the monopolist will be more than

offset by the gain in efficiency. This means the monopolist can be com-

pensated for its loss while still leaving an efficiency gain to be realized

by others in the economy. Thus, the requirement of nobody being made

worse off for a gain to others is met. In real-world practice compensations

have substantial frictional costs. They can also lead to incentive distor-

tions over time since most real-world policy changes occur with players

who are not atomistic, rather who have considerable market power (or

political power) over time and may use it in a game theoretic manner.

Compensation attempts may therefore lead to substantial practical prob-

lems of misrepresentation and moral hazard and considerable inefficiency

as players behave opportunistically and with guile.

Under certain idealized conditions, it can be shown that a system

of free markets will lead to a Pareto efficient outcome. This is called
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the first welfare theorem. It was first demonstrated mathematically by

economists Kenneth Arrow and Gerard Debreu. However, the result does

not rigorously establish welfare results for real economies because of the

restrictive assumptions necessary for the proof (markets exist for all pos-

sible goods, all markets are in full equilibrium, markets are perfectly

competitive, transaction costs are negligible, there must be no externali-

ties, and market participants must have perfect information). Moreover,

it has since been demonstrated mathematically that, in the absence of

perfect information or complete markets, outcomes will generically be

Pareto inefficient (the Greenwald-Stiglitz theorem).

Recall that a a set C ⊂ Y is a cone if λy ∈ C, for all y ∈ C and each

λ ≥ 0. A convex cone is a cone for which λ1y1+λ2y2 ∈ C, for all y1, y2 ∈ C

and each λ1, λ2 ≥ 0. A cone is called pointed if C ∩ (−C) = {θ}. For a

pointed cone we write y ≥ z if and only if y − z ∈ C and y > z if and

only if y − z ∈ C − {θ}.
An element y∗ ∈ B is a maximal element of B with respect to C and

we will denote this by:

y∗ = max(B; C)

if and only

if there is no y ∈ B for which y∗ < y.

Now, for a specified pointed cone C we consider the problem:

maximize f(x) subject to x ∈ A, (*)

of determining all x∗ ∈ A for which f(x∗) ∈ max[f(A); C]. Such an

element x∗ is said to be a maximal point for the considered problem.
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This abstract problem has been studied in several papers by Borwein

and others. When X = Rn, Y = Rm, f1, · · · , fm : Rn → R, with f(x) =

(f1(x), · · · , fm(x)) and C = Rm
+ , then the previous abstract problem

becomes a Pareto maximization problem, which has been considered by

numerous authors.

Let us show now that the considered problem is equivalent to a strict

fixed point problem.

Theorem. Let f : X → Y and F : Y → P(Y ), be defined by F (y) =

{f(x)|x ∈ A, f(x) ∈ C + y}.
Then x∗ is a maximal element for problem (*) if and only if {f(x∗)} =

F (f(x∗)).

Proof. First suppose that x∗ is a maximal element for (∗). Then, there

is no x ∈ A such that f(x∗) < f(x), i. e. there is no x ∈ A such that

f(x)− f(x∗) ∈ C − {θ}. Also, we can observe that {f(x∗)} ∈ F (f(x∗)).

We have to show now that {f(x∗)} = F (f(x∗)). If there exists another

element f(x) of F (f(x∗)), with f(x) 6= f(x∗), then since x is feasible

to (∗) it satisfies θ 6= f(x) − f(x∗) ∈ C, contrary to our assumption.

Thus the equality {f(x∗)} = F (f(x∗)) is established. Next, suppose that

{f(x∗)} = F (f(x∗)) holds. Then, there is no x ∈ A such that f(x) ∈
F (f(x∗)), with f(x) 6= f(x∗). So, there is no x ∈ A such that f(x) ∈
C + f(x∗), with f(x) 6= f(x∗). As consequence, there is no x ∈ A such

that f(x)− f(x∗) ∈ C − {θ}. Since f(x)− f(x∗) ∈ C − {θ} cannot hold

for any feasible x to (∗), we get the desired conclusion: x∗ is a maximal

point. �
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Definition. Let (X, d) be a metric space and T : X → P (X) be

a multivalued operator. A sequence (xn)n∈N is said to be a sequence

of successive approximatuons for T starting from (x, y) ∈ Graph(T ) if

x0 = x, x1 = y and xn+1 ∈ T (xn), for each n ∈ N∗.

An aswer to the above optimization problem is the following.

Theorem. Let (X, d) be a complete metric space, Y ∈ Pcl(X) and

T : Y → Pb(Y ) be a H-continuous multivalued operator.

We suppose that:

i) there exists α ∈ [0, 1[ and a sequence (yn)n∈N ⊂ Y of successive

approximations for T starting from some (y0, y1) ∈ Graph(T ) such that

diamT (yn+1) ≤ α diamT (yn), for all n ∈ N;

ii) y ∈ T (y), (∀) y ∈ Y .

In these conditions, (SF )T = {y∗}.

Proof. Let y0 ∈ Y, y1 ∈ T (y0) and yn+1 ∈ T (yn) , (∀) n ∈ N∗. From

i) we have:

diam(T (yn)) 6 αdiam(T (yn−1))) ≤ · · · ≤ αn(diam(T (y0))) → 0, as n →∞.

This implies that diam(T (yn)) → 0, as n →∞.

Since diam(T (yn)) → 0, we immediately get that d(yn, yn+p) → 0, as

n →∞. Indeed,

d(yn, yn+p) ≤ d(yn, yn+1) + · · ·+ d(yn+p−1, yn+p) ≤

≤ diam(T (yn))+· · ·+diam(Tyn+p−1) ≤ αndiam(T (y0)+· · ·+αn+p−1diam(T (y0)

≤ αn

1− α
diam(T (y0).
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It follows that the sequence (yn)n∈N is Cauchy in the complete metric

space (Y, d). Hence, there exists y∗ ∈ X such that lim
n→∞

yn = y∗. Moreover,

Y being closed set, y∗ ∈ Y .

By the hypothesis ii) we have that y∗ ∈ T (y∗). Since

diam(T (yn)) → diam(T (y∗)) as n → ∞ on one hand, and

diam(T (yn)) → 0 as n → ∞ on the other hand, we get that

diam(T (y∗)) = 0. Thus we conclude that {y∗} = T (y∗). �
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