
Chapter 1

The Arrow-Debreu model

1.1 Maximal elements

Let � be a preference relation on a set X and let A be a non-empty

subset of X. Then we say that an element a ∈ A is a maximal element

for � on A whenever there is no element b ∈ A satisfying b � a. Since

� (as a preference relation) is complete, note that an element a ∈ A is

a maximal element if and only if a � x holds for each x ∈ A. It may

happen that � need not have any maximal elements on a given set A.

The next results describe some basic properties of maximal elements.

Theorem 1.1.1 For a preference relation � on a set X and a non-empty

subset A of X the following statements hold.

1. All maximal elements of A for � lie in the same indifference set;

and

2. If X = Rm
+ and � has a strictly desirable bundle (vector) , then no

interior point of A can be a maximal element.
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Proof. (1) Let a be a maximal element for � on A. If b ∈ A is another

maximal element, then a � b and b � a both hold, and so a ∼ b. This

means that the maximal elements of A for � lie in the same indifference

set.

(2) Let v be an extremely desirable bundle (vector) for � and let a

be an interior point of A. Then for some sufficiently small α > 0 we must

have a + αv ∈ A. Now the relation a + αv � a shows that a cannot be a

maximal element for � on A. �

Recall that a preference relation � on a topological space X is said

to be upper semicontinuous whenever for each x ∈ X the set {y ∈
X : y � x} is a closed set. Remarkably, upper semicontinuous preference

relations on compact topological spaces always have maximal elements.

The details are included in the next theorem.

Theorem 1.1.2 The set of all maximal elements of an upper semicon-

tinuous preference relation on a compact topological space is non-empty

and compact.

Proof. Let � be an upper semicontinuous preference on a compact topo-

logical space X. For each x ∈ X let Cx = {y ∈ X : y � x}. Since � is

upper semicontinuous, the (non-empty) set Cx is closed - and hence com-

pact. Now note that the set of all maximal elements of � is the compact

set
⋂

x∈X Cx. We shall show that
⋂

x∈X Cx 6= ∅.
To this end, let x1, x2, . . . , xn ∈ X. Since � is a complete binary

relation, the set {x1, x2, . . . , xn} is completely ordered. We can assume

that x1 � x2 � . . . � xn. This implies Cx1 ⊆ Cx2 ⊆ . . . ⊆ Cxn , and so⋂n
i=1 Cxi

= Cx1 6= ∅. Thus the collection of closed sets {Cx : x ∈ X}
has the finite intersection property. By the compactness of X, the set
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⋂
x∈X Cx is non-empty. �

When does a preference relation have a unique maximal element on

a set? The next result provides an answer.

Theorem 1.1.3 For an upper semicontinuous convex preference � on

a convex compact subset X of a topological vector space, the following

statements hold.

a) The set of all maximal elements of � in X is a non-empty, convex

and compact.

b) If, in addition, � is strictly convex, then � has exactly one maximal

element in X.

Proof. (a) By Theorem 1.1.2, we know that the set of all maximal ele-

ments of � is non-empty and compact. To see that this set is also convex,

let a and b be two maximal elements of � in X and let 0 < α < 1. Then

αa+(1−α)b ∈ X and by the convexity of �, we see that αa+(1−α)b � a.

On the other hand, by the maximality of a, we have a � αa + (1 − α)b

and therefore, αa + (1− α)b is also a maximal element of �.

(b) Assume that � is also strictly convex. If a and b are two distinct

maximal elements, then 1
2
a+ 1

2
b ∈ X and 1

2
a+ 1

2
b � a must hold (why?),

contrary to the maximality property of a. This shows that � has exactly

one maximal element in X.

�
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