
Chapter 1

The Arrow-Debreu model

One of two central paradigms in modern general equilibrium theory is

the Walrasian general equilibrium model of an economy with a finite

number of commodities and a finite number of households and firms, as

formulated by K. J. Arrow and G. Debreu.

In this chapter, we shall investigate the existence and optimality of

Walrasian (or competitive) equilibrium in the Arrow-Debreu model.

In the classical Arrow-Debreu model only a finite number of com-

modities are exchanged, produced or consumed. It is useful to think of

physical commodities such as steel or wheat or apples that are avail-

able at different times or in different locations or in different states of

the world as different commodities. We suppose that there are m such

commodities. Inputs for production are negatively signed and outputs

of production are positively signed. Any two commodity bundles (vec-

tors) can be added to produce a new commodity bundle (vector) and any

scalar multiple of a commodity bundle (vector) is a commodity bundle

(vector) . Hence, it is natural to view the commodity space E as the
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finite dimensional vector space Rm.

The terms at which good j can be exchanged in the market for good

i is defined by the ratio of the prices pi

pj
, where pi and pj are nonnegative

real numbers and pj > 0. That is, pi

pj
is the amount of good j that can

be exchanged for a unit amount of good i at prices p = (p1, p2, . . . , pm).

Given a price vector p = (p1, p2, . . . , pm) and a commodity vector x =

(x1, x2, . . . , xm), the ”value” of x at prices p is given by p · x =
m∑

i=1

pixi

(here ” · ” is the inner product on the space). Hence, each price vector

defines a linear and continuous functional on the commodity space E and

we define the price space as the dual space of E, denoted by E ′. Indeed,

if p is a given price vector, then

f : E → R, E 3 x 7→ f(x) := p · x ∈ R

is a linear and continuous functional on the commodity space E. The

space of all linear and continuous functional on E is the dual space,

denoted by E ′. For the case E = Rm, we see that E ′ = Rm.

In addition to the linear structure of the commodity space, we impose

a topology on E such that the linear operations of vector addition and

scalar multiplication are continuous. In the finite dimensional case this

enables us to show (under some additional hypotheses) that the supply

and demand functions depend continuously on prices - and thus, captur-

ing the economic intuition that a ”small” change in prices results in a

”small” change in demand and supply. In some other models one require

that the commodity space is a topological vector space E and the price

space to be the topological dual E ′, i.e., the space of continuous linear

functionals on E. This formal duality between commodities and price

was introduced by G. Debreu.
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The behavioral assumption that consumers prefer more to less has

important implications for equilibrium analysis. One consequence is that

equilibrium prices must be positive. The natural partial ordering on Rm

makes precise the notion that commodity bundle (vector) x ”has more”

than commodity bundle (vector) y, i.e., x > y. The Euclidean space Rm

together with the natural partial ordering is an ordered vector space. In

this chapter, we use the natural order structure of Rm to formulate the

notions of monotone preferences - agents who prefer more to less - and

positive linear functionals - positive prices. Later, we restrict our atten-

tion to Riesz spaces (or vector lattices) as models of the commodity and

the price spaces. That is, we require 〈E, E ′〉 the dual pair of topologi-

cal vector spaces that define the commodity and price spaces to be dual

topological Riesz spaces.

1.1 Preferences and utility functions

The basic tenet of economic theory is that economic agents are rational in

the sense that they know their own interests and act in a way to maximize

their own welfare. This assumption is made precise by hypothesizing

an opportunity set for the individual over which it is assumed that the

agent can make consistent pairwise choices. One consistency requirement

is that if the chooses a over b and b over c, then she will choose a over

c. Formally, we suppose the opportunities comprise some (non-empty)

set X and individual tastes or preferences are represented by a binary

relation on X. In this section, we shall discuss the basic properties of

preferences in a general setting with particular emphasis on preferences

defined on subsets of finite dimensional commodity spaces.
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We begin our discussion by recalling some basic properties of binary

relations. Recall that a binary relation on a (non-empty) set X is a

non-empty subset � of X × X. The membership (x, y) ∈� is usually

written as x � y. A binary relation � on a set X is said to be:

1. Reflexive; whenever x � x holds for all x ∈ X.

2. Complete; whenever for each pair x, y of elements of X either

x � y or y � x holds.

3. Transitive; whenever x � y and y � z imply x � z.

Definition 1.1.1 A preference relation on a set is a reflexive, complete

and transitive relation on the set.

Let � be a preference relation on a set X. The notation x � y is read

”the bundle (vector) x is at least as good as the bundle (vector) y” or

that ”x is no worse than y”. The notation x � y (read ”x is preferred

to y” or that ”x is better than y”) means that x � y and y � x. When

x � y and y � x both hold at the same time, then we write x ∼ y

and say that ”x is indifferent to y”. If x is an element of X, then the

set {y ∈ X : y � x} is called the better than set of x and the set

{y ∈ X : x � y} is called the worse than set of x. Analogous names are

given to the sets {y ∈ X : y � x} and {y ∈ X : x � y}.
When X has a topological structure (i.e., X is a topological space),

the continuity of preferences is defined as follows.

Definition 1.1.2 A preference relation � on a topological space X is

said to be

a) upper semicontinuous, if for each x ∈ X the set {y ∈ X : y �
x} is closed;
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b) lower semicontinuous, if for each x ∈ X the set {y ∈ X : x � y}
is closed; and

c) continuous, whenever � is both upper and lower semicontinuous,

i.e., whenever for each x ∈ X the sets

{y ∈ X : y � x} and {y ∈ X : x � y}

are both closed.

Since the complements of the sets {y ∈ X : y � x} and {z ∈ X :

x � z} are {z ∈ X : z � x} and {y ∈ X : y � x} respectively, it should

be immediate that a preference relation � on a topological space X is

continuous if and only if for each x ∈ X the sets

{y ∈ X : y � x} and {z ∈ X : x � z}

are both open.

The continuous preferences are characterized as follows.

Theorem 1.1.3 For a preference relation � on a topological space X

the following statements are equivalent.

a) The preference � is continuous.

b) The preference � (considered as a subset of X × X) is closed in

X ×X.

c) If x � y holds in X, then there exist disjoint neighborhoods Ux and

Uy of x and y respectively, such that a ∈ Ux and b ∈ Uy imply a � b.

Proof. (a) ⇒ (c). Let x � y. We have two cases.

I. There exists some z ∈ X such that x � z � y. In this case, the two

neighborhoods Ux = {a ∈ X : a � z} and Uy = {b ∈ X : z � b} satisfy

the desired properties.
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II. There is no z ∈ X satisfying x � z � y. In this case, take Ux =

{a ∈ X : a � y} and Uy = {b ∈ X : x � b}.
(c) ⇒ (b). Let {(xα, yα)} be a set of � satisfying (xα, yα) → (x, y)

in X × X. If y � x holds, then there exist two neighborhoods Ux and

Uy of x and y respectively, such that a ∈ Ux and b ∈ Uy imply b � a.

In particular, for all sufficiently large α, we must have yαxα, which is a

contradiction. Hence, x � y holds, and so (x, y) belongs to �. That is,

� is a closed subset of X ×X.

(b) ⇒ (a). Let {yα} be a net of {y ∈ X : y � x} satisfying yα → z in

X. Then the net {(yα, x)} of � satisfies (yα, x) → (z, x) in X ×X. Since

� is closed in X ×X, we see that (z, x) ∈�. Thus, z � x holds, proving

that the set {y ∈ X : y � x} is a closed set.

In a similar fashion, we can show that the set {y ∈ X : x � y} is a

closed set for each x ∈ X, and the proof of the theorem is complete. �

Throughout this book we shall employ the symbol R to indicate the

set of real numbers. Any function u : X → R defines a preference relation

on X by saying that

x � y if and only if u(x) ≥ u(y).

In this case x � y is, of course, equivalent to u(x) > u(y).

A function u : X → R is said to be a utility function representing

a preference relation � on a set X whenever x � y holds if and only

if u(x) ≥ u(y). The utility functions are not uniquely determined. For

instance, if a function u represents a preference relation, then so do the

functions u + c, u3, u5 and eu.

When a preference relation can be represented by a utility function ?

The next theorem tells us that a very general class of preference relations
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can be represented by utility functions.

Theorem 1.1.4 Every continuous preference on a topological space with

a countable base of open sets can be represented by a continuous utility

function.

Convexity is used to express the behavioral assumption that the more

an agent has of commodity i, the less willing she is to exchange a unit

of commodity i for an additional unit of commodity i, i.e., convexity

represents the notion of diminishing marginal rate of substitution. Several

convexity properties of preference relation are defined next.

Definition 1.1.5 A preference relation � defined on a convex subset X

of a vector space is said to be:

a) Convex; whenever y � x and z � x in X and 0 < α < 1 imply

αy + (1− α)z � x.

b) Strictly convex; whenever y � x, z � x and y different than z

imply αy + (1− α)z � x for all 0 < α < 1.

It should be clear that a preference relation � defined on a convex

set X is convex if and only if the set {y ∈ X : y � x} is convex for each

x ∈ X.

A utility function that gives rise to a convex preference is referred to

as a quasiconcave function. Similarly, a utility function that gives rise to

a strictly convex preference is known as a strictly quasi-concave function.

Their definition is as follows.

Definition 1.1.6 A function u : C → R defined on a non-empty convex

subset C of a vector space is said to be:

7



1. Quasi-concave; whenever for each x, y ∈ C with x 6= y and each

0 < α < 1 we have

u(αx + (1− α)y) ≥ min{u(x), u(y)}.

2. Strictly quasi-concave; whenever for each pair x, y ∈ C with

x 6= y and each 0 < α < 1 we have

u(αx + (1− α)y) > min{u(x), u(y)}.

3. Concave; whenever for each x, y ∈ C with x 6= y and each 0 <

α < 1 we have

u(αx + (1− α)y) ≥ αu(x) + (1− α)u(y).

4. Strictly concave; whenever for each x, y ∈ C with x 6= y and

each 0 < α < 1 we have

u(αx + (1− α)y) > αu(x) + (1− α)u(y).

The concavity properties can also be expressed in terms of convex

combinations. For instance, it can be shown easily by mathematical in-

duction that a function u : C → R defined on a convex subset of vector

space is quasi-concave if and only if

u

(
n∑

i=1

αixi

)
≥ min{u(xi) : i = 1, . . . , n}

holds for each convex combination
n∑

i=1

αixi of elements of C. Similar

statements hold true for the other concavity properties.
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A function u : C → R defined on a convex subset C of a vector space

is said to be convex whenever −u is concave, i.e., whenever for each

x, y ∈ C and each 0 < α < 1 we have

u(αx + (1− α)y) ≤ αu(x) + (1− α)u(y).

Similarly, a function u is said to be strictly convex whenever −u is

strictly concave.

Every concave function is quasi-concave. Indeed, if u : C → R is a con-

cave function and x, y ∈ C and 0 < α < 1, then put m = min{u(x), u(y)}
and note that

u(αx + (1− α)y) ≥ αu(x) + (1− α)u(y) ≥ αm + (1− α)m = m.

The converse is false. For instance, the function u : [0,∞) → R defined by

the formula u(x) = x2 is quasi-concave (in fact, strictly quasi-concave)

but it is not a concave function (why?). In a similar manner, we can

establish that a strictly concave function is strictly quasi-concave.

The concave twice differentiable functions are precisely the ones hav-

ing non-positive second derivatives. The details follow.

Theorem 1.1.7 Let (a, b) be an open interval of R and let f : (a, b) → R

be a twice differentiable function. Then f is concave (resp. convex) if and

only if f ′′(x) ≤ 0 (resp. f ′′(x) ≥ 0) holds for all x ∈ (a, b).

Proof. Assume first that f : (a, b) → R is a concave function and let

x ∈ (a, b). Pick h small enough such that x + h and x − h both belong

to (a, b). Using Taylor’s second order formula we have

f(x + h)− f(x) = f ′(x)h +
1

2
f ′′(x)h2 + o(h2)
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and

f(x− h)− f(x) = −f ′(x)h +
1

2
f ′′(x)h2 + o(h2).

Thus,
f(x + h)− 2f(x) + f(x− h)

h2
= f ′′(x) +

o(h2)

h2
,

and so

f ′′(x) = lim
h→0

f(x + h)− 2f(x) + f(x− h)

h2
. (∗)

Since,

f(x + h)− 2f(x) + f(x− h)

= 2

[
1

2
(x + h) +

1

2
f(x− h)− f

(
1

2
(x + h) +

1

2
(x− h)

)]
≤ 0

holds, it follows from (∗) that f ′′(x) ≤ 0.

Now assume that f ′′(x) ≤ 0 holds for all x. Fix s and t in (a, b) such

that s < t, and let 0 < α < 1. Put r = αs + (1 − α)t. By the Mean

Value Theorem there exist ζ, ξ and τ satisfying s < ζ < r < τ < t and

ζ < ξ < τ such that

αf(s) + (1− α)f(t)− f(r) = α[f(s)− f(r)] + (1− α)[f(t)− f(r)]

= αf ′(ζ)(s− r) + (1− α)f ′(τ)(t− τ)

= αf ′(ζ)(1−α)(s−t) + (1− α)f ′(τ)α(t− s)

= α(1− α)(t− s)[f ′(τ)− f ′(ζ)]

= α(1− α)(t− s)(τ − ζ)f ′′(ξ) ≤ 0.

That is, f(r) ≥ αf(s)+(1−α)f(t) holds, which shows that f is a concave

function.

The above proof also shows that if f ′′(x) < 0 holds for all x ∈ (a, b),

then f is strictly concave. �

10



The following theorem characterizes the quasi-concave and strictly

quasi-concave functions.

Theorem 1.1.8 For a convex subset C of a vector space and a function

u : C → R the following statement hold.

a) The function u is quasi-concave if and only if the preference rela-

tion defined by u is convex.

b) The function u is strictly quasi-concave if and only if the preference

relation defined by u is strictly convex.

Proof. We shall prove (a) and leave the identical arguments for proving

(b) to the reader. Assume first that u is a quasi-concave function and let

x � y and z � y hold in C (i.e., u(x) ≥ u(y) and u(z) ≥ u(y)) and let

0 < α < 1. Since u is quasi-concave, we have

u(αx + (1− α)z) ≥ min{u(x), u(z)} ≥ u(y),

which means that αx + (1− α)z � y.

Now assume that the preference relation defined by u is convex and

let x, y ∈ C. Without loss of generality, we can suppose that u(x) ≥ u(y)

(i.e., x � y). From x � y and y � y and the convexity of �, we see that

αx + (1− α)y � y. Therefore,

u(αx + (1− α)y) ≥ u(y) = min{u(x), u(y)},

and the proof of theorem is finished. �

We now turn our attention to monotonicity of preferences. Usually, in

such a case the preference is defined on a subset of a (partially) ordered

vector space.

11



An ordered vector space E is a real vector space E together with an

order relation ≥ that satisfies the following two properties connecting the

algebraic and order structures.

i) If x ≥ y holds in E, then x+ z ≥ y + z also holds for all z ∈ E; and

ii) If x ≥ y holds in E, then αx ≥ αy also holds for all α ≥ 0.

The symbol x > y is used to designate that x ≥ y and x 6= y both

hold. The set E+ = {x ∈ E : x ≥ 0} is known as the positive cone of E

and its elements are referred to as the positive vectors.

The important example for this chapter will be the ordered vector

space E = Rm. The ordering is defined by x = (x1, x2, . . . , xm) ≥ y =

(y1, y2, . . . , ym) if and only if xi ≥ yi holds for all i = 1, 2, . . . ,m. The

positive cone of Rm is denoted by Rm
+. Clearly,

Rm
+ = {x = (x1, x2, . . . , xm) : xi ≥ 0 holds for all i = 1, 2, . . . ,m}.

Note that x > y holds in Rm if and only if xi ≥ yi holds for all i and

xi > yi holds for at least one i.

Definition 1.1.9 A preference relation � on a non-empty subset X of

an ordered vector space is said to be:

a) Monotone; whenever x, y ∈ X and x > y imply x � y; and

b) Strictly monotone; whenever x, y ∈ X and x > y imply x � y.

A strictly monotone preference is clearly monotone. However, a mono-

tone preference need not be strictly monotone. For example, consider the

preference on R2
+ defined by the utility function u(x, y) = xy. Clearly,

(x1, y1) > (x2, y2) implies

u(x1, y1) = x1y1 ≥ x2y2 = u(x2, y2).
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On the other hand note that (2, 0) > (1, 0) and (2, 0) � (1, 0) hold.

The level curves of a strictly monotone quasi-concave function are

”convex to the origin”. Recall that a level curve of a function u : C → R is

any set of the form {x ∈ C : u(x) = c}, where c is any fixed real number

- in economics the level curves are known, of course, as indifference

curves. Intuitively, a curve is said to be ”convex to the origin” whenever

its graph has the shape shown in Figure ??. Mathematically, a ”convex

to the origin” curve is described by saying that if A and B are any two

points on the curve, then a ray passing through the origin O and any

point X of the line segment AB will meet the curve at most at one

point D between O and X. The notion of diminishing marginal rate of

substitution is clearly seen by observing the slopes at points A and B.

Theorem 1.1.10 Let u : C → R be a function defined on a convex sub-

set C of the positive cone of some ordered vector space. If u is strictly

monotone and quasi-concave, then its level curves are convex to the ori-

gin.

Proof. Assume that x, y ∈ C satisfy u(x) = u(y) = c and let z =

αx + (1− α)y for some 0 < α < 1. Since u is quasi-concave, we see that

u(z) ≥ min{u(x), u(y)} = c.

Since u is strictly monotone, we see that the ray {λz : λ ≥ 0} cannot

meet the level set {a ∈ C : u(a) = c} at any point outside the line

segment joining 0 and z. This shows that the level curves of u are convex

to the origin. �

We continue our discussion with the introduction of the extremely

desirable bundles (vectors).
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Definition 1.1.11 Let � be a preference relation defined on a subset X

of a vector space E. Then a vector v ∈ E is said to be an extremely

desirable bundle (or vector) for � whenever

1. x + αv ∈ X holds for all x ∈ X and α > 0; and

2. x + αv � x holds for all x ∈ X and α > 0.

Note that if v > 0 is an extremely desirable bundle (vector) then so is

λv for each λ > 0. It was mentioned before that quite often preferences

are represented by utility functions. The next theorem is an important

representation theorem for preferences defined on the positive cone of a

finite dimensional vector space.

Theorem 1.1.12 For a continuous preference � defined on the positive

cone Rm
+ of some Rm the following statements hold:

1. If � is convex, monotone with an extremely desirable bundle (vec-

tor), then � can be represented by a continuous, monotone and quasi-

concave utility function.

2. If � is strictly convex and strictly monotone with an extremely

desirable bundle (vector), then � can be represented by a continuous,

strictly monotone and strictly quasi-concave utility function.

Proof. We shall prove (1) and leave the identical proof of part (2) for

the reader. So, let � be a continuous, convex and monotone preference

relation having an extremely desirable bundle (vector) v. Replacing v by

e = v + (1, 1, . . . , 1), we see (by the monotonicity of �) that e is also

extremely desirable. Thus, we can assume that there exists an extremely

desirable bundle (vector) e = (e1, e2, . . . , em) satisfying ei > 0 for each i.

Now for each x ∈ Rm
+, we put

u(x) = inf{α > 0 : αe � x}.
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Since all components of e are positive, there exists some α > 0 such that

αe > x, and so by the monotonicity αe � x must hold for some α > 0.

Thus, u(x) is well defined.

We claim that x ∼ u(x)e. Since the set {y ∈ Rm
+ : y � x} is closed,

it easily follows that u(x)e � x holds. On the other hand, if u(x) > 0,

then for all ε > 0 sufficiently small we must have x � (u(x) − ε)e, and

so by letting ε → 0, we see that x � u(x)e also holds. Consequently,

if u(x) > 0, then u(x)e ∼ x. If u(x) = 0, then from x ≥ 0 and the

monotonicity of �, we infer that x � 0 = u(x)e. That is, x ∼ u(x)e is

also true in this case.

Now observe that if α ≥ 0 and β ≥ 0, then αe � βe if and only if

α ≥ β. Indeed, if αe � βe, then β > α implies βe = αe + (β − α)e � αe,

which is impossible. In particular, the above show that for each x in Rm
+

there exists exactly one scalar - the number u(x) - such that x ∼ u(x)e.

Now it should be clear that the function u : Rm
+ → R defined above

is a utility function representing �. The continuity of u follows from the

identities

{x ∈ Rm
+ : u(x) ≤ r} = {x ∈ Rm

+ : x � re}

and

{x ∈ Rm
+ : u(x) ≥ r} = {x ∈ Rm

+ : x � re}

and the continuity of �. �
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