
Chapter 1

The Arrow-Debreu model

1.1 Demand functions

Preferences and utility are not observable in the market place. What

we do observe are agents making transactions at market prices, i.e., de-

manding and supplying commodities at these prices. This suggests an

alternative primitive formulation of economic behavior in terms of de-

mand functions. In this section, we derive demand functions from utility

maximization subject to a budget constraint. Consequently, the demand

functions satisfy certain restrictions which play a critical role in equilib-

rium analysis.

Before starting our discussion in this section, let us introduce some

standard notation. Boldface letters will denote vectors. For instance, the

boldface letter x will represent the vector x = (x1, x2, . . . , xm) and p the

vector p = (p1, p2, . . . , pm). The symbol x � 0 means that xi > 0 holds

for each i, i.e., all components of x are positive real numbers. Similarly,

the notation x � y means that xi > yi holds for each i. Any vector x
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that satisfies x � 0 is called a strictly positive vector.

Now fix a vector p ∈ Rm
+ - which we shall call a price. The budget

set for p corresponding to a vector ω ∈ Rm
+ is the set

Bω(p) = {x ∈ Rm
+ : p · x ≤ p · ω}.

A budget set for p is any set of the form Bω(p). The budget line of a

budget set Bω(p) is the set {x ∈ Bω(p) : p · x = p · ω}. Recall that the

inner product p · x of two vectors is defined by

p · x = p1x1 + p2x2 + . . . + pmxm =
m∑

i=1

pixi.

It is well known that the function (p,x) 7→ p · x - from Rm
+ ×Rm

+ into R

- is (jointly) continuous. An immediate consequence of the continuity of

the dot product function (p,x) 7→ p ·x is that all budget sets are closed.

When does a price have bounded budget sets? It turns out that ei-

ther all budget sets for a price are bounded or else all are unbounded.

The condition for boundedness or unboundedness of the budget sets is

included in the next theorem.

Theorem 1.1.1 For a price p ∈ Rm
+ the following statements hold.

1. All budget sets for p are bounded if and only if p � 0.

2. All budget sets for p are unbounded if and only if p has at least

one component equal to zero.

Proof. We establish (1) and leave the identical proof of (2) for the reader.

To this end, assume first that every budget set for a price p is bounded.

Then, we claim that pi > 0 holds for each i. Indeed, if some pi = 0, then

the vectors nei (i = 1, . . . ,m) - where ei denotes the standard unit vector
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in the ith direction - belong to every budget set (since p ·ei = 0), proving

that every budget set is unbounded.

Now assume that p � 0 and let ω ∈ Rm
+. Put r =

min{p1, p2, . . . , pm} > 0. If x ∈ Bω(p), then for each i we have

0 ≤ pixi ≤
m∑

k=1

pkxk = p · x ≤ p · ω,

and therefore

0 ≤ xi ≤
p · x
pi

≤ p · ω
r

< ∞

holds for each i = 1, 2, . . . ,m. This shows that the budget set Bω(p) is

bounded. �

Since all budget sets are closed (and compactness in a finite dimen-

sional vector space is equivalent to closedness and boundedness), the first

part of Theorem 1.1.1 can be restated as follows: All budget sets for a

price p are compact if and only if p � 0. In particular, from this con-

clusion and Theorem 1.1.3 we have the following result.

Theorem 1.1.2 For a price p � 0 and a continuous preference � on

Rm
+ the following statements hold.

1. If � is also convex, then on every budget set for p the preference

� has at least one maximal element.

2. If � is strictly convex, then on every budget set for p the preference

� has a unique maximal element.

3. If � has an extremely desirable bundle (vector) and is strictly con-

vex, then on every budget set for p the preference � has exactly one

maximal element lying on the budget line.

For the rest of the discussion in this section all preference relations

will be assumed defined on some Rm
+. You should keep in mind that

3



the interior of Rm
+ is precisely the set of all strictly positive vectors and

the boundary of Rm
+ consists of all vectors of Rm

+ having at least one

component equal to zero.

Theorem 1.1.3 For a price p ∈ ∂Rm
+ and a preference relation � on

Rm
+ the following statements hold.

1. If � is strictly monotone, then � does not have any maximal ele-

ment in any budget set for p.

2. If � is strictly monotone on Int(Rm
+) such that everything in the

interior is preferred to anything on the boundary and if an element ω ∈
Rm

+ satisfies p · ω > 0, then � does not have any maximal element in

Bω(p).

Proof. Let p = (p1, p2, . . . , pm) ∈ Rm
+ be a price having at least one

component zero. We can assume that p1 = 0.

(1) Suppose that � is strictly monotone and let x be a vector in some

budget set Bω(p). Then, y = (x1 + 1, x2, . . . , xm) ∈ Bω(p) and y > x.

The strict monotonicity of � implies y � x. This shows that � does not

have a maximal element in Bω(p).

(2) Now assume that � satisfies the stated properties and that p ·ω >

0. From p · ω > 0, it follows that the budget set Bω(p) contains strictly

positive elements and so if � has a maximal element in Bω(p), then this

element must be strictly positive. However, if x is any strictly positive

element in Bω(p), then y = (x1 + 1, x2, . . . , xm) is also a strictly positive

element in Bω(p) satisfying y > x. Since � is strictly monotone on

Int(Rm
+), we see that y � x must hold, which shows that � does not

have a maximal element in Bω(p). �

Now consider a continuous strictly convex preference relation � on
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some Rm
+ having an extremely desirable bundle (vector) . Also, let 0 <

ω ∈ Rm
+ be a fixed vector - referred to as the initial endowment. Then, by

Theorem 1.1.2(3), for each price p ∈ Int(Rm
+) the preference relation �

has exactly one maximal element in the budget set Bω(p). This maximal

element is called the demand vector of the preference � at prices p and

will be denoted by xω(p). If, in a given situation, ω is fixed and clarity is

not at stake, then the subscript ω will be dropped and the demand vector

yω(p) will be denoted simply by x(p). Thus, in this case, a function

xω : Int(Rm
+) → Rm

+

is defined by saying that xω(p) is the demand vector of � at prices p.

The function xω(·) is known as the demand function corresponding

to the preference �. Two important properties of the demand function

should be noted immediately.

1) Since [by Theorem 1.1.2(3)], xω(p) lies on the budget line, for each

p ∈ Int(Rm
+) we always have p · xω(p) = p · ω.

2) The demand function is a homogeneous function of degree zero,

i.e., for each λ > 0 and each p � 0 we have xω(p) = xω(λp).

This follows immediately from the budget identity Bω(λp) = Bω(p).

Observe that a continuous preference � on Rm
+ need not be strictly

convex in order for the demand function xω(·) to be defined. The hypothe-

sis of strict convexity may be relaxed. For example, the preference relation

on R2
+ defined by the utility function u(x, y) = xy is strictly monotone

on Int(R2
+) but not strictly convex on R2

+. For each price p � 0 the pref-

erence relation defined by this utility function has exactly one maximal

element in the budget set Bω(p). Therefore, it is easy to check that the

demand function xω(·) for this preference is well defined and satisfies the
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above two properties.

Our immediate objective is to study the properties of the demand

functions. Since the demand functions are defined for certain preferences,

let us give a name to these preferences that ill be useful in the economic

analysis in this chapter.

Definition 1.1.4 A continuous preference relation � on some Rm
+ is

said to be a neoclassical preference whenever either

1) � is strictly monotone and strictly convex; or else

2) � is strictly monotone and strictly convex on Int(Rm
+), and every-

thing in the interior is preferred to anything on the boundary.

The next example illustrates how neoclassical preferences arise from

common utility functions.

Example 1.1.5 We exhibit two neoclassical preferences defined by utility

functions u1 and u2. Preference �1 will satisfy condition (1) but not

condition (2) of Definition 1.1.4, and preference �2 will satisfy condition

(2) but not condition (1). Preferences such as (1) typically have demands

on the boundary of Rm
+, but preferences of type (2) always have demands

on the interior of Rm
+.

(1) Consider the utility function defined on R2
+ by the function

u1(x, y) =
√

x +
√

y.

Then the utility function is continuous, strictly monotone, and strictly

convex on R2
+. However, this utility function does not have the property

that everything in the interior of R2
+ is preferred to anything on the bound-

ary. Since the element (1, 0) ∈ ∂R2
+ is clearly preferred to

(
1
9
, 1

9

)
which is

in the interior.
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(2) Now consider the preference defined by the formula

u2(x, y) = xy.

This utility function is strictly convex and strictly monotone on

Int(R2
+) however, it is not strictly convex on the boundary ∂R2

+ since

every vector on the boundary is indifferent to the origin. For this very

reason, x ∈ ∂R2
+ and y ∈ Int(R2

+) imply y � x, i.e., everything in the

interior is preferred to anything on the boundary.

It should be noted that strictly positive vectors are always extremely

desirable vectors for neoclassical preferences. Our immediate objective

is to study the properties of the demand functions that correspond to

neoclassical preferences. The next theorem is the first step in establishing

the continuity of demand functions.

Theorem 1.1.6 Let � be a neoclassical preference on some Rm
+ and let

ω and p in Rm
+ satisfy p · ω > 0. If a sequence {pn} of Int(Rm

+) satisfies

pn → p and xω(pn) → x, then we have:

a) p � 0, i.e., p ∈ Int(Rm
+);

b) x ∈ Bω(p); and

c) x = xω(p).

Proof. From pn · xω(pn) = pn · ω and the continuity of the dot product,

it follows that p · x = p · ω, and so x ∈ Bω(p). Next, we claim that x

is a maximal element for � in Bω(p). To see this, let y ∈ Bω(p). Then

p · y ≤ p · ω holds, and so (since p · ω > 0) for each 0 < λ < 1, we have

p · (λy) < p ·ω. From pn → p and the continuity of the dot product, we

see that there exists some n0 satisfying pn · (λy) < pn · ω = pn · xω(pn)
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for all n ≥ n0. Thus, xω(pn) � λy holds for all n ≥ n0, and this (in view

of continuity of �) implies x � λy for all 0 < λ < 1. Letting λ ↑ 1 (and

using the continuity of � once more), we see that x � y. This shows that

x is a maximal element in Bω(p).

Now a glance at Theorem 1.1.3 reveals that p � 0 must hold, in

which case Theorem 1.1.2(2) guarantees that x = xω(p), and the proof

of the theorem is finished. �

To obtain the continuity of the demand functions we need the Closed

Graph Theorem for continuous functions.

Lemma 1.1.7 (The Closed Graph Theorem) Let f : X → Y be a func-

tion between two topological spaces with Y Hausdorff compact. Then f is

continuous if and only if its graph Gf = {(x, f(x)) : x ∈ X} is a closed

subset of X × Y .

Proof. If f is continuous, then its graph Gf is clearly a closed subset of

X × Y .

For the converse, assume that Gf is a closed subset of X×Y . Let {xα}
be a net of X satisfying xα → x. We have to show that f(xα) → f(x).

To this end, assume by way of contradiction that f(xα) 9 f(x). Then

there exist an open neighborhood V of f(x) and a subset {yλ} of {xα}
satisfying f(yλ) 6∈ V for each λ. Since Y is a compact topological space,

there exists a subnet {zσ} of {yλ} (and hence, a subnet of {xα}) with

f(zσ) → u in Y . Clearly, u 6∈ V and so u 6= f(x). On the other hand, we

have (zσ, f(zσ)) → (x, u) in X×Y , and by the closedness of Gf , we infer

that u = f(x) ∈ V , which is impossible. This contradiction shows that

the function f is continuous at x, and hence continuous everywhere on

X. �
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If Y is not compact, then the closedness of the graph Gf need not

imply the continuity of f . For instance, the function f : R → R defined

by

f(x) =

 1
x
, if x 6= 0;

0, if x = 0.

has a closed graph but it is not continuous. It is, also interesting to

know that there are examples of functions with closed graphs that are

discontinuous at every point. To construct such an example, consider X =

R with the Euclidean topology and Y = R with the discrete topology

(i.e., every subset is open). Then the function f : X → Y defined by

f(x) = x has a closed graph but fails to be continuous at any point of

X.

We are now ready to establish the continuity of the demand functions.

Intuitively, the continuity of a demand function expresses the fact that

”small changes in the price vector result in small changes in the demand

vector”.

Theorem 1.1.8 Every demand function corresponding to a neoclassical

preference is continuous.

Proof. Let � be a neoclassical preference on some Rm
+ and let ω ∈ Rm

+

be fixed. For simplicity, we shall denote the demand function xω(·) by

x(·) = (x1(·), x2(·), . . . , xm(·)).

Now, let p � 0 be fixed. Note first that p is in the interior

of a ”box” [r, s] with r � 0.1 Let r = min{r1, r2, . . . , rm} > 0. If

1The ”box” [r, s] is the set [r, s] = {x ∈ Rm : r ≤ x ≤ s}. In mathematical

terminology, a ”box” is known as an order interval.
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q = (q1, q2, . . . , qm) ∈ [r, s], then we have

qixi(q ≤
m∑

k=1

qkxk(q) = q · x(q) = q · ω ≤ s · ω,

and consequently

xi(q) ≤ s · ω
qi

≤ s · ω
r

= M < ∞ (∗)

holds for each i = 1, 2, . . . ,m. This implies that the function x(·) is

bounded on [r, s], and so the set Y = x([r, s]) - where bar denotes closure

- is a compact subset of Rm
+. To show that x(·) is continuous at p, it

suffices to establish that x : [r, s] → Y is continuous. By Lemma 1.1.7, it

suffices to show that the function x : [r, s] → Y has a closed graph.

To this end, let a sequence {qn} ⊆ [r, s] satisfy qn → q and x(qn) →
x. By Theorem 1.1.6, it follows that x = x(q). This shows that the

function x[r, s] → Y has a closed graph, and the proof of the theorem is

finished. �

Now let us give an economic interpretation of the discussion so far.

The vector space Rm
+ can be thought of as representing the commodity

space of our economy - where, of course, the number m represents the

number of available commodities. A preference relation can be thought

of as representing the ”taste” of a consumer and the vector ω as her

initial endowment. The vector p = (p1, p2, . . . , pm) represents the pre-

vailing prices, pi is the price (usually per unit) of commodity i. Then

the demand vector x(p) represents the commodity bundle that maxi-

mizes the consumer’s utility function subject to her budget constraint.

If xω(p) = x(p) = (x1(p), x2(p), . . . , xm(p)) is the demand vector, then

the real number
m∑

i=1

xi(p)
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represents the total number of units of goods demanded by the individual

- for a vector x = (x1, x2, . . . , xm) the number
m∑

i=1

|xi| is called the m1-

norm of the vector and is denoted by ||x||1, i.e., ||x||1 =
m∑

i=1

|xi|. Thus,

the number ||x(p)||1 is the aggregate number of units of goods demanded

by the consumer.

As prices go to the boundary, some goods become (relatively) cheap

and consequently demand for some commodities must become ”very

large”. The details of this statement are given in the next theorem.

Theorem 1.1.9 Consider a neoclassical preference � on Rm
+, a vector

ω ∈ Rm
+ and denote by x(·) = (x1(·), x2(·), . . . , xm(·)) the demand func-

tion corresponding to �. Also, assume that a sequence {pn} of strictly

positive vectors satisfies

pn = (pn
1 , p

n
2 , . . . , p

n
m) → p = (p1, p2, . . . , pm).

Then, we have:

1) If pi > 0 holds for some i, then the sequence {xi(pn)} - the ith

components of the demand sequence {x(pn)} - is a bounded sequence.

2) If p ∈ ∂Rm
+ and p · ω > 0, then

lim
n→∞

||x(pn)||1 = lim
n→∞

m∑
i=1

xi(pn) = ∞.

Proof. Assume that {pn} is a sequence of strictly positive prices satis-

fying the hypothesis of the theorem. Pick some q � 0 such that pn ≤ q

holds for all n.

(1) Assume that pi > 0 holds for some i. From p � 0 and lim
n→∞

pn
i = pi,

we infer that there exists some δ > 0 such that pn
i > δ holds for each n.
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Now note that the inequality

pn
i xi(pn) ≤

m∑
k=1

pn
kxk(pn) = pn · x(pn) = pn · ω ≤ q · ω,

implies that

xi(pn) ≤ q · ω
pn

i

≤ q · ω
δ

< ∞

holds for each n. Therefore, {xi(pn)} is a bounded sequence.

(2) If {x(pn)} has a bounded subsequence, then by passing to a sub-

sequence (and relabelling), we can assume that x(pn) → x holds in Rm
+.

In such a case, theorem 1.1.6 implies that p � 0 must hold, which con-

tradicts p ∈ ∂Rm
+, and our conclusion follows. �

Part (2) of the preceding theorem asserts that when prices drop to

zero, then the demand collectively tends to infinity. However, it should

be noted that when the individual price of a commodity drops to zero,

the demand for that particular commodity does not necessarily tend to

infinity.
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