
Impact of Background and Experience on Software Inspections

Ph.D. Thesis Proposal

Jeffrey Carver

University of Maryland

Abstract

As the popularity of software grows so does the need for quality. In many contexts software inspections
have become or are becoming an important part of the quality assurance effort for software products.
Software inspections continue to spread across the industry. Inspections are a process whereby software
artifacts are examined by a group of inspectors to ensure that they meet some set of quality constraints.
Because the performance of different inspectors varies during an inspection, we decided to explore the
causes of this variation. Because research has shown that the variations among inspectors can have a
greater effect on the outcome of the inspection than the variations in the actual inspection process, we have
chosen to focus our investigation on those variations among inspectors. We want to explore what types of
defects inspectors having different backgrounds and experience find. There are three steps to this work:
• Develop a useful defect classification scheme
• Develop a list of Background and Experience variables
• Determine how the variables relate to the defect classes

We will be interested in investigating the overall performance of the different inspectors as well as their
performance with respect to the defect classes in our defect classification schemes. We will perform our
evaluation on data collected from experiments and other empirical studies. The details of these studies will
be described as well as how the data will be used. The overall goal of this work is to provide inspection
process mangers with a set of heuristics to guide their selection of inspectors for their inspection teams.

1

1. Introduction __ 3

1.1 Problem Statement ___3

1.2 Definitions __5
1.2.1 Inspections__ 5
1.2.2 Perspective Based Reading (PBR)__ 5
1.2.3 Object Oriented Reading Techniques (OORTs) _____________________________________ 6

1.3 Proposal Approach ___7
1.3.1 Defect Classification Schemes___ 7
1.3.2 Background and Experience Variables ___ 15
1.3.3 Relationships between the Background and Experience Variables and Defect Classes ______ 21
1.3.4 Summary __ 24

1.4 Other Related Research __25

1.5 Evaluation Plan ___26
1.5.1 Evaluation of Defect Classifications ___ 26
1.5.2 Evaluation of Background and Experience Variables ________________________________ 27
1.5.3 Evaluation of Interaction between Background and Experience Variables and Defect Classes 27

2. Completed Work__ 29

2.1 The Exper iment ___30

2.2 Developing Classification Schemes ___32
2.2.1 Introduction __ 32
2.2.2 Initial Work on Defect Classifications__ 32

2.3 Identifying initial list of Exper ience Var iables________________________________36
2.3.1 Introduction __ 36
2.3.3 Initial Work on Experience Variables __ 36

2.4 Evaluating Interaction between Exper ience Var iables and Defect Classes_________38
2.4.1 Introduction __ 38
2.4.2 Initial Work on relationships between Experience Variables and Defect Classes___________ 38
2.4.3 Conclusion___ 38

3 Proposed Work___ 39

3.1 The Data and Exper iments__39
3.1.1 PBR Experiment at NASA___ 39
3.1.2 CMSC435 Fall 1998 ___ 39
3.1.3 CMSC435 Spring 2000 ___ 40
3.1.4 USC Experiment __ 41
3.1.5 Other Experiments___ 42
3.1.6 Other Data ___ 43

3.2 Validation and Improvement of Defect Classifications _________________________44

3.3 Validation and Improvement of list of Exper ience Var iables____________________46
3.3.1 Environment Variables ___ 46
3.3.2 Training ___ 47
3.3.3 Domain Knowledge__ 48
3.3.4 Software Development Experience __ 49
3.3.5 Experience in another similar inspection process ___________________________________ 49
3.3.6 Experience with this inspection process __ 50
3.3.7 Natural Language__ 50

2

3.3.8 Process Conformance __ 51

3.4 Understanding and Validation of Linkage between Var iables and Defects_________52

4 Summary ___ 53

References__ 54

3

1. Introduction

1.1 Problem Statement

As the popularity of software grows so does the need for quality. This situation has driven software
engineering researchers to investigate technologies that can aid in improving quality. In many contexts
software inspections have become or are becoming an important part of the quality assurance effort for
software products [Glass99], [Johnson94], [Laitenberger99]. Inspections are a process whereby software
artifacts are examined by a group of inspectors to ensure that they meet some set of quality constraints.
Another common goal for inspections is to uncover defects in the artifact. The increasing popularity and
perceived usefulness of this technology can be seen by its spread into various industrial settings [Bush90],
[Doolan92], [Fowler86], [Grady94], [Russell91], [Votta93], [Weller93]. While early inspection work
focused on how inspections could be used to improve the quality of code, since then researchers have
expanded inspections to cover not only code but also requirements [Basili96], [Kelly92], [Schneider92],
design [Parnas85], [Laitenberger00], [Kelly92], [Travassos99], test plans [Kelly92], and even user
interfaces [Zhang99].

Prior to inspections was the idea of a walkthrough. The walkthrough could range anywhere from a simple
peer review all the way up to a formal inspection of the type we are discussing here. One of the problems
with using walkthroughs in a process that is going to be improved is that normally very little data is
collected because walkthroughs are less formal and applied differently in each setting. Because of this the
efficiency of defect detection is quite variable [Fagan86]. Because we wish to study a more controlled
process, we have chosen to investigate inspections instead of walkthroughs.

It has been pointed out that all project environments and products are different in some way [Basili88],
even described by one author as “ its own unique world” [Ackerman89]. Because of these differences the
application of techniques and methods on different project should expect to vary. There are many
dimensions upon which software development organizations can differ. For example, the application
domain can vary from business software to satellite support software. Another dimension of potential
variation can be the level of risk inherent in the project. For some applications, failure may mean only mild
inconveniences, while with other applications, it could mean loss of life. While there are some standard
methods and practices for performing inspections, in many cases the application of those methods may
need to be tailored in some way because of this variation.

A brief description of inspections will be given here with a more complete discussion presented in Section
1.2.1. The basic idea behind an inspection is that members of a software development organization review
a software artifact to ensure that it possesses some level or characteristics of quality. An inspection
consists of a series of steps. First, the author of the artifact gives the inspectors an introduction and
overview of the artifact. Next, the individual inspectors review the software artifact to prepare for the team
meeting. After the individuals have inspected the document, they meet together as a team to record the
defects that are found. Finally, the document author is given this list of defect so that he or she may repair
them in the software artifact [Fagan76].

In most cases, the research surrounding inspections has dealt with improving the inspection meeting. This
line of research makes the assumption that individual inspectors already know how to inspect software
artifacts on their own. As most software developers are taught only how to write documents but not how to
read them, we question this assumption. Research has shown that providing inspectors with detailed
techniques can improve their performance over simple ad hoc reading [Shull98]. Other researchers have
even questioned the need for an inspection meeting at all [Porter97, Votta93]. In either case, work on the
individual inspection either prior to the meeting, or in place of the meeting, has not been studied as much as
the inspection meeting has. Because the research has questioned the necessity of the meeting, and because
research has shown improvement for individuals when given a specified technique to use, there is a need
for aiding the inspector, either before the inspection meeting or in the absence of the inspection meeting, to
become better and more efficient at the job of detecting defects in the software artifacts.

4

In addition to variability of the techniques and methods used within a software development process, the
inspectors also come with different backgrounds and experiences. An inspector who is very experienced in
a highly technical domain such as mission planning for a spacecraft should be expected to perform
differently in a software inspection for that domain than someone who is not familiar with that domain.

Studies of inspections that have been performed confirm the fact that variations among inspectors can have
an impact on the outcome of the inspection. Some argue that lack of product knowledge can be beneficial
by allowing for a different perspective on the artifact [Dow94]. On the other hand, other organizations
employ experts in various aspects of the product to perform the inspection [Doolan92]. Other researchers
have found that certain individual inspectors have a effect on the outcome of the inspection [Porter98],
[Siy96].

So, not only does the development organization have to worry about how the specific techniques and
methods will positively or negatively affect their software development process, they also must have a way
to evaluate the background and experience of each of their team members. The way in which these
evaluations are done and the results reported by them must give the process manager some guidance on
how to staff an inspection.

In order to do this, the relationship between different background characteristics and the performance
during an inspection needs to be studied. If a causal effect can be located, then the process manager can be
given some guidance for planning their inspections. For example, if we can determine that having high
domain experience improves performance during a requirements inspection, then when building the attitude
control system of a new satellite, the process manager will want to choose inspectors who are very familiar
with the domain to be members of his or her Software Requirements inspection team.

Because a structured review technique is not always used in performing an inspection, we want to
investigate not only those inspections that were performed using a technique but also inspections that were
done in an ad hoc way, meaning inspectors are allowed to review the document in the way that they think is
most effective. Investigating both types of inspections will allow us to say something about inspections in
general instead of being limited to only those in which a structured review technique is used.

5

 1.2 Definitions
In this section we will provide more extensive definitions of some terms and concepts that will be used
throughout the proposal. We will begin with a more complete discussion of inspections. The goal here is
to provide a brief overview of the state of the practice. Following this, two specific

1.2.1 Inspections
The concept of inspections is not unique to software engineering. Many fields have some type of
inspection of their artifacts. The goals of these inspections can vary from setting to setting, but a general
goal is ensuring that the artifact is of sufficient quality to be used by the customer(s) of that document. For
example architects have their drawings inspected for feasibility before passing them along to the
construction team. In the same way, software development teams have their software artifacts inspected
before passing them along (to the next phase of the lifecycle). Since the first work on inspections in 1976
[Fagan76], many variations have emerged.

The main idea of the inspection as defined by Fagan is as follows. Once the author completes a software
artifact, which could be a requirements document, design, or code, they submit it for inspection. The
inspection consists of multiple steps. The inspection leader first chooses a team of people who will
perform the inspection. Then, the document to be inspected is distributed to these team members. The
author of the document gives a brief overview and background to provide some context. The team
members spend time individually reading over the document and becoming familiar with it. Once all
inspectors are prepared, the inspection leader calls for a meeting. At this meeting, the document is read
through and defects are uncovered by the inspectors. The defects are collected in a list, which is returned to
the document author. The author then fixes these defects, or explains why they are not defects.

Since the initial definition of the inspection process, many variations have been made on it. Changes to the
structure of the meeting, variation of the number of meeting participants, elimination of the meeting and
many other minor changes have all been suggested as variations to the basic inspection process. But, the
main goal still remains to critically examine a software software artifact to uncover defects that may be
present so those defects can be removed before the document is used by its customers. For more
information see [Fagan76], [Fagan86], [Gilb93], [Porter97], [Votta93]. While much of this research has
focused on improving the inspection meeting, some work has been done on improving the individual
inspection. Various techniques have been proposed to aid the inspectors when performing the individual
stage of the inspection. Two such techniques are explored in the experiments that make up this proposal.
Perspective Based Reading (PBR) for the inspection of requirements document will be discussed in Section
1.2.2. Object Oriented Reading Techniques (OORTs) for inspection of an object oriented design will be
discussed in Section 1.2.3.

1.2.2 Perspective Based Reading (PBR)
The generic inspection procedure does not provide any assistance to the individual reader to help in the
preparation for the inspection meeting. In order to help readers perform the individual inspections for
requirements, a technique called Perspective Based Reading (PBR) [Basili96] was developed. This
technique was based on the fact that there are various “customers” of the requirements document
throughout the software lifecycle. The goal of this technique was to provide each individual inspector with
a specific view or perspective from which to review the requirements document, such that all of these
customers were represented in the review team. The assumption is that if multiple reviewers can all inspect
the document from different perspectives, then when those perspectives are put together we will achieve
much better coverage of the document.

The initial perspectives that were defined are tester, user, and designer. For each perspective, the inspector
is instructed to create a high-level abstraction of the software artifact that customer would normally create.
In the process of creating that software artifact, the inspector will uncover defects. For example, when
using the tester perspective, the inspector creates a test plan for the requirements. If the inspector comes
across a requirement that is not defined in such a way that a test plan can be created, then they have
uncovered a defect.

6

1.2.3 Object Or iented Reading Techniques (OORTs)
Similar to PBR described in the previous section, inspectors need to be provided with guidance in
performing the individual inspection for Object Oriented designs. Because the requirements and the design
are supposed to be different representations of the same system, these techniques aim to ensure that all of
the information was captured from the requirements in a consistent way. In order to do this, two types of
techniques were defined, horizontal and vertical. Horizontal techniques are ones that are used to compare
two different design documents. The goal of these techniques is to ensure that the design is internally
consistent. For example are all of the methods on the sequence diagrams actually methods in the class
diagram. The vertical techniques are used to compare the design documents back to the requirements and
the use cases. These techniques are used to ensure that not only is the design consistent with itself, but
does it correctly capture the requirements. For example, the inspector might find some functionality
described in the requirements that does not appear anywhere in the design. More details on these
techniques and their evolution can be found in [Travassos99b], [Shull99].

7

1.3 Proposal Approach
As we began to examine the results of inspections that had been conducted as part of experiments, we
noticed a large variation among the performance of different inspectors. These inspectors were inspecting
the same artifact using the same technique, but were performing quite differently. We decided to explore
whether or not the inspectors that were performing the best had some characteristic(s) in common. If we
could determine what those characteristics were, then we could provide an inspection planner with some
valuable information during the planning stages.

This result is not unique to our own research. Other researchers have also found that differences among
inspectors can have and effect on the outcome of the software inspection [Sauer00], [Porter97]. In fact they
go so far as to argue that the greatest improvements in the performance in an inspection can be seen by
improving the effectiveness of the individual inspectors and not by improving the team meeting. This
implies that choosing the best members of the inspection team could potentially have a great and positive
impact on the outcome of the inspection process.

Realizing that there are differences among inspectors and that those differences are potentially very
important, we have decided to investigate those differences and their effect on the software inspection
process. In order to do this, we first need to understand what those differences are. This process is
discussed in more detail in Section 1.3.2. We also realize that in order to measure how these variables
affect the process we also saw the need for defect classifications. The defect classifications are described
in more detail in Section 1.3.1. Finally, once we have the important variables and the defect classifications,
we must look for relationships between the two. That is, we will be looking for situations where the value
of one of the variables has a direct effect on finding defects of a particular class. This will be discussed in
Section 1.3.3.

1.3.1 Defect Classification Schemes
In order to understand the types of defects that occur in software artifacts better, researches have developed
defect classification schemes. Defect classification schemes, if properly specified, can be useful for
repeatability and comparisons across studies and environments [Basili84]. These schemes attempt to group
the defects that occur in a particular environment into classes. Below we will discuss work done by others
in the area of classifying defects. In each case, the reason the organization classifies their defects is the
main driver as to what the defect classifications will look like. The scope and specificity of the
classifications described below varies greatly depending on the goals of the organization. After the related
work is discussed, our approach to defect classification will be described. Then we will discuss how our
approach differs from those presented in the literature. Finally we will present the methodology which we
will follow.

1.3.1.1 Related Work
The idea of grouping defects into classes is not a new one. Any organization that wishes to measure their
process with the intent of improving must classify the defects that are found using it. This can range from a
relatively simple classification of only 2 classes, major and minor, to something much more elaborate as
our approach will be. The types of classification that an organization uses will be based on its reason for
classifying the defects. The classification will also depend on the lifecycle phase in which the inspection is
going to occur.

Taking into account their local environments, researchers have proposed many different defect
classifications schemes. Of these, some claim to be useful for documents produced throughout the software
lifecycle. Others are directed at documents from a specific lifecycle phase. Most of them have dealt with
either defects in requirements documents or defects in source code. Very few of the published
classifications deal specifically with defects in design documents. The examples below provided both input
to our initial classifications as well as a first check on those newly developed classifications.

Defect Classification Schemes for Requirements
In [Basili81] the authors describe a study of the evolution of a requirements document for the on-board
operational flight program for the A-7 aircraft. This is a complex, real-time program. The defects are
actual defects that were made in the evolution of the document. The authors here defined a one level

8

classification scheme with 7 categories. These classes were used to make hypothesis about what kinds of
defects were the most common to make.

Cler ical – relatively simple problems with the document like typos.
Ambiguity – something in the document has more than one meaning.
Omission – something has been left out of the document.
Inconsistency – two parts of the document are inconsistent with one another.
Incorrect Fact – something in the document is incorrect with respect to the domain.
Information Put in Wrong Section – information included in the document was placed in the
wrong section.
Implementation Fact not Included – information necessary for a proper implementation was not
given.
Other – defects that do not fall into other classes.

In a paper discussing the benefits that have been gained by applying inspections throughout the software
development lifecycle, [Ackerman89] gives a classification scheme for defects found in requirements
documents. The authors point out that for an inspection to be effective, the types of defects to be looked
for must be specified. Therefore, their goal for classifying the defects is to provide the inspections with a
guide to keep them on task during the inspection. While they state that inspections can be used on
requirements, design, code, test plans, and test specifications, they only provide the classification for
requirements. Their classification scheme has, like ours, two levels, but they do not give a reason for
having these two levels. It appears that the top level may be more for grouping and organization while the
second level provides the more specific defect detection questions. Here is their defect classification
scheme for requirements:

Completeness
1. Are all sources of input identified?
2. What is the total input space?
3. Are there any “don’ t care” sets in the input space?
4. Is there a need for robustness across the entire input space?
5. Are there any timing constraints on the inputs?
6. Are all types of outputs identified?
7. What is the total output space?
8. Are there any timing constraints on the outputs?
9. Are there sets that are in both the input and output spaces? Is there any state

information?
10. What are all the types of runs?
11. What is the input space and the output space for each type of run?
12. For each type of run, is an output value specified for each input value?
13. Is the invocation mechanism for each run defined? Are initial states defined?
14. Are all environmental constraints described?
15. Are sample input/output examples provided where appropriate?
16. Are all necessary performance requirements described?
17. Should reliability requirements be specified? Is an operational profile specified?

Ambiguity
1. Are all special terms clearly defined?
2. Does each sentence have a single interpretation in the problem domain?
3. Is the input-to-output mapping clearly defined for each type of run?

Consistency
1. Do any of the designated requirements conflict with the descriptive material?
2. Are there any input states that are mapped to more than one output state?
3. Is there a consistent set of quantitative units used? Are all numeric quantities

consistent?

In [Schneider92], the authors were investigating a variation on the traditional inspection. In this variation,
instead of only one inspection being performed on a requirements document, the authors investigate the
benefits gained by having multiple, independent inspections of the same requirements document. The
requirements document in this study was for a “real-time track control for railway companies” . The defects

9

that were present in the document consisted of a combination of those that the document author, an expert
in the domain of railroad engineering, made during the actual creation of the document, as well as some
defects added by the researchers to balance the numbers among the different defect classes. They had two
high level classes with subclasses in each. Their reason for classifying the defects was to see if their new
inspection process affected how inspectors performed in finding any of these classes of defects.

Missing Information
Missing Functionality or M issing Feature – Information describing internal behavior of
the system has been omitted
Missing Inter face – Information about how the system communicates with objects
outside the system has been omitted.
Missing Per formance – Performance specifications have either been omitted or
described in an untestable way.
Missing Environment – Information about the external
hardware/software/databases/personnel has been omitted.

Wrong Information
Ambiguous Information – An important term has not been defined or has been defined
in a way that has multiple interpretations.
Inconsistent Information – Two parts of the document contradict each other.

In their paper, [Porter94, Porter95] discuss a study on scenario-based reading, where each inspector
executes a series of steps to discover a particular class of defects. The domains of the requirements
inspected were a cruise control system and a water level monitoring system. The defect classification
scheme used here relied heavily on the work of [Basili81] and [Schnedier92], discussed above. In the
experiment described in the paper, the authors are comparing ad hoc reading, to checklist reading, to their
new technique of scenario-based reading. Scenarios were developed so that each one targeted a specific
class of defects. The reason for using a defect classification here was two-fold. First, because they were
comparing three detection methods, they needed a constant basis for comparison. Secondly, because
scenarios were developed to target specific classes of defects, they needed a classification scheme that was
useful for that purpose. Again, the defect classification has two levels, with the first one being very
abstract, and the second one being more useful in actual defect detection. Both the top level and the second
level draw greatly from the two studies mentioned above. These authors combined those classification
schemes into one that useful for their environment.

Omission
1. Missing Functionality – Information describing the desired internal operational

behavior of the system has been omitted.
2. Missing Per formance – Information described the desired performance

specification has either been omitted or described in a way that is unacceptable for
acceptance testing.

3. Missing Environment – Information describing the required hardware, software,
database, or personnel environment in which the system will run has been omitted.

4. Missing Inter face – Information describing how the proposed system will interface
and communicate with objects outside the scope of the system has been omitted.

Commission
1. Ambiguous Information – An important term, phrase or sentence essential to the

understanding of the system has either been left undefined or defined in a way that
can cause confusion and misunderstanding.

2. Inconsistent Information – Two sentences directly contradict each other or express
actions that cannot both be correct or cannot both be carried out.

3. Incorrect or Extra Functionality – Some sentence asserts a fact that cannot be true
under the specified conditions.

4. Wrong Section – Essential information is misplaced within the document.

10

In their paper [Basili96] describe an empirical study of Perspective Based Reading (PBR). The goal of the
study was to determine if PBR was more or less effective at defect detection than simple ad hoc reading.
PBR is described in Section 1.2.2. In their study, they used a different defect classification scheme from
the ones mentioned above. There are many similarities, but there are some differences. They created a one
level defect classification:

Omission
Incorrect Fact
Inconsistency
Ambiguity
Extraneous Information

In [Doolan92], the author describes experiences with using the Fagan Inspection for requirements in the
Seismic Software Support Group (SSSG) at Shell Research. The SSSG is responsible for a software
package of over 2 million lines of Fortran code. The package has over 250 separate high-level geophysical
functions for a variety of platforms. A new release for the package is provided approximately every 6
months. The SSSG places high value and emphasis on the quality of its product. This is the reason that
they chose to investigate the usefulness of the “Fagan Inspection” . In order to gauge this effectiveness,
they judged the cost savings for each hour invested in the inspection. Therefore their classification scheme
is only based on the severity of the defects. The three classes of defects are Minor , Major , and Super
Major . Based on their history, they equate 25 minor defects to equal one major defect, and one super
major defect is equivalent to 10 major defects. They used this information to determine that for each hour
invested in software inspections, they saved nearly 30 hours later in the software lifecycle.

Defect Classification Schemes for Design
Less work has been done on classifying design defects than has been done for classifying defects from the
other lifecycle phases. We have done some previous work on defect detection in Object Oriented designs
[Travassos99b], [Shull99]. This work has so far been demonstrating the feasibility of reading techniques
for Object Oriented Design inspections, and improving those techniques based on the results of empirical
studies. The defect classification scheme that has been used thus far in this work grew out of the defect
classification scheme for PBR from [Basili96], mentioned in the previous section. The names of the defect
classes are the same, but the descriptions are tailored to make sense for design. Again, this design
classification is only one level, and it is as follows:

Omission – One or more design diagrams that should contain some concept from the general
requirements or from the requirements document do not contain a representation for that concept.
Incorrect Fact – A design diagram contains a misrepresentation of a concept described in the
general requirements or the requirements document.
Inconsistency – A representation of a concept in one design diagram disagrees with a
representation of the same concept in either the same or another diagram.
Ambiguity – A representation of a concept in the design is unclear, and could cause a user of the
document (developer, low-level designer, etc.) to misinterpret or misunderstand the meaning of
the concept.
Extraneous Information – The design contains information that, while perhaps true, does not
apply to this domain and should not be included in the design.

Another example of a design defect classification scheme comes from [Parnas85]. In this paper they
describe a process called Active Design Reviews. The goal of this type of review is to use multiple
inspectors and give each one a slightly different focus. In order to help focus the inspectors’ attention and
to take advantage of different skills and knowledge, they developed a classification scheme. The purpose
of the classification was as a guide for design the reviews to find as many defects as possible. It is as
follows:

Inconsistencies – Places where the design won’ t work.
Inefficiencies – Places where the design imposes a barrier to efficient programming or use.
Ambiguities – Places where the design specification may be interpreted in several ways.
Inflexibilities – Places where the design does not accommodate change well.

11

Defect Classification Schemes for Code
Defect classification schemes for code are the more common compared to those for the other lifecycle
phases. There have been many studies published in which a classification of code defects has been
provided.

In a paper investigating testing vs. code reading [Basili87] provides two defect classification schemes for
defects that can be found in code. Four programs were studied, each from a different domain. Two
different languages were used for those programs, Fortran and Simpl-T. The four programs were 1) a text
processor, 2) a mathematical plotting routine, 3) a numeric abstract data type, and 4) a database maintainer.
The two schemes are:

1) Omission – Result from the programmer forgetting to include something in a segment of
code.

2) Commission – Result from an incorrect segment of existing code.
And

1) Initialization – Improperly initializing a data structure.
2) Computation – Cause a calculation to evaluate the value for a variable incorrectly.
3) Control – Causes the wrong control path to be taken for some input.
4) Inter face – Passing an incorrect or argument or assuming that an array passed as a parameter

was padded with blanks.
5) Data – Result from incorrect use of a data structure.
6) Cosmetic - Clerical mistakes when entering a program.

Each defect can fall into one of the classes from the first set and one from the second set. The goal of these
schemes was to distinguish among the reasons that programmers make faults in software.

In [Russell91], the author discusses the results of a study performed at Bell-Northern Research. In this
study, he investigated inspections of 2.5 million lines of code. The code was for programs in the
telecommunications domain, specifically digital and packet switches. The code, which comes from many
different products, was developed and inspected over a period of about 10 years. The goal of the study
was to determine if code inspections were more or less effective than testing. To determine the types of
defects that were more or less likely to be found by inspection, they created a small classification system
that has 3 classes:

Wrong Statements
Extra Statements
M issing Statements

While not as complete or extensive as some of the other classification schemes, this one does provide us
with a high level distinction between defects.

Another paper dealing with a defect classification scheme for code defects is presented in [Chillarege91].
Their work is based on the Orthogonal Defect Classification for Design and Code defects proposed by IBM
[IBM99], which will be discussed in a later section. Their overall goal is to understand if there is a
measurable cause-effect relationship between defect type and development effort. As that is a difficult goal
to accomplish, this paper deals with a sub-goal of that, namely, the relationship between defect type and
reliability of the final product. As their measurements are based on grouping defects into classes to
determine if any class has a greater impact on the reliability of the product, they had to create a defect
classification scheme. Because their scheme was meant to measure the relationships between large defect
classes and the output of the development process and not meant to improve the individual steps in an
inspection, they did not need a two level classification scheme as we will. Their classification is as
follows:

Function – Occurs when a functionality was either omitted or was implemented incorrectly.
Checking – Occurs when a check such as a boundary or condition check is either incorrect or
omitted.
Assignment – Occurs when an incorrect data value is assigned to a variable after initialization, or
a value is not assigned when it should be.

12

Initialization – Occurs when a default value or an initialization value is either set incorrectly or
not set at all.
Documentation – Occurs when an incorrect description of the program is given, or the description
is omitted.

Similar to the classification scheme described by [Basili87], each one of the above classes can be divided
into defects that are caused by Missing Information and those caused by Incorrect Information.

In [Knight93], the authors discuss another variation on the basic inspection technique. They propose
something called Phased Inspections. In this model, there are many small inspections, each of which
checks the work product for some desirable property. One of their arguments is that when inspectors look
for all defects at once, they are overwhelmed. In order to help with this, they have developed a
classification scheme for defects in code, and only have inspectors focused on a few during each “phase” of
the inspection. Their classification is as follows:

Errors in Logic
Errors in Computation
Errors in Tasking Structure
Unacceptable Inefficiencies
Omitted Functionality

Defect Classification Schemes for multiple lifecycle levels
In addition to the defect classification schemes described above that are relevant or tailored for the
inspection of artifacts from one phase of the lifecycle, there have been some schemes developed that apply
to inspections of artifacts from multiple phases of the lifecycle. Below we will discuss some of these.

In [Fagan76], the initial description of the inspection process for software work products, the author
describes the development of inspections. The usefulness and benefits of inspections are also demonstrated
through analysis of the defect data collected at IBM. This data analysis was used to measure and control
the inspection process. The domain of the software that was inspected is operating systems. The
programming languages investigated include PL/S, Assembler, COBOL and FORTRAN. Fagan developed
three different defect classification schemes. Each defect falls into one class in each of the three schemes.
So, each defect has three classes. Two of the classification schemes are consistent for all inspections. The
first classification scheme breaks defects into classes based on whether they are Major or Minor . The
second classification scheme puts defects into classes based on whether they are caused by Missing
Information, Wrong Information, or Extraneous Information. The defect classification schemes given
for code defects and for design defect are similar but not identical, so each will be presented below. First,
for design defects the classification scheme is:

Logic
Test and Branch
Data Area Usage
Return Codes/Messages
Register Usage
Module Attr ibutes
External L inkages
More Detail
Standards
Prologue or Prose
Higher Level Design Doc.
User Spec.
Maintainability
Per formance
Other

And, for code defects, the classification scheme is:
Logic
Test and Branch
External L inkages

13

Register Usage
Storage Usage
Data Area Usage
Program Language
Per formance
Maintainability
Design Error
Prologue
Code Comments
Other

In [Fowler86], the author discusses AT&T’s success with using inspections. These inspections occur at
multiple points throughout the development lifecycle. While the exact domain of the projects under study
is not given, it can be assumed that they are in the larger domain of telecommunications. The reason given
in this paper for the necessity of a defect classification scheme is to provide a framework for the analysis of
the inspection data for process control and improvement. AT&T’s approach is a bit different from the
others mentioned in this section. While they do have one defect classification scheme that is used across all
lifecycles, Missing, Wrong, or Extra, they do recognize and state the need for a defect classification
scheme to be developed for each type of inspection within a development organization. They provide
examples of the defect classes from some of their inspections. The examples include: Logic defect in
Code, Inter face Defect in Design, and Missing Menu Screen in Requirements Document (human-
inter face defect).

In [Bush90], the author discusses JPL’s experience with implementing Fagan Inspections. JPL was
experiencing some difficulty with some of its systems, and realizing that the impact of software on their
work would only increase as time passed, they decided to implement Fagan Inspections as a way to help
alleviate the problem. At JPL, the lifecycle phases included System Requirements, Subsystem
Requirements, Functional Design, Software Requirements, Architectural Design, Detailed Design, Source
Code, Test Plan and Test Procedures. Inspections were carried out at each of these lifecycle phases. They
developed a one level defect classification scheme that was used for all of the inspections. Their defect
classification included the following classes (not complete):

Clar ity
Correctness
Completeness
Consistency
Compliance with Standards
Data Functionality
Level of Detail
Maintainability
Per formance
Reliability
Traceability

The Orthogonal Defect Classification for Design and Code [IBM99] developed by researchers at IBM
Research is a major attempt at developing a classification scheme. They classify the defects based on two
different pieces of information. The first is when a defect is opened or first discovered. At this point, the
inspector generally knows what caused them to find the defect. The second is when the defect is closed.
At this point, the nature of the fix is known. The classification presented here is used in conjunction with
the activities that trigger the defect detection to determine when particular types of defects should be found,
and to allow for the evaluation and improvement of the inspection process. The classification scheme is as
follows:

Assignment/Initialization – Values assigned incorrectly or not assigned at all.
Checking – Errors caused by missing or incorrect validation of parameters or data in conditional
statements.

14

Algor ithm/Method – Efficiency or correctness problems that affect the task and can be fixed by
(re)implementing an algorithm or local data strcutre without the need for requesting a design
change.
Function/Class/Object – The error should require a formal design change, as it affects significant
capability, end-user interfaces, product interface with hardware architecture, or global data
structure(s).
Timing/Ser ialization – Necessary serialization of shard resource was missing, the wrong resource
was serialized, or the wrong serialization technique was employed.
Inter face/OO Message – Communication problems between modules, components, device
drives, objects and functions via macros, call statements, control blocks, or parameter lists.
Relationship – Problems related to associations among procedures, data structures and objects.

1.3.1.2 Our Proposed Approach
In each case described above a defect classification scheme has developed which is based upon the goals of
the particular organization. While many of the organizations discussed above have as their goal to improve
the quality of their software, our goal is improve the quality of the inspection process. Because our goal
was different from the ones presented above, we decided to create a new set of defect classification
schemes. Our goal really has two parts. One is to evaluate the relationships between the defect classes and
the background and experience variables. The other goal is to improve the inspection process.

Because of the two goals, we decided that it would be necessary to develop defect classification schemes
that had two levels of specificity. The first level should be general enough to capture the major kinds of
defects. The idea here is to have a small number of general classes. This will allow for a large numbers of
defects to appear in each class. We can then perform statistical analysis to study how those classes of
defects behave in relation to the background and experience variables, which are discussed later. The
second level should break each of the general classes up into more specific defect types. These defect types
should not be specific to any one application, but should be specific enough and concretely described such
that it is easy to see exactly what has gone wrong. The goal here is to allow for process improvement.
Each of the specific defects could be a step that needs to be added to a reading technique, or an item that
should be added to a checklist to improve the performance of the inspection.

1.3.1.3 Methodology
Figure 1 below represents the methodology that will be used in the development of the defect classification
schemes. We will begin with the artifacts used in (Loan Arranger and Parking Garage) and data collected
from an experiment which will be described in Section 2.1. We will use the defect lists for both the
requirements documents and the Object Oriented design documents. This distinction will be described in
the description of the experiment. In the experiment, the requirements and design documents were seeded
with some known defects before the experiment (Seeded Defects). In addition to the defects that were

Figure 1 – Methodology for Defect Classifications

Real Defects

Seeded Defects

Seeded Defects

Real Defects

Defect List

Defect List

Abstraction

Abstraction

Literature
Defect
Classification

Defect List

Abstraction

Loan Arranger

Parking Garage

New Application

15

seeded, the subjects discovered some other defects that were injected during the normal creation of the
documents (Real Defects). We call these defects “real” defects, because they were not inserted purposely
by the experimenters. Once we have created the defect list, then we must abstract away the domain
specific information from each defect, so that the defect classifications will be useful across domains and
not for only one specific problem domain. With input from the literature we will then create the initial
defect classification schemes. This will take us to the “Defect Classification” box in Figure 1.

The procedure for refining these defect classification schemes, the two boxes on the far right side of the
diagram in Figure 1, will be much the same as that which was used to initially create them. For each new
experiment or set of defects that we investigate, the defects will be abstracted so that they are no longer
domain specific. Next, we will try to group the new defects into the classification schemes that we have
already defined. If the new defects fit into the schemes, then we do not have to modify the schemes. If
they do not fit into the schemes, then the schemes must be modified in some way to deal with the new type
of defect that has been uncovered.

1.3.2 Background and Exper ience Var iables
In addition to classifying the defects, it also important to examine the characteristics of the people who are
performing the inspections. We need to determine if there are characteristics of an inspector that can either
be helpful or harmful in doing an inspection. If we can determine the most beneficial set of characteristics,
we can provide inspection managers with some guidance when choosing the most desirable people for their
inspection team.

When we talk about background and experience variables, we are really referring to the characteristics,
experience and background that an individual inspector brings to the project. This could be things like
knowledge of the application domain, amount of training in a particular method or techniques, or even
previous experience with the method or technique to be used or one that is similar. Below we will describe
research done by others in the area of background and experience variables. After the related work, we will
present our approach to the problem. Following that will be our methodology for studying the problem.

1.3.2.1 Related Work
It makes sense that the background and experiences of an inspector will have an effect on the way he or she
performs an inspection. This fact has been recognized by many researches that have studied inspections
and most researchers take this fact into account when planning a study or experiment [Parnas85],
[Porter97], [Gilb93], [Sauer00]. Most of the time the researchers do not specifically address this fact, but
often their observations and conclusions point to this background as a factor.

While others have not studied the particular problem that we are investigating, that of creating a list of
relevant background and experience variables, they have understood the impact of an inspectors’
background and have either cited it as basis for a conclusion, or used it as an input when designing the
experiment. Even though these results themselves are not definite proof of which variables may or may not
be important, they do provide a basis for the creation of our initial list to study. Below are brief discussions
of the studies, and information about the potential background and experience variable or variables
identified in each.

In a paper investigating the variation in software inspections, [Porter98] discuss their findings that the
author, the reviewer, and the code unit under inspection all had more of an impact on the output of code
inspections than that inspection process did. They observed that different reviewers found different
numbers of defects in the same code unit. These reviewers also tended to focus on different kinds of
defects. They also noted that because of these differences in reviewers, their combination into teams
caused different teams to behave differently in the inspections. In doing their statistical analysis, they
found that the presence of two different reviewers had a significant impact on the output of the inspection.
They suggest that improving inspection effectiveness could be done by selecting the right reviewers, or by
studying the background and characteristics of the best reviewers.

In a paper discussing their experiences with using inspections, [Ackerman89] says that because the creation
of software is highly individualistic and each piece of software is in some sense its own little world, it is

16

difficult for an inspection team to uncover defects without understanding this world. Because of this, he
suggests using inspectors who are building “similar worlds” . Meaning, choose inspectors who are working
on a similar project or who are working on interfacing projects. This is implies that domain knowledge
may be an important variable. He also states that when they train inspectors, they always provide a practice
inspection. This shows that both training and experience with inspections could be important variables.

In his paper, [Doolan92] discusses the use of inspections in the Shell Software Support Group (SSSG) at
Shell Research. Because of the nature of the domain, the SSSG has people who are both experts in software
engineering and experts in geophysics. The inspectors were chosen from four different places; 1)
geophysical research group, 2) experimental seismic processing group (responsible for evaluating and
testing new software), 3) production processing group making full-time use of the package, and 4) SSSG.
The inspectors were chosen from those locations, because the SSSG felt that the expertise of people in each
of these groups was important. This implies that domain knowledge is an important variable.

In a paper discussing the application of inspections at NASA, [Dow94] investigates whether or not the pool
of potential inspectors can be expanded by using people with less domain knowledge. The goal of the
experiment is to determine if product knowledge is necessary when performing a code inspection. The
authors investigate the assumption that only people with detailed product knowledge can be good
inspectors of a segment of its code. The software that was inspected was part of a robot being developed
for NASA. The robot was to be responsible for inspecting the tiles on the Space Shuttle after it returns to
Earth. The code segment that was inspected converted signals from a joystick into motor control
commands. It was 525 non-comment lines of C code. This is a more specific instance of domain
knowledge variable; more specifically it is product knowledge. They found the use of inspectors who
lacked product knowledge allowed the artifact to be viewed from a different perspective and provided a
more complete inspection. It was also found that when there is an “oracle” or document that can be used
for comparison, product knowledge was not required for an inspector to be effective.

In a follow up to his initial work on inspections, [Fagan86] explains advances that had been made in the
first ten years of inspections. He claims that most inspectors of code are programmers who are involved in
the project. This would be people who were both domain experts, as well as experts in the language and
somewhat familiar with the problem being inspected. On the other hand, he suggests that the moderator,
one role in an inspection meeting, should be someone who is not from the project being inspected, but from
a similar product. The reason for this is to lead some objectivity to the inspection. This is another
indication that the level of Domain Knowledge may be an important variable. It is also an indication that
knowledge of the language, or more generally, Software Development Exper ience is an important
variable.

[Fowler86] discusses implementation of inspections at AT&T. See Section 1.3.1.1 for a more complete
description. While inspections are used in all of the lifecycle phases, they only discuss the background
qualifications of the inspectors when performing the requirement inspection. The author suggests that,
similar to an argument made by [Dow94], when reviewing a requirements document, the inspector must
compare the information against a more abstract picture or idea in their head rather than a concrete
specification from a previous lifecycle phase, they need to have high expertise and knowledge. High
expertise translates into Software Development Exper ience as well as Inspection Exper ience, while high
knowledge translates into Domain Knowledge.

1.3.2.2 Our Proposed Approach
In each of the cases described above, the background and experience variables that have been identified
were mostly done as a side effect of something else that was being studied. We want to specifically study
these variables. Our approach will be to create a list of background and experience variables that
accurately characterizes the differences among inspectors. We want each variable to be important and
useful in the differentiation of inspectors. Because of this, each variable in this list should have easily
differentiable values. Also, in the collection of inspectors under study, we should see the whole range of
those values. For example, if we have defined a background or experience variable, and discover that all of
the inspectors have the same value for that variable, then it is not a very interesting variable. An initial list

17

of experience variables has been developed as a staring point. These variables will be described in Section
2.3.3. This list provides a starting point, it is not assumed to be complete or exhaustive.

1.3.2.3 Methodology
Figure 2 below shows the process that we will use to develop the list of Background and Experience
Variables. We will begin with an examination of the literature to determine if other researchers have
identified potential variables that we could work with. We will also draw from our own personal
experiences with participating and observing inspections. By combining the knowledge gained from the
literature and our own experience, we will create an initial list of Background and Experience Variables.
Each variable in that list will be evaluated to determine if it should remain in the list. Below we will
describe how each variable will be evaluated. In addition to the individual evaluation of each variable, the
list will be evaluated as a whole to determine if it is complete. If it is found to be lacking, then it will be
expanded to include the variable that was missing.

In order to develop a set of questions with which we can evaluate the individual variables we must first
identify what those variables are. This is part of the completed work that will be discussed in Section 2.3.
But, in order to present the complete methodology here we will provided the initial variable list along with
the questions for each variable.

For each variable we present a rich set of questions to help us understand the variable. We feel that all of
these variables are interesting and should be explored. Because of limited data, we will most likely not be
able to answer all of the questions that follow. Based on the opportunities that we have to acquire data, we
will address as many of the questions as possible.

Environment Var iables
EQ6 What is the environment like in which the inspection is being per formed?
For each environment the goal is to be able to characterize it in such a way that the distinctive
features stand out. We have to be able to determine if there really are differences between
environments. This could be a simple thing like the location of the inspection (is it in an office or
a dedicated and quiet conference room?). It could also be something more complex such as the
general attitude of the management towards inspections, e.g. are inspections viewed by
management as a beneficial process or as a waste of time? Or, is the practice of inspections
encouraged and rewarded?

EQ7 Are there environmental constraints that affect how the inspection is being per formed?

Literature

Experience

Background and
Experience
Variables

Empirical Data

Refined List

Figure 2 – Methodology for Background and Exper ience Var iables

18

Whereas the previous question deals with the day to day operations and the general working
environment of the development organization, this deals more specifically with the requirements
or constraints that are put on the inspection process by the management. For instance, this could
include things such as the amount of time that is allowed for inspections. It could also include
specific procedures that must be followed regardless of the inspection being performed, such as a
standard defect report form that is required to be used throughout the organization.

EQ8 Can these constraints (EQ5) be changed?
Here we have to determine how rigidily the constraints from the previous question are enforced.
For example, if there is standard defect report form for the entire development organization, would
it be allowable for the process team to use their own specialized form as long as all of the data that
is on the standard form is collected? If this is allowable, then it will affect what types of
inspection techniques can be used and how they can be evaluated within this particular
organization.

Training
EQ9 How does the training affect the application of the techniques?
Here we want to determine what effect the training has on the application of the technique. It
makes sense that if there are differences in the training there could potentially influence the
effectiveness of the inspection. We want to know what aspects of the training the users of the
technique felt were important, which aspects that they found to be useful when they received
training, and which important things were left out of the training.

EQ10 Are there ways to train more or less effectively?
This is a more specific piece of EQ7. Here we will be looking at qualitative results to surveys and
questionnaires to determine what the users of the techniques felt were effective. We will also be
looking for suggestions from them as to what we could change in the training to make it more
effective. This is important because we will be looking at the feedback of the inspectors that
actually received the training and the executed the techniques. This will provide some real
concrete reactions to the training and the inspectors ability to use the techniques.

EQ11 Are there other issues that should be considered when planning the training?
In addition to the amount of time spent on training, and the individual that is doing the training,
we want to determine if there are other things that influence the success or failure of a training
session. This could include things like the time of day, the location, or other things that we have
not thought of.

EQ12 I f the training unequally emphasizes one aspect of the technique, does this skew the
results when the technique is applied?
Here we are interested in understanding better what influence the training has on the output of the
inspection. If there are parts of the inspection process that are not performed well, then possibly
emphasizing those more in the training could positively affect the inspection process.

Domain Knowledge
EQ13 Does exper ience in a domain make the readers more or less effective? Is the technique
too detailed for exper ts? Is the technique not detailed enough for novices?
Here we want to determine whether or not having domain knowledge is a good thing. There are
two ways of thinking about this. The first says that the more domain knowledge an inspector has
the better they will do in the inspection because they are familiar with the domain of the problem.
The other says that because an inspector is not familiar with the domain, they will perform better
in the inspection because they won’ t be biased by their previous knowledge. In conjunction with
this we want to know if the techniques need to change based on the domain knowledge of the
inspector. Does someone with a lot of domain knowledge need more or less guidance when doing
an inspection? What about someone with no domain knowledge?

EQ14 Does the technique affect how domain exper ts per form?

19

This is similar to EQ11, but here we are asking whether or not a technique is helpful at all to an
expert. The issue here is that when someone is an expert in the domain, they are generally
comfortable with doing things a certain way, and effective using their own way. We want to see if
having a technique or guide for the inspection will simply get in the expert’s way and cause them
to become less efficient, or if the technique will give them a new way of looking at the same thing
and improve their efficiency.

EQ15 Does the technique affect how domain novices per form?
Again, this question is similar to both EQ11 and EQ12. The difference here is we want to know
what affect an inspection technique has on inspectors who do not know a lot about the domain.
We want to know if having a detailed procedure helps a novice since they do not generally know
what they are looking for. The technique should be able to provide them with some guidance and
enable them to uncover defects that they would not have found using some type of ad hoc process.

Software Development Exper ience
EQ16 Does exper ience in a specific development technology (e.g. Object Or iented Design)
make a reader more or less effective? Are the techniques too detailed for exper ts? Are the
techniques not detailed enough for novices?
Many inspection techniques use specific development technologies such as Object Oriented
Design. What we are interested in here is determining how much of that knowledge is necessary
when using and inspection technique at that lifecycle phase. For example, if someone is going to
inspect and Object Oriented design using some type of reading technique, is it necessary that they
be very familiar with Object Oriented design? Likewise, if a requirements inspection technique
uses a specific testing technique to aid in defect detection, such as equivalence partition testing, is
it sufficient to introduce the testing technique to the inspector during the training, or is necessary
that the inspector already be familiar with the technique?

EQ17 Does the technique affect how development exper ts per form?
In the same way that we wanted to know how domain experts were affected by a reading
technique, we want to know how Software development experts are affected. This means that if
we are going to use testing in our requirements inspection, is it harmful to the expert to give them
a specific testing technique to use? Would it be better to tell them to inspect the requirements as if
they were going to use them for testing, and allow the expert to use whatever type of testing
technique that they felt was appropriate.

EQ18 Does the technique affect how development novices per form?
The main point here is determining whether or not the techniques are of sufficient value that a
software development novice could improve their performance on an inspection. Generally the
time of a novice is cheaper than that of an expert, and if the techniques could sufficiently aid the
novice in finding defects, then the cost of the inspections could be greatly reduced.

Exper ience in another Reading Process
EQ19 Do readers have exper ience?
Here we have to evaluate the experience that the inspector has. We must determine what is
relevant experience and what is not relevant experience.

EQ20 Does this knowledge, or lack of knowledge, help or hinder them in the application of
the reading technique?
We are interested in determining the value of inspection experience. We want to know if having
performed inspections before, using techniques similar to the new one being introduced, is going
to help the inspector or not. If the previous experience is helpful in using a new technique, then
this will give the process manager some guidance as to which people they should choose for the
inspection team when trying out a new inspection process.

20

Exper ience in this Reading Technique
EQ21 Do the readers become more or less effective after prolonged exposure to the
technique?
While EQ17 and EQ18 were concerned with how previous inspection experience would affect the
learning of a new technique, this question deals with the learning curve on a new technique. If we
find that inspectors dramatically improve their performance by using the technique multiple times,
then this would suggest two things. First, that the inspectors should be given chances during the
training to use the technique once or twice so that when the performed their first real inspection
they had already conquered most of the learning curve. Secondly, it would suggest that when
forming an inspection team, the process manager should favor people who were familiar with the
inspection technique that was going to be used over those that were not familiar with it.

EQ22 Do the readers tend to follow the techniques closer the longer they use them or the
more exper ience they have with them?
This is a process conformance issue. We are interested in knowing not only whether the
inspectors do better or worse the longer they use the techniques, but also how closely they follow
them. As inspectors use a technique more they will begin to better understand the technique and
what the technique helps them to do. If it becomes evident that as inspectors become more
familiar and better understand a particular technique and its goals, that they tend to follow it less
rigidly, then the techniques should evolve to capture this fact. The techniques should be able to
become less rigid and more of a set of guidelines.

EQ23 Do the techniques need to evolve to become less restr ictive as readers become more
exper t?
Like the previous question, we want to know what the effect of prolong exposure to a technique is.
In order to keep the technique effective and useful to the inspector we need to know how the
technique must change. Because a first time user does not yet understand the process or the goals
of the technique, they need a more formalized rigid technique to follow. On the other hand, as an
inspector becomes more and more familiar with the technique, they better understand the goals of
the technique and how each step contributes towards accomplishing those goals. That reader is in
a better position to reorganize the steps or perform them in a slightly different way that they feel
still accomplishes the same goal. We want to have techniques that can remain useful even after
the readers become experts. In order to do this we must understand how experts view the
techniques and how those techniques should change to meet their needs.

Native Language
EQ24 Is the reader familiar with the language that the documents and instructions are
wr itten in?
Here we will investigate the variation caused by inspectors who are not native speakers of the
language of the document being inspected. This would be especially important during a
requirements inspection where the document is often written in natural language. But, it could
also be an important issue during any inspection in which a technique must be followed. How
well the inspector understands the technique could have a large impact on how they execute it.

Process Conformance
EQ25 Other than exper ience and domain knowledge, are there other ways to measure what
causes readers to either follow or deviate from the reading technique?
Often, inspectors do not follow processes or techniques as closely as we would like them to.
Many times, the inspector thinks that they can be more effective by using their own techniques.
What we want to determine is the cause of the deviation from the process. In the previous sections
we were concerned with how experience, both software development and inspection technique,
and domain knowledge affected process conformance. Here we want to know what other factors
cause inspectors to either closely follow a process or technique or to deviate from it. We also are
interested in how to quantify or measure those factors.

EQ26 Is it always a bad thing for readers to deviate from the technique?

21

From the point of view of the researcher, deviation from the process is generally a bad thing,
because when the researcher doesn’ t know exactly what process was followed, it is difficult or
impossible to draw conclusions about the effectiveness of the technique. But, from the point of
view of the inspector, it might be a good thing to deviate from the technique. If the inspector has
found from past experience that they have a better way to accomplish the same goal, then they will
want to use that better way. From the point of view of the development organization, if the
individual inspector is more efficient using his or her own way, then the development organization
has a difficult time arguing with that.

EQ27 Is it possible to modify the technique so that it gives a “ bounding box” instead of a
“ straight jacket” ? Would this make the inspector more or less effective?
Many inspectors see well-defined processes or techniques as a “straight jacket” . As we have said
in previous sections, this may not be a problem for a novice, because they don’ t know any other
way to do it. But, for a more experienced user, they can see the process as a type of “straight
jacket” that won’ t let them do what they know in their mind to be a more effective or better
process. By creating a “bounding box” , we would give the reader a set of high level guideline,
such as goals to be accomplished or specific types of defects to look for. In this case, we want to
know if this “bounding box” approach would improve the performance of the inspectors by giving
them the freedom to do what they know, or if it would hurt the performance because they lose the
well-defined process that has been studied and evolved into and effective technique.

EQ28 When the technique is not followed, can we determine the reason? (e.g. Do the
readers think that they do not need it?)
In the earlier question in this section we have tried to address what factors may cause an inspector
to deviate from the given inspection process. In some cases this deviation is done on purpose, as
in the cases where the inspector thinks that he or she has a better way of doing something. Or, the
deviation could be done by accident, the inspector has used the process so many times they don’ t
look at the steps each time through and he or she forgets one or does them out of order. What we
want to figure out with this question is when the process is deviated from, is it on purpose or by
accident. We also want to know what reasoning the inspectors have for not following the process.
The results of this investigation should help support the linkage between the other variables and
success of inspections. For instance, if a highly experienced tester tells us that he or she didn’ t
follow the technique of inspecting from a tester’s point of view because he or she felt that their
way of testing was more effective. This would lend support to the fact that development
experience has some effect on the inspection process.

1.3.3 Relationships between the Background and Exper ience Var iables and Defect Classes
After determining both the useful defect classification and the list of background and experience variables,
the next step is to determine how they relate to each other. Here we want to investigate the relationship
between the values of the different background and experience variables and whether or not inspectors find
various classes of defects. To do this analysis, we will use the more general defect classification scheme
mentioned earlier. It is the one that has smaller number of defect classes.

1.3.3.1 Related Work
Many of the papers presented in Section 1.3.2 also contained information suggesting a linkage between the
variables they identified and the output of their inspections. In this section we will discuss the findings of
other researchers as a starting point for our work. We are interested in determining whether a relatively
high or a relatively low value for any of the identified background and experience variables can be shown
to have a direct impact on some portion of the output of the inspection process.

[Chaar93] and [Chaar95] identify “defect triggers” , also discussed in the Orthogonal Defect Classification
(ODC) [IBM99]. These are not the defects themselves, but the situation that helps to uncover the defects.
They also describe what they call the “skill level” needed by an inspector for each of the triggers. The
triggers are:

22

1) Design Conformance – defect can be found by comparing design or code to the specification
from the previous lifecycle stage.

2) Understanding Details – defect is found while trying to understand the structure or operation
of a component.
2.1 Operational Semantics – defect uncovered while looking at flow of logic.
2.2 Side Effects – defect uncovered while looking at a side effect of an action.
2.3 Concurrency – defect uncovered while looking for serialization for controlling a shared

resource.
3) Backward Compatibility – defect uncovered using knowledge of previous versions of the

product to determine an incompatibility between the product under review and the existing
version.

4) Lateral Compatibility – defect uncovered using broad knowledge to discover an
incompatibility between the product under review and another system with which interface is
required.

5) Rare Situation – defect uncovered using both product knowledge and domain knowledge to
discover some system behavior that has not been described.

6) Document Consistency/Completeness – defect uncovered because of incomplete or
inconsistent document.

7) Language Dependencies – defect uncovered because of language-specific details of
implementation.

The skill levels are
1) New/Trained
2) Within Product
3) Within Project
4) Cross Project
5) Very Exper ienced

For checking Design conformance, the author suggests using people with knowledge Within Product and
Within Project. Operational Semantics require New/Trained or Within Project, while side effects and
Concurrency require more expert reviewers. Backward Compatibility requires inspectors with knowledge
only Within Project knowledge, but Lateral Compatibility requires Cross Product knowledge. The Rare
Situation requires the Very Exper ienced reviewers. Finally, the Language Dependencies require only
Within Product knowledge. These are not exactly the same kind of cause and effect that we are looking
for between the variables and the defect classifications, but they are a step in the right direction and can
provide some valuable insight into these important relationships.

In the study by [Doolan92] that was discussed in Section 1.3.2, they analyzed the data from 11
requirements documents which totaled about 500 pages. Inspectors were chosen from various groups
within the organization. These inspectors were chosen because of their perceived expertise in their area.
The researchers at SSSG believed that having this varied expertise would better prepare them for finding
the specific defects that were related to their area of expertise, and might have been missed by an inspector
not as familiar with that area.

In the [Dow94] study also discussed in Section 1.3.2, they discovered an interesting interaction between
product knowledge and the types of defects found during inspection. In their experiment, they had two
groups, a control group and an experimental group. The subjects in the control group and the subjects in the
experimental group were drawn from graduate level computer science students who were also practicing
professionals. Each group also received comparable training in inspections. The difference is that the
control group was taken from a multi-semester class, of which one part was to develop the software under
inspection. The experimental group had no previous knowledge of the software under study. They found
that in cases where the defects could be found by consultation with an “oracle” , that having product
knowledge was not helpful to the inspector. They defined an oracle to be a document that the artifact under
inspection could be compared against, such as a coding standard, a design document, a maintenance
document, comments in the code, or other parts of the code. In fact, lack of product knowledge allowed the
experimental group to find defects that were missed by the control group. But, in cases where the “oracle”

23

is incomplete or incorrect, then the control group found defects that were not found by the experimental
group. For example, in the design inspection, the oracle that could be used as a basis for comparison is the
requirements document.

In the [Fagan86] paper described in Section 1.3.2, while he recommends that the inspectors be domain and
language experts, he says that the moderator should be someone drawn from a different, but related project.
The reason for this is to help maintain objectivity.

In a paper on Phased Inspections, described in more detail in Section 1.3.1.1, [Knight93] observed that as
inspectors become more familiar with the particular checklist being used for the inspection, their inspection
rate increases. They also found that as the inspector’s knowledge of the C programming language
increased so did their inspection rate. Both of these findings show some linkage between background and
experience variables and inspection success. The familiarity with the checklist is similar to our variable of
Exper ience in this reading process. The finding here was that this experience helped the inspectors. The
knowledge of the C programming language can be considered part of the variable Software Development
Exper ience since this was a code inspection. The finding here was that increased Software Development
Experience also helped the inspectors.

[Porter97] is an investigation of the necessity or benefits gained from the inspection meeting as compared
to just collecting individual inspection results. The paper discusses two different experiments, one
performed at the University of Maryland and the other at the University of Hawaii. While background
experience, or Inspection Exper ience and Software Development Exper ience, and knowledge, or
Domain Knowledge, were not things being investigated in these experiments, they report an interesting
result. Two experiments were run in different contexts and the results were compared. In the inspections
performed in the first experiment, the subjects were inspecting the source code from an implementation of a
program they had just completed. Because of this these subjects were both very familiar with the problem
domains (Employee databases or two-pass assemblers) as well as the programming language (C or C++).
On the other hand, in the second experiment, the reviews were done on formal requirements for an
automobile cruise control and water level management. These subjects were neither as familiar with the
specific problem being solved or the problem domain in general like the subjects in the previous
experiment were. Even though we do not have conclusive evidence here because one set inspected
requirements and the other inspected code, we can still see the continuation of the trend, the subjects that
were more familiar had a greater defect detection rate. Thus, domain knowledge may have a positive
impact on the performance of an inspector.

1.3.3.2 Our Proposed Approach
Our approach will be to look at the defects that appear in each class. We will also look at the inspectors
that found those defects. Then, for each class of defects, we can look at which inspectors were the most
likely to find that type of defect. We can then look at the values of the background and experience
variables of those inspectors that found the defects. We will perform a statistical analysis to determine if
there is any cause effect relationships present. If we can find a relationship between a background or
experience variable and a defect class, then this information could be very useful in the planning of an
inspection process.

For example, if a software development organization has been collecting defect data about its existing
software products, it can determine the types of defects that are most commonly missed during inspection
and test. These are the worst kind of defects, because they are the ones that the customers see. While they
might not be the most severe in the eyes of the development team, the are the ones that cause customers to
lose confidence in the product or the organization. If the organization determines that frequently it releases
products that are missing pieces of functionality, and if the research into experience variables has
determined that an inspector who has a high amount of expertise in the application domain is good at
finding defects of omitted functionality, then in the future, this development organization will want to plan
its inspections in such a was as to include more people with the necessary experience.

24

1.3.3.3 Methodology
After developing the defect classification schemes as well as the background and experience variable list,
we will then proceed to investigate if there is any relationship between the two. We will take each
background and experience variable one at a time. For the variable currently under investigation, we will
group the inspectors into different groups based on their values for that variable. We will then look at the
defects that are found by members of each group to see how they differ. First we will look to see if there is
an effect seen in the overall defect detection performance. Then we will look at the performance of
detecting defects of each class. If certain classes of defects appear to be more likely to be found by
members of one group over the members of another, then we will have found a piece of information that
will be useful to inspection planners when creating their inspection team. We will repeat this procedure for
each of the variables.

The above procedure will be done for each experimental data set that we have. It will not be possible to
group all of the data together because of the variations among experiments. After we have performed the
evaluations described above for each individual data set, then we can begin to look at how the results from
the different data sets compare with one another. And, if the environmental setting for two or more
experiments is similar, then it may be possible to group that data together and rerun the analysis to see if
the results support the conclusions that have been drawn.

1.3.4 Summary
After completing each of these three pieces we will be able to put them back together to provide a helpful
approach to the problem described earlier. The list of background and experience variables will provide a
process manager with the characteristics that are important when considering members of an inspection
team. The findings about the relationships between the background and experience variables and the defect
classes will provide the process manager with more guidance on the inspectors that should be chosen for
his team. We will be able to provide a set of guidelines that help in this selection process. These
guidelines will suggest the characteristics of an inspector that will help them in general in the inspection.
In addition, if the organization is prone to making a certain type of defect, our guidelines will also suggest
the characteristics of the inspector that may be most likely to find that type of defect during an inspection.

25

1.4 Other Related Research
One method of theory building that is popular in the Social Sciences is called Grounded Theory [Glaser67].
This approach to theory building is based largely in the data that has been collected in observation of the
phenomenon under study. Instead of forming theories based on assumptions that the researcher has a
priori, the theory is formed systematically from the data. They continue by listing the purposes of theory.
Even though Glaser’s work was in the field of Sociology, because we are studying how people use
inspection techniques, these same ideas can be helpful. The stated purposes are :

1) To enable prediction and explanation of behavior.
2) To be useful in the theoretical advancement of Sociology.
3) To be useable in practical applications, meaning that practitioner should gain some control of

situation because of theory.
4) To provide a perspective on the data, or a stance to take towards the behaviors exhibited.
5) To guide research on a particular behavior.

Based on this idea, [Gilgun92] gave a concrete way to implement this method of forming theories from the
data. They give the same idea of Grounded Theory another name. They call it Constant Comparison.
They define this as theory that is developed by “ interweaving observations of phenomena of interest,
abstractions from these observations, and previous research and theory.” The main idea behind this, is that
as the data is analyzed, the theories are continually modified and updated to take into account each piece of
data. They provide a series of 21 specific steps to follow when doing this type of research. We will
summarize and extract the parts of this that are important for our work here. First, once you have decided
on a topic of investigation, a literature search should be performed. After this, the researcher should enter
into the study with an open mind, willing to observe things that may go against his or her preconceived
notions. The first case should be observed and described. Based on this information, one can begin to
form theories and hypotheses. After doing this, the literature should again be searched to see if there is any
other information on the specific findings from the first case that was not found in the previous literature
search. The next step is to observe a second case. While doing this, the researcher will either confirm
theories and hypotheses that were discovered in the first case, or will have to modify the theories and
hypothesis from the first case so that they apply to both cases. This process of reviewing new cases and
modifying the hypotheses and theories to take them into account should continue until some point of
confidence. This could be either when one runs out of cases, or when each new case is causing very little
or no change to the current theories and hypotheses. At this point, the theories and hypotheses are fairly
solid.

Finally, [Day93] provides us with some rules for creating categories. This area of research applies to us in
the creation of our defect classes. Each one of those is, in some sense, a category. So, the following rules
are helpful to judge our defect classes.

1) Become thoroughly familiar with the data.
2) Always be sensitive to the context of the data.
3) Be flexible – extend, modify and discard categories.
4) Consider connections and avoid needless overlap.
5) Record the criteria on which category decisions are based.
6) Consider alternative ways of categorizing and interpreting the data.

We will use these pointers as we evaluate and evolve both our defect classification schemes as well as our
list of experience variables.

While this method of theory building has come from social science literature, it is not novel to apply it to
the field of software engineering. In a study on reading techniques for Object-Oriented framework learning
[Shull00] this type of approach is used to construct theories about how subjects use frameworks.
[Seaman97] also discusses the use of this approach when in the understanding of communication among
members of a software development organization.

26

1.5 Evaluation Plan
Evaluation of the proposed approach in this chapter must be accomplished in 3 parts. First we must ensure
that we have a useable set of defect classes. This requires the examination of the proposed defect
classification schemes that will be described in Section 2.2.2 to ensure that the classification schemes are
both complete and useful. More specifically the general classes should be complete such that for any new
defect that is uncovered, it should be able to easily fit into one class. The general classification should also
be useful such that a fair number of defects fall into each class. While the specific classes may not be
complete, because a new defect that occurs may be of a different specific type than the ones we have
previously found, they must be useful for improving the inspection process. If we find either of these cases
to be false, then the defect classification scheme will be updated and revalidated.

Secondly, we must have a useable set of background and experience variables. To do this we will have to
verify that the set of experience variables captures relevant background experience. Moreover, we must
make sure that each background or experience variable that is in the set is one that actually has some effect
on the outcome of the inspection. This means that we may add variables to the list if we uncover variation
that cannot be explained by variables already in the list or remove variables from the list if they are found
to be extraneous.

Finally, we must validate any cause and effect that we find between the background and experience
variables and the defect classes. For our conclusions to have any validity, we must verify that for a given
value of an experience variable, there is a correlation to the defects found from a given class, or the defects
not found from a given class.

1.5.1 Evaluation of Defect Classifications
When we talk of defect classification schemes, many questions arise. One of the first questions that must
be addressed is that of correctness. A straightforward approach would be to determine if the defect
classification scheme is “correct” . This is not such an easy task. Striving for “correctness” is not an
adequate approach because the definition is subjective and can vary from situation to situation. Instead of
striving for correctness, we are seeking defect classifications that are useful. This task is more feasible than
the first one. In order to have such a classification scheme, it must meet a couple of different high level
goals. The classification scheme must be useful both to the researcher and inspection manager as well as to
the individuals who are developing software. These two goals lead us to ask a series of questions to
support the validation.

EQ1 Are the two levels of the classification scheme at the r ight level of granular ity?
This question really has two parts. We must verify both the general classification as well as the more
specific classification. For the general classification to be useful, each of the classes must be general
enough to contain a large number of defects. Those classes should also be orthogonal because if different
inspectors put the same defect into different classes, then the classification does not provide much
assistance for testing relationships between variables and defect classes. The classes should be described
well enough that even without the specific classes inside of each general class, it is clear where to put a
defect. The specific classifications should describe the defects in such a way that the inspection process
can be improved if a specific class of defects is not being found at all. For instance, if there are instances
where the data type of a particular attribute is different in different parts of the design, but this defect is not
caught during the inspections, then a step should be added to the inspection process to check for this defect.

EQ2 Do all true defects easily fit into one of the general categor ies?
This addresses one of the issues from EQ1 more specifically. Namely, is the defect classification both
clearly defined and complete. By clearly defined we mean that it is clear to the inspector which class each
particular defect should be placed into. This involves both a well-defined set of classes, as well as
providing a clear explanation during the training. By being complete, we mean that for each defect it is not
only is clear which one class that it should go into, but that it makes sense to put that defect in that class. If
a defect is found that does not easily fit into any of the general classes that have been defined, then it may
be necessary to expand the defect classification scheme to include a new defect class.

EQ3 Do the specific categor ies reflect information that is useful to the process developers?

27

This addresses the other issue from EQ1 in more detail. Namely, when we have the specific categories for
the defects, do the descriptions of those categories give us enough information to be able to improve the
inspection process? If the descriptions are too vague, or too general then it will be difficult to add a step to
an inspection procedure to address that issue.

1.5.2 Evaluation of Background and Exper ience Var iables
The set of background and experience variables that has been proposed must also be evaluated to judge its
usefulness. For the set to be judged useful, we must have a set of variables that is both complete and
minimal. By completeness we mean that all of the potential background and experience variables that we
have identified have been examined and any variation that we can identify in the performance of inspectors
can be explained by some combination of these variables. By minimal we mean that only the variables that
directly affect the performance during the inspection have been kept in the set. Any variable for which we
cannot show some correlation must be removed from our set of variables.

EQ4 Are all of the var iables really var iables?
Here we will look at the values of the variables that correspond to each individual inspector. If for any of
the variables in our list we find that there is no variation among the inspectors, then for our purposes this
variable should be removed because it is not really a variable. This evaluation will be done based on the
responses to the questions given for each variable in Section 1.4.2. If we do find a variable in our list that
should be removed, we will not say that this variable has no effect, only that with the set of inspectors that
we are studying it has no variation. A later experiment might be planned to test that variable specifically,
although that is not part of this work.

EQ5 Is the list complete?
We want to know if we have described the variations among inspectors that we can identify by the
variables in our list. This information is based on the data sets that we will have to study. There may be
other background and experience variables that are not covered by our list, but we want to make sure that
any variation we see in our data is explained by a variable in this list. If there is another dimension on
which inspectors vary that has an impact on the inspection process, then we would also want to investigate
that variable. Based on the qualitative data that we collect from the subjects of our studies, we should be
able to get a good idea of what really occurred and be able to identify if there are other variables that we
have not enumerated yet.

1.5.3 Evaluation of Interaction between Background and Exper ience Var iables and Defect Classes
While the data from various experiments can be used together in creating the defect classifications as well
as in developing the defect lists, special precautions will have to be taken when it comes to evaluating the
interactions between variables and defect classes. Because the data that was collected from varied
development situations, it will not be possible to naively group all of the data together to investigate these
interactions. These evaluations will have to be performed on each data set separately. Then the results of
those analyses can be used to either support or contradict one another. The only situation where grouping
data from different experiments would be possible is if the environment and variables associated with the
experiment are similar enough that it would not introduce potentially confounding factors into the data
analysis. Based on these results we will be looking for heuristics that hold over multiple studies in varied
environments. These heuristics could lead to further experimentation to expand the context in which they
hold.

EQ28 Which of the var iables contr ibute to finding the largest number of defects?
Once the variables that affect the inspection process have been determined (Section 1.3.2), we need to find
the linkage between those variables and the success of the inspection. If we can determine that a
particularly high or particularly low value of a certain variable is beneficial to an inspection, this
information would be very useful to a process manager. The information would be useful in the planning
of the inspections. It would provide guidance on which members of the development organization should
be chosen for each particular inspection, based on the specific problem being solved as well as the
background of each of the potential inspectors.

EQ29 Do some var iables increase or decrease the likelihood of finding cer tain classes of defects?

28

Similar to the previous question, we not only want to determine which variables affect the overall success
of the inspection, but we also want to know if particular variables are especially useful in finding each class
of defects. Based on the defect classification scheme from Section 1.2.1, if we can find a correlation
between the background and experience variables and those defect classes this information would be useful
in the planning of inspections. If an organization wants to focus special attention on a specific class of
defects, because they know that class generally makes it into their released products, or that class is very
severe if not caught, then based on the correlations we find the best people can be chosen for the inspection
team to find as many of those defects as possible.

29

2. Completed Work

We have created initial classification schemes for both Requirements defects and Object Oriented Design
defects. We have also developed an initial list of background and experience variables. Each of these lists
will provide us with a starting point for the proposed work. In addition to the literature reviewed, which
was discussed in Chapter 1, we also performed an experiment. This experiment will be described in this
section along with the initial lists. The initial lists are based on the background literature as well as the
analysis of a single data set, and may need to be evolved as more data is analyzed.

30

2.1 The Exper iment
Background
PBR for requirements and OORTs for Object Oriented design were both studied in this experiment. In this
experiment we were interested in studying the techniques in isolation, rather than in the context of a full
software lifecycle. The main reason for this was that we wanted to study the problem domains, and the
background of inspectors, for which the techniques could be most useful.

To get the level of detail about the techniques that we wanted, we used an observational approach.
Observation is not commonly used in Software Engineering. The observational approach is one that uses
direct observation of a process executor while they are executing a process. In our case, we observed
inspectors while they were inspecting the software artifacts. The observational approach provides the
researcher with specific data about how the executor performed the process. The decision to use an
observational approach was dictated by the desired results. We wanted to discover what improvements
might be necessary at the level of individual steps. For example, whether subjects experience difficulties or
misunderstandings while applying the technique (and how these problems may be corrected), whether each
step of the technique contributes to achieving the overall goal, and whether the steps of the technique
should be reordered to better correspond to subjects’ own working styles. For a more complete description
of observational studies see [Travassos99]. For more details about this experiment see [Shull00b].

Subjects
The 28 subjects were members of a graduate-level Software Engineering class at the University of
Maryland during the Fall 1999 semester. The subjects were grouped into pairs to carry out the experiment.
For each inspection, one person was the process executor (responsible for carrying out the inspection) and
the other one was the process observer (responsible for recording observations about the execution of the
process). Since each pair performed a requirements inspection and a design inspection, each person got to
play both the role of executor and the role of observer. We believe that the background experience was
only relevant for the process executor, since they were the one actually performing the inspection. Of the
14 subjects that performed the requirements inspection, 29% had previous industry experience with writing
or reviewing requirements, 64% had classroom experience, and the other 7% had no experience. Of the 14
subjects that performed the OO inspection, 86% had previous industry experience with OO design and the
other 14% had classroom experience. All students received training on both the requirements reading
technique, the OO reading techniques and the observation process.

Mater ials
The materials under study during this experiment were PBR, described in Section 1.2.2, as well as OORTs,
described in Section 1.2.3. They were applied to the artifacts of two systems. The first was a Loan
Arranger (LA) system, which was responsible for organizing and selling loans held by a financial
consolidation organization. The second was an automated Parking Garage Control System (PGCS), which
was responsible for allowing drivers to enter and leave a parking garage and for keeping track of monthly
parking tickets as well as the number of available spaces for general parking. The Loan Arranger
requirements document consisted of 8 pages with 26 functional and 4 non-functional requirements. The
LA design used in this study was relatively small, consisting of 7 classes in the high level design, 4
interaction diagrams and 3 state diagrams. The PGCS requirements document consisted of 17 pages with
21 functional and 9 non-functional requirements. The PGCS design was also relatively small, consisting of
6 classes in the high level design, 5 interaction diagrams and 2 state diagrams. The LA problem domain
was selected due to its unfamiliarity to reviewers, while the PGCS domain was selected for familiarity.

Procedure
A quasi-experimental, factorial design was used. The 14 two person teams were broken up into 4 groups.
During the requirements inspection, 6 teams inspected the PGCS requirements and 8 teams inspected the
LA requirements. During the design inspection, of the 6 teams that inspected PGCS requirements, 3
inspected the PGCS design and 3 inspected the LA design. Likewise, of the 8 teams that inspected the LA
requirements, 4 inspected the LA design and 4 inspected the PGCS design. Because half of the teams
inspected requirements and designs from the same system, and half did not, we could look for any
differences in the performance in the design inspection due to the reviewers’ past familiarity with the
system requirements or with the problem domain.

31

Before the study, subjects received training in the reading techniques to be applied and the observational
methods. Training in observational methods was accomplished by presenting the roles of executor and
observer and defining their specific responsibilities. One member of each team was assigned to be the
executor and the other to be the observer. Each team was required to submit a report describing their
experiences during the inspections. The data for this report was based largely on the observations during
the execution of the inspections. The subjects were not instructed as to which specific pieces of data to
include in their report. Rather, they had to come up with that on their own.

Data Collection
The data from this experiment was collected in two ways: analysis of artifacts, which includes the
experimenters examining and analyzing the work products and defect lists submitted by the subjects, and
observation. Analysis of artifacts was used for collecting some quantitative data, namely the time required
for executing the techniques and the number and type of defects detected. However, observational
techniques were the most important method used in this study. A rich array of qualitative data was
collected through their use. As mentioned earlier, the teams produced an evaluation report, which included
both a summary of the notes taken during observation as well as retrospective data determined after the
execution of the process. The metrics collected from the observations were:
• Executor’s opinion of effectiveness of technique
• Problems encountered with specific steps of procedure
• How closely executors followed the techniques
• Number and type of defects reported
The retrospective data (collected via open-ended questions) provided the following information:
• Time spent in review
• Usefulness of different perspectives
• Were the techniques practical, would they use some or all of them again
• The problems found using the techniques
As can be noticed, the retrospective data are better suited to global issues, rather than the critiquing of
individual steps. Also, some of the metrics collected here were the same as in the previous feasibility study,
allowing a comparison of results across the two versions of the techniques. This observational data
provided us with information that will be useful in determining the cause-effect relationships between the
experience variables and the defect classes.

32

2.2 Developing Classification Schemes

2.2.1 Introduction
There are many reasons for classifying defects. They range from a simple one of characterization all the
way up to a more complex one of process improvement. A defect classification scheme that is meant only
for characterization can be relatively simple with only a small number of classes. The main goal for this
type of classification is to allow the development organization to see where they make their defects. And
even to see at a limited scale how various changes to the process and/or personnel may affect that
characterization. On the other hand, a defect classification scheme that is meant to help drive process
improvement will have to be more complex, as the classification scheme will have to point the process
manager in directions that can improve both the software development process and more specifically the
inspection process.

2.2.2 Initial Work on Defect Classifications
The first step in our work was to begin to create defect classification schemes that we could use as a
starting point, and then improve. Because of the goals for the defect classifications which were discussed
in Section 1.3.1, we decided that it would be more beneficial to create separate classification schemes for
requirements and for design defects (we don’ t examine code inspections in this work). The classification
schemes discussed in the previous section provide some good ideas and different ways to think about the
problems. We decided that in addition to that information some concrete data of our own would help us to
flesh out the schemes for our purposes. The data that was used was drawn from the experiment described
in Section 2.1.

2.2.3 Creation of Initial Defect Classifications
Based on the results of the above experiment, we created the initial classification schemes for the defects.
Because the defects that are found by inspectors in one isolated project may not be representative of the
entire population of defects, this experiment explored two different problems. The first was the Loan
Arranger problem, which was in the financial domain, (where most subjects had low expertise), and it was
a static problem. The second was the Parking Garage problem, which was in a much more familiar
domain, but it had more of a dynamic aspect to it, meaning the state machines and sequence diagrams were
more extensive. We felt that because of the differences in the two problems, we would have a good
diversity of defects as our base.

There are two types of defects that made up the list from which our initial classification schemes were
created. Based on their past experience with inspections and the common types of defects, the
experimenters seeded many of the defects, especially in the requirement phase. While this does not provide
as realistic a sampling as simply taking defects that occur on a real project, it was necessary in order to
maintain control. The second type of defect that occurred mainly in the design phase, were those defects
that were made by the experimenters, who were the document authors, in their regular process of creating

Figure 3 – Methodology for Defect Classifications

Real Defects

Seeded Defects

Seeded Defects

Real Defects

Defect List

Defect List

Abstraction

Abstraction

Literature
Defect
Classification

Defect List

Abstraction

Loan Arranger

Parking Garage

New Application

33

the documents. We think that these two sources of defects, when coupled with the information found in the
literature, provided us with a good source for creating the initial defect classification schemes.

The defect classification schemes discussed in the next two subsections came from performing the tasks on
the left hand side of the dashed line in Figure 3. We looked at each defect that was present in the two
problems. Each defect was then abstracted so that it was no longer domain specific, so that we could
compare defects across the two domains. After this we grouped defects that appeared to be similar. This
grouping was aided by the defect classification schemes that had been described in the literature. The
results of these tasks are the two defect classification schemes presented below in Sections 2.2.3.1 and
2.2.3.2.

2.2.3.1 Requirements Defect Classification
I. Interface and Access – These defects deal with the way that users or other systems gain

access to this system. They deal both with the mechanisms of access (the interface) as
well as the restrictions placed upon the access.
A. Interface not described
B. Wrong Actor used
C. Access to system not adequately described including access requests at inappropriate

times.

II. Data – These defects deal with the actual data items that are to be maintained by the
system. This includes inconsistent data types, validation of new data, and access
restrictions to for the data.
A. Input/Output format not given
B. Data either checked against wrong constraint or not checked at all
C. Not clear what data value is being checked
D. Data access is not properly restricted for a process that needs exclusive access
E. Information deleted from the system will cause loss of necessary information for

other parts of the system.
F. Not defined who can add/edit/delete a data item.
G. When one data value is updated, all associated data items do not contain correct

values
H. Data type is described but never used
I. Domain specific type conversion not handled
J. All possible data types not handled.

III. States – These defects deal with system, object or data states. While it is at the
requirements level, the concepts of states is still present.
A. Passive state change not described
B. The truth of a condition puts an object in a particular state, but the set of conditions

are not orthogonal.
C. The system is supposed to act when something happens, but all conditions, including

errors, are not handled.
D. Error condition handled without user notification.

IV. Terminology – These defects occur when terminology is incorrectly or inconsistently
used in such a was as to confuse a later user of the document.
A. Term not defined
B. Wrong term used
C. Terminology not consistent

V. Document Formatting issues – These defects deal with problems in the placement of
requirements within the document.
A. Requirement in the wrong section
B. Reference to the wrong requirement

34

VI. Other Inconsistencies – These defects deal with situations where the requirements
document says contradictory things in two different parts of the document.

2.2.3.2 Design Defects Classification
I. Messages – These defects deal with problems involving messages that appear in the

design.
A. Messages out of order on sequence diagram
B. Message name on sequence diagram not the same as on Class Diagram
C. Extraneous message on a sequence diagram
D. Message on a sequence diagram has different parameters compared to the Class

Description.
E. Message on a sequence diagram is not on Class Description

II. States – These defects occur when the states of the objects are misunderstood in some
way. This includes the addition or omission of an entire state, or incorrect transitions.
A. Misunderstanding of what the start state is
B. Misunderstanding of the navigability between states (transition exists between states

where it should not)
C. Misunderstanding of condition for a transition between states or a self-transition
D. State diagram depicts a state transition, but class has no attribute or combination of

attributes that indicates this.
E. Method for a state change was left off of Class Description but included everywhere

else in the design
F. Extraneous transition or self-transition in the design.
G. Method for a state change (passive or active) on state diagram was omitted from the

rest of the design
H. Description of condition for transition does not match on State Diagram and Class

Description.

III. Attributes – These defects deal with problems in the way that attributes have been
described in the design.
A. Extraneous attribute added to the design
B. No way to adjust the value of an attribute
C. Attribute on Class Diagram but not on Class Description
D. Attribute has different types in the class description and the class diagram

IV. Actors – These defects deal with the misuse of the actors within the design.
A. Actor is represented as a class on sequence diagram
B. Actor is of the wrong type

V. Constraints – These defects occur when constraints are omitted or incorrectly used.
A. Constraint on attribute left off of Class Description
B. Constraint added to Class Description that is not true
C. Constraint on System Updates (performance) omitted from the design

VI. Relationships – These defects occur when classes are incorrectly related within the
design.
A. Wrong type of relationship between classes on the Class Diagram
B. Two entities related on the Class Diagram and they should not be.
C. Cardinalities for classes are reversed on Class Diagram for two related classes.
D. Classes that exchange information on Sequence Diagram are not connected on Class

Diagram

VII. Class Hierarchy – These defects describe problems within the class inheritance structure.
A. No behavior in design to change from one sub-class or state to another

35

VIII. Other – Design defects that do not fit in other categories, but are not major enough to
create a new category.
A. Sequence diagram has different name than corresponding Use Case

36

2.3 Identifying initial list of Exper ience Var iables

2.3.1 Introduction
As was stated earlier in this paper, there are variables besides the process being used or the document being
inspected that can have an effect on the outcome of the inspection process. The assumption has generally
been that the most effective way to predict the results of an inspection process are to examine the process
being used or the documents being inspected. But, this is not always the case. In fact, in some cases the
presence or absence of certain inspectors can have a greater effect on the outcome of the inspection than the
inspection process does [Porter98], [Siy96].

2.3.3 Initial Work on Exper ience Var iables
There are many potential factors that can influence the outcome of an inspection. In order to come up with
our initial list, we explored two sources of information. First, we examined the different background and
experience variables implicitly or explicitly presented in the literature. Secondly, we used our own
experiences with inspections and what had been factors in those situations. From these, we were able to
generate an initial list of background and experience variables. Based on the data from the experiment
described in Section 2.1, we fine-tuned that list. We wanted to create a list of variables that was both
complete enough to describe the variation in inspectors, as well as not having any variables that were
extraneous. This list provides us with a starting point. Upon the study of more inspection data, discussed
in Section 3, this list may be expanded or contracted so that every variable is useful and interesting. For
example, if all of the inspectors have the same value for a given variable, or it does not appear that variable
will affect the outcome of the inspection, then that variable would be removed from the list. This describes
the tasks that are represented on the left-hand side of the dashed line in Figure 4.

Here is the initial list of variables:

�
 Environmental Var iables – Constraints placed on the inspection or reading process by the

development organization, classroom setting, or other setting within which the inspection is taking
place.

�
 Training – This deals with how the training for the process or technique was performed. It includes

things such as who performed the training, how long it lasted, and the material that was used.

�
 Domain Knowledge – This deals with the amount of knowledge about the domain, such as banking or

satellite control, which contains the problem being solved by the software being developed.

Literature

Experience

Background and
Experience
Variables

Empirical Data

Refined List

Figure 4 – Methodology for Background and Exper ience Var iables

37

�
 Software Development Exper ience – This contains both experience in whatever development phase

the inspection is occurring, e.g. Requirements, Design, Code, etc., as well as with specific technologies
being used in the development process, such as SCR or Object Oriented Design.

�
 Exper ience using another reading process – This deals with the experience using another similar

reading technique, but not the one that will be used in the current inspection. For example, if an
inspector is familiar with a reading technique for inspecting a requirements document, then we would
like to know how that affects them when using a new reading technique for inspecting an Object
Oriented design.

�
 Exper ience in this reading process – This deals with the inspectors experience with the specific

reading process that is going to be used in the current inspection.

�
 Natural Language – This deals with how familiar an inspector is with the language the document is

written is, as well as the language the procedures or instructions are written in.

�
 Process Conformance – This deals with how closely the inspector follows the process that they have

been given to aid in the inspection.

Once this list has been properly evaluated, it will be improved to contain only the variables that really have
an effect on the reading process. This may mean that some of the above items are removed, some new ones
are added, or some are combined.

38

2.4 Evaluating Interaction between Exper ience Var iables and Defect Classes

2.4.1 Introduction
The previous section discussed what the different variables are that might affect the outcome of an
inspection, and Section 2.2 discussed different defect classification schemes. While these two pieces of
information are interesting in and of themselves, they become really useful when combined together. It
would be a really helpful piece of information for a software process planner to know how the value of one
of the variables in Section 2.3 affected the classes of defects, from Section 2.2 that an inspector tended to
find. This would allow for better planning of inspections based on the history of the organization or the
specific requirements of the present project.

2.4.2 Initial Work on relationships between Exper ience Var iables and Defect Classes
We have not yet done a lot of work in this area. Based on the data from the experiment described in
Section 2.1.3.1 we have some initial results in this area that can help to guide the future work. We have
results for both requirements inspections as well as for Object Oriented design inspections. Those initial
results will be described below. Neither the requirements results nor the Object Oriented results are at the
level of individual defect classes, they are both at the level of total number of defects found.

2.4.2.1 Requirements
The main experience variables that were under study in this experiment were Domain Exper ience and
Software Development Exper ience. When we examined Domain Exper ience, we compared the
inspectors that inspected the Loan Arranger requirements, low domain experience, to the inspectors that
inspected the Parking Garage requirements, high domain experience. We found, somewhat surprisingly,
that having domain knowledge did not significantly help in the requirements inspection. If this relationship
is confirmed, it would mean that it would not be necessary to always use domain experts as inspectors
during a requirements inspection. We did find, as expected, a significant effect caused by the Software
Development Exper ience. As the inspectors were more experienced in software development, they found
more defects in the requirements they inspected. Also, part of the software development experience, was
the fact that inspectors were using different perspectives (see Section 1.2.2 for an explanation of
perspectives). One set of inspectors had to inspect from the tester point of view and the other from the user
point of view. We also found that as the inspectors were more experience in whichever perspective they
inspected from, the performed better in the inspection.

2.4.2.2 Design
In the design inspection, we also looked at Domain Exper ience, but we looked at it from two views. The
first was the same as was used in the requirements inspection with Loan Arranger being low domain
experience and Parking Garage being high domain experience. The second view was that of experience
with the requirements. We compared the performance of teams that had previously inspected the
requirements for the design they were inspecting to those teams that had not inspected the requirements.
Here again, we had a surprising result, the readers who had low domain knowledge did better in the design
inspections than the readers with high domain knowledge. On the other hand, having inspected the
requirements previously did not help or hurt when performing an inspection of the design.

2.4.3 Conclusion
While neither of these results provides us with concrete evidence of a cause-effect relationship, they
provide us with some evidence that we should continue to investigate. One reason is to investigate the
cause-effect relationships at a deeper level, not only do we want to know if the variable causes an inspector
to find more or less defects overall, but we want to know how those variables affect the individual classes
of defects we have defined. Secondly, we have some counterintuitive results, that if they can be verified
could provide some very interesting advice for someone planning an inspection.

39

3 Proposed Work

3.1 The Data and Exper iments
The defect classification schemes as well as the experience variables and their linkage will be studied
through the use of data from a set of experiments. Each of the experiments to be used will be described
below. Some of the experiments will be used to improve and fine-tune the lists, while the others will be
used to verify that the lists are correct. In each of the sections following, it was described which
experiment would be used for which purpose.

3.1.1 PBR Exper iment at NASA

Background
The goals of this experiment were to determine if the use of PBR was beneficial to NASA professionals
over their usual unspecified technique. The experimenters wanted to understand if a structured and focused
set of techniques like PBR could help the inspectors’ performance. They wanted to explore this
performance both on a requirements document that was not NASA specific as well as one that was NASA
specific. This was done in order to determine if the techniques were helpful to inspectors that were highly
experienced in the domain. The data from this experiment will provide us with insights into both
performance by inspectors using a reading technique, as well as using and ad hoc procedure.

Subjects
The subjects were NASA professionals.

Mater ials
There were two requirements documents from non-NASA specific domain. A requirements specification
for a Parking Garage (PG) system was used, as well as a requirements specification for an Automated
Teller Machine (ATM). In addition there were two NASA specific documents that were reviewed, NASA
A and NASA B. The subjects used the Perspective Based Reading techniques described in Section 1.2.2.

Procedures
The subjects performed the inspections individually. Teams were simulated by combining the defects
found by individual reviewers. In the PBR portion the individual reviewers that were combined
represented all of the perspectives. After training, the readers performed an ad hoc inspection of either the
NASA A or the NASA B document (half of the groups inspected each one). Then the subjects performed
an ad hoc review of either the PG or the ATM document (half of the groups inspected each one. The
subjects were then taught PBR. They then reviewed the other non-NASA specific document (PG or ATM)
than they had reviewed in the first part. Finally, they reviewed the other NASA document (NASA A or
NASA B) than they had reviewed earlier.

Data Collection
Data was collected from questionnaires before the study to understand the subjects background. The defect
lists produced by each subject when inspecting each document provided the qualitative data about the
number of defects found.

3.1.2 CMSC435 Fall 1998

Background
This is a study that has already been completed, but the data has yet to be fully analyzed. It was conducted
as part of a senior-level Software Engineering course at the University of Maryland. The class consisted of
mostly upper-level undergraduates as well as some graduate students. The main goal of this study was to
test the feasibility of newly developed Object Oriented Design reading techniques as well as to continue the
investigation of and improvement of the Perspective Based Reading [Basili96] techniques for inspecting a
requirements document. For complete details on this experiment see [Shull99], [Shull00b].

Subjects

40

The subjects in this experiment came from an undergraduate software engineering course at UMCP during
the Fall 1998 semester. The 44 students in the class had a mix of previous software experience. In terms of
writing or reviewing requirements, 23% had prior industrial experience, 52% had experience in a class, and
the other 25% had no experience. In terms of design, 32% had some prior industial experience in software
design from requirements and/or use cases, 59% had classroom experience, and 9% had no prior
experience. However, all students were trained in OO development, UML and OO software design
activities as a part of the course. The subjects were randomly assigned into 15 teams (14 teams with 3
students each and 1 team with 2 students) for the experiment.

Mater ials
The materials under study during this experiment consisted of an initial version of the OORTs, as well as a
more mature set of PBR. The PBR techniques were applied to a requirements document consisting of 9
pages, with 5.5 pages of background and definitions and 3.5 pages of requirements. There were 5 high level
functional requirements, 13 data constraints, 20 data operations, 7 interface requirements, and 4
nonfunctional requirements. The OORTs were applied to the software artifacts of a “Loan Arranger”
system discussed in Section 2.1. It was a small system, but contained some design complexity due to non-
functional performance requirements. The version of the design inspected in this experiment consisted of
11 classes, 3 state diagrams and 5 sequence diagrams.

Procedures
The first thing that the subjects did was to receive the Loan Arranger requirements and perform an
inspection using PBR. In addition to providing us with data about a requirements inspection, it allowed the
subjects to gain a better understanding of the system. After all teams had completed the requirements
inspection, the experimenters corrected the defects in the requirements document. This corrected
requirements document as well as a set of use cases were distributed to the subjects. From these documents
they were asked to create an OO design for the system.

After all of the designs had been collected, the best one was selected and distributed to each team except
for the team that created that design (they were given another design to ensure that each team had a design
created by another team). The teams were then instructed to perform an inspection on the design they had
been given.

Each subject applied one of the perspectives for PBR during the requirements inspection phase, and a
subset of the OORTs during the design phase. The techniques were assigned such that when taken as a
whole, every technique had been performed by at least one member of the team. In both the requirements
inspection as well as the design inspection, each team member did an inspection individually. Then the
team met and compiled their defect lists into one final one for the team.

Data Collection
The data for this experiment was collected in three ways: analysis of artifacts by the experimenters,
questionnaires, and interviews. The questionnaires used to collect the qualitative data were distributed both
before and after the experiment. The artifacts that were examined included defect lists and all of the system
artifacts. Each team was interviewed individually after completion of the experiment.

3.1.3 CMSC435 Spr ing 2000

Background
This experiment is also one that has already been run, but the data has not been analyzed. It was conducted
as part of a senior level software engineering course at The University of Maryland. The main goal of this
study was to evaluate the effectiveness of using inspections with reading techniques as performed within
the context of a software process. Both Perspective Based Reading (PBR) for requirements and OORTs
were evaluated.

Subjects
The subjects in this experiment came from a senior level undergraduate software engineering course at
UMCP during the Spring 2000 semester. The 42 students had a mix of previous experience. In terms of

41

writing or reviewing requirements, 24% had industrial experience, 40% had experience in the classroom,
and the remaining 36% had no experience. In terms of design creation or reviewing, 14% had some
industrial experience, 45% had classroom experience , and the remaining 40% had no prior experience. All
the students were trained in requirements elicitation, requirements review, OO development, OO software
design activities, UML, and OO design inspections as part of the course. The subjects were grouped into
high, medium, and low expertise categories, and one person from each group was randomly assigned to
each of the 14 3-person teams.

Mater ials
The materials under study in this experiment were the PBR techniques and the OORT techniques. They
were applied in the evolution of the PGCS system, described Section 2.1.3.1. The students were given a
list of enhancements and had to create a new requirements documents, and a new design. The
enhancements included functionality that allowed customers to reserve tickets and pay bills over the
Internet.

Procedure
Before this experiment was run, a version of the PGCS system was designed and implemented based on the
requirements that had been used in previous experiments. This consisted of a requirements document, and
Object Oriented design, and executable modules, all of which the subjects had access to. The subjects used
a waterfall development process, to create an enhanced version of this system. First of all, they were given
the set of requirements that had been implemented, as well as a list of enhancements that were required for
the new system. The subjects then created a new requirements document combining the existing
requirements with the newly added ones. They then performed an inspection on this document.

After correcting the defects found during the requirements inspection, each team created a design for the
system. The teams first performed an initial inspection to ensure that their designs were consistent, and
corrected any defects that were uncovered. After this, the teams traded designs. Each team then performed
a more detailed inspection of the design they had been given. The list of defects found by the reviewers
was then returned to the authors of the design for correction.

In the overall scope of the software development process there was no control group here. This occurred
for two reasons: first, the design inspection was one small part of a larger experiment, and the overall
experimental design did not allow for a control group. Secondly, in a classroom environment, it was not
possible to provide instruction on a topic to only a portion of the class.

Data Collection
The data for this experiment was collected in two ways: questionnaires and analysis of created artifacts.
The questionnaires were used throughout the development cycle to collect both qualitative and quantitative
data. The quantitative data collected include both background information, used to classify the subjects as
having high, medium, or low expertise, and the amount of time taken to use the techniques, used to
evaluate feasibility of use. The qualitative data collected by the questionnaires concerned:
• Opinions of the helpfulness of the techniques.
• Problems encountered using the techniques, or extra knowledge that was needed to use the techniques.
• Opinions of effectiveness of training.
Analysis of the defect lists provided quantitative data about the number and types of defects found by the
teams. The data was useful in determining if the output of the reading process uncovered defects and was
useful for continuing the development process.

3.1.4 USC Exper iment
This experiment will allow us to further explore the background and experience variables. Specifically, the
subjects in this experiment will not only be reviewing a requirements document, they will be first eliciting
those requirements and writing the document. This provides us with the ability to see if inspectors who
were involved in the elicitation and creation of the requirements perform inspections any differently than
those that did not. Secondly, the projects that will be created in this experiment will be from the library
systems domain. This will allow us to see if the defects made in that domain fit into our classification
scheme, or if we need to expand it because different types of defects are made that we have not

42

encountered before. In this experiment we will be able to collect data both on subjects who use techniques
for the inspection as well as subject who perform an ad hoc inspction.

Method
This is an experiment that will be conducted in the context of a graduate software engineering course at the
University of Southern California. The course is part of a two semester sequence in which a software
product is built, beginning with requirements elicitation and ending with a delivered product. One main
benefit of this experiment is that the product being built has a real customer and contains real requirements.
Therefore the defects that are made will be real defects. In the past we have mainly been able to work with
artifacts created by us, with defects seeded by us.

Subjects
The subjects will be members of a two semester software engineering course at the University of Southern
California. The students will be grouped into teams consisting of approximately 5 members. There will be
approximately 20 teams in the class. Each team will be working on a different project.

Mater ials
The materials under study in this experiment will consist mainly of the PBR techniques for requirements
inspections. These techniques will be applied in the inspection of the requirements document created by
each team for their individual projects.

Procedure
During the course of the semester, the subjects are trained in the Fagan Inspection method. In addition to
that, the subjects will receive additional training in PBR. The students will be in teams of 5 members each.
Each team will have a real customer, probably someone in the library school, with a real product, to be
used by the library school after completion. Each team will be responsible for meeting with their customer
and eliciting the requirements for their project. After the requirements document has been created, the
teams will be responsible for performing a Fagan Inspection on that requirements document. The 5
members of the team will play the roles in the Fagan Inspection that were described earlier. The PBR
perspective that makes the most sense for each role will be used. The Author and the Reader will use the
Customer perspective to gain an overall understanding of the requirements document. There will be two
inspectors playing the Tester role and they will use the Tester perspective. Finally, the Moderator will use
ad hoc reading to prepare for the meeting in whatever way he or she thinks is most appropriate.

Data Collection
Data will be collected in three ways: questionnaires, interviews and analysis of created artifacts. The
questionnaires will provide us with information about the subject’s background knowledge and experience
that will be helpful in exploring the cause-effect relationship among experience variables and performance
in an inspection. The analysis of artifacts will mainly deal with the defect lists that the subjects create
during the requirements inspection, as well as the pre-inspection and corrected versions of the requirements
document. Interviews with subjects after the experiment will provide us with qualitative data about the
inspection process. Specific background variables can be explored as well as the subjects opinion of the
inspection process. This type of information will be valuable in understanding the relationships between
the background and experience variables and the defect classes.

3.1.5 Other Exper iments
In addition to the experiments described above, we will also examine some other data sets as well as some
other experiments that have either been planned or are in the process of being planned. The other data will
come from replications of experiments described above that occurred both within a university setting as
well as within places like NASA. The other experiments will provide us data for the validation of our new
defect classifications and our cause-effect relationship between those classes and the experience variables.
Each experiment will provide us with a different perspective on the defect data that has been collected in
the past.

In the future studies there is potential for the collection of industrial data which would add greatly to the
value of the data we already have. If data from industry can confirm what we have found based on data

43

from more controlled settings, then we can be more certain of our conclusions. We have potential
industrial contacts both in Brazil through Dr. Guilherme Travassos, as well as with the Fraunhofer Center-
Maryland. These settings would not be places to perform controlled experiments. Rather they would be
sites where the inspection techniques that we have can be inserted into their process. While doing this, data
will be collected and analyzed in the same way that we have described before through questionnaires,
interviews and analysis of artifacts. In these experiments the interviews will continue to provide us with
data about the background variables as well as helping us gain an understanding of their relationship to the
defects found during the inspection process.

3.1.6 Other Data
In addition to the data sets specifically described above, we will make use of any other related data sets that
we are able to gain access to. These include a replication of a Perspective Based Reading experiment that
was done in Bari, Italy. Another replication of that experiment was done at the University of Maryland,
Baltimore County.

44

3.2 Validation and Improvement of Defect Classifications
One of the major parts of this work is to improve the defect classifications we have so that they are useful
for their stated purposes. This evaluation will be done using the data provided by the experiments
described above. What we want to do is to ensure that the two levels of our defect classification fulfill their
stated goals. The more general level should have categories that contain enough defects across many
different domains that we can use them to evaluate the impact of the experience variables. If any of the
stated categories has too few defects in it, then the impact of the variables on it will not be very interesting.
Likewise, we want to make sure that in the more specific defect classification, that enough information is
provided about the defect that a step could be added to a reading technique if that defect is never or rarely
found.

To do this we will have to examine the defects that are reported in each of the experiments described in
Section 3.2. We will need to examine each defect that has been reported to see if it fits into the
classification scheme that we have described. If a given defect does not fit into any of the general classes
of defects, then we may have to expand our classification scheme to include another general class. On the
other hand, if we can find a general class to place the defect into, but it doesn’ t match any of the specific
descriptions currently there, then we can add a specific description. This would give us an idea of
something that may need to be added or modified in the inspection techniques. This is represented by the
tasks on the right-hand side of the dashed line in Figure 3.

We will use the grounded theory approach and the steps described in Section 3.1. We have started by
forming a defect classification scheme that is complete and useful for the list of defects that we started
with. As we evaluate the data from each subsequent experiment or study, we will extend, modify and
delete classes as necessary. After taking into account the defect lists from multiple separate studies, we
should have good defect classification schemes. In doing this we will also keep in mind the guidelines for
creating categories provided by [Day93].

EQ1 Are the two levels of the classification scheme at the r ight level of granular ity?
EQ2 and EQ3, which are discussed below, deal with part of this question. One important thing that we
much measure here is :
• Number of defects that occur in each major class. Done by counting them across all of the defect lists

from all of the artifacts.

If we discover that there is a general category that has only a few defects relative to the other categories,
then we must either combine it with one of the larger categories or eliminate it in some other way. The
goal here is to end up with general categories that have enough defects in them that we can perform a
statistical analysis. If the categories are too small, then we will not be able to discover anything interesting
through our statistical analysis. We will run a statistical test to determine if any of the classes is an outlier
with respect to the rest of them. If we find an outlier, then we must combine or split it so that we have
relatively uniform data.

EQ2 Do all true defects easily fit into one of the general categor ies?
This is part of the question that is addressed in EQ1. Here we really want to determine how orthogonal the
defect classifications are. If inspectors cannot easily classify a defect into its proper class, then our success
in finding a correlation between a background or experience variable and any particular defect class will be
greatly diminished.
• The way that we will measure this is to look at each defect that was found by multiple teams. If

different teams describe a defect in such a way that it falls into different defect classes then our general
classes are not sufficient. The classes will either need to be modified, or more clearly described so that
each defect clearly falls into one and only one defect class.

Because the experiments have already been performed using a slightly different defect classification
scheme, we can not look explicitly at how the subjects will classify the defects. To answer this question,
we will have to take each set of defects that we have and classify them ourselves. Once we have multiple
people having performed this classification, then we can compare the results and evaluate our defect
classes.

45

EQ3 Do the specific categor ies reflect information that is useful to the process developers?
This is the other part of the question EQ1. We must examine each of the specific defect classes and
determine if we can easily convert them to a question on a reading technique or to an item on a checklist if
they don’ t already exist. If we have trouble converting the specific class to a useable step in a technique,
then the class is not adequately described. Future work would involve empirically validating that the new
step or the new checklist item had the desired result. This could be done through and experiment. In such
an experiment, the same set of artifacts would be given to an inspector. This inspector would then be given
the new technique. We would examine the defects found by the new inspector to determine if he or she
found the defects that were missed in the previous inspection while continuing to find the defects that had
been found in the previous inspection. While this experiment is not part of the proposed research, it would
be a direction for a future study if we uncover enough specific defect classes that are not addressed by the
current techniques.

46

3.3 Validation and Improvement of list of Exper ience Var iables
Secondly, we want to make sure that the list of experience variables that we have defined is both complete
and useful. We have to ensure that for each variable we have defined that we have a range of values. If all
of the inspectors have the same value for a given experience variable then that variable is not very
interesting. Or, it would be a potential topic for further investigation with another series of experiments.
Because the experiments that are described in Section 3.2 come from a variety of domains, and also have
variety of subjects, from students to professionals, we should have a good cross-section. This will help us
to identify which of the experience variables really are important to study.

Based on the initial list of background and experience variables described in Section 2.2.3, we have some
specific questions that need to be addressed. Each of the initial variables has a list of questions. They will
be discussed in the following sections along with the metrics that will be used to measure them. In the case
of each variable below, if we discover that the values reported by the subjects for that variable are all the
same or have very little variation, then we must eliminate the variable from our consideration. The variable
may still be an interesting one, and a future study may be planned to explore that variable directly. But, for
our purposed, we will remove it from the list. This is represented by the tasks appearing on the right-hand
side of the dashed line in Figure 4.

EQ4 Are all of the var iables really var iables?
This will be measured by examining the responses to the questions described in the following sections that
deal with each individual variable.
• We will strive to have a normal distribution of inspectors within each value for each given variable.

If all of the inspectors have the same value for a variable, it clearly will not be interesting to evaluate. If we
do not quite have a normal distribution but are close enough to get statistically significant results, then we
will keep the variable in the list.

EQ5 Is the list complete?
This will be measure by evaluating the qualitative data provided by the subjects in each study. They will
be required to answer questions to help provide us with insight:
• Did you find the technique useful? Why or why not?
• Were there other ways that you could have done this better? What are they?
• Do you feel that you were adequately equipped to perform the inspection? What else could have been

done?

The responses to these types of questions will give us information about what the subjects in the study felt
was important. If some subjects found the techniques they used to be helpful while others did not then their
reasons for this will provide information into other potential variables between inspectors. If many of the
subjects tell us that they were not adequately equipped and suggest something that would help, then this is a
good candidate to add to our list of background and experience variables.

3.3.1 Environment Var iables

EQ6 What is the environment like in which the inspection is being per formed?
The answers to this question will be based on the following metrics that can be collected about the
environment.
• Setting of the individual inspections

• In their office with the normal noise and interruption of phone calls and coworkers
• In a quiet room free of interruptions
• Other

• Setting of the collection meeting (if it exists)
• Someone’s office with the normal workday interruptions
• Quiet Room
• Other

47

• Importance of inspections within the organization
• Mandated by management for every project
• Optional for each project but supported by management
• Optional for each project but not supported by management
• Discouraged by management

EQ7 Are there environmental constraints that affect how the inspection is being per formed?
This question involves the answers to the following questions:
• Time/effort allowed by management for inspections?

• None
• < 10% of the development cost
• between 10% and 25% of the development cost
• >25% of the development cost
• unlimited
• unspecified

• Is there a standard defect report form for the organization that must be used regardless of the
inspection process?
• Yes
• No

EQ8 Can the constraints from EQ7 change
This address how rigidly enforced the constraints from EQ7 are enforced
• Is the level of effort allowed for inspections a hard limit? I.e. do the inspections have to stop after a

certain amount of effort has been expended regardless of their progress?
• If there is a standard defect report form, can it be modified as long as all the relevant data is still

collected?

3.3.2 Training

EQ9 How does the training affect the application of the technique?
This is addressed by the following subquestions:
• How much time was spent during the training?
• Who performed the training?
• Did the subject attend the training?

EQ10 Are there ways to train more or less effectively?
This question will be based more on qualitative responses than quantitative ones.
• Do the experimenters see based on the results that a large portion of the subjects misunderstood one or

more concepts from the training session?
• In the follow-up surveys or questionnaires do the subjects suggest things that they feel would have

been helpful to have during the training session?
• Also in the follow-up surveys or questionnaires, did the subjects report that there were parts of the

training that were not helpful, or they felt were a waste of time?
In order to address issues raised by one of the previous two questions, we would have to see the same
answer or similar answers appearing in at least 1/3 of the subjects’ responses.

EQ11 Are there other issues that should be considered when planning the training?
This question does not specifically address the application of the training variable to the finding of defects,
but it does provide us with valuable insight into the training process and how it can be improved. If the
training can be improved to a level where being present or absent from the training session has a significant
impact on the outcome of the inspection, then this is valuable information.
• What time of day was the training performed? Morning, Afternoon, Evening

48

• Where was the training performed? In a quiet room where the subjects could concentrate, or in a more
public place?

• Are there any other issues mentioned by subjects in their post-experiment reports that we have not yet
thought of?

EQ12 I f the training unequally emphasizes one aspect of the technique(s), does this skew the results
when the technique is applied?
Again, this question does not directly address the main issue at hand, but the experimenters can use this
information when planning and evaluating the training. This data will come from the information provided
by the subjects in their post-experiment questionnaires or surveys.

3.3.3 Domain Knowledge

EQ13 Does exper ience or knowledge in a domain make the inspectors more or less effective?
The following questions will help to address this issue:
• What is the domain?
• How much experience does the inspector have in that domain? (None, Read in a book about it,

Solved a problem in it before, Solved multiple problems in it before, Common domain)
• How familiar is the inspector with the product being developed?

• Requirements
• Did the inspector help create the requirements?
• Is the inspector experienced with previous versions of the product?
• If there are similar projects, is the inspector experienced with any of those?

• Design
• Did the inspector create the requirements?
• Did the inspector inspect the requirements?
• Did the inspector create the design?
• If there are previous versions of the product, is the inspector experienced with those?
• If there are similar projects, is the inspector experienced with any of those?

EQ14 Does the technique affect how domain exper ts per form
• Can we notice any difference in the performance of experts who use the technique from those who do

not use the technique? The main idea is whether or not the technique gets in the way of the experts
who would be more effective using their own method.
• Number and type of defects detected

• Does the technique allow for the freedom of the expert to perform the same task in a way that they feel
is better or more productive?
• Qualitative data – domain expert may feel constrained and perform worse.

• Is the technique too detailed for domain experts?
• This information will come from qualitative data collected in post-experiment questionnaires and

surveys. If a large number of the experienced subjects report that the technique is difficult to use,
and feel they would be more effective with their own way, then we know the technique may be too
detailed.

EQ15 Does the technique affect how novices per form?
• Do the novice inspectors find more defects and different defects than they would have using an ad-hoc

technique?
• Number and type of defect reported by inspectors using a technique and inspectors using ad-hoc

• Is the technique not detailed enough for novices?

49

• Again, this information will come from qualitative data collected in post-experiment
questionnaires and surveys. If a large number of the novices report difficulty understanding what
to do, then the technique is not detailed enough.

3.3.4 Software Development Exper ience

EQ16 Does exper ience in a specific development technology (e.g. Object Or iented Design) make an
inspector more or less effective?
• Inspector’s experience in the lifecycle phase

• None
• Classroom
• Industrial

• Inspector’s experience in the specific technology, such as OO design, being used
• None
• Classroom
• Industrial

• If the requirements inspection technique uses a technology such as Equivalence Partition Testing,
inspectors experience in that technology
• None
• Classroom
• Industrial

EQ17 Does the technique affect how development exper ts per form?
• Can we notice any difference in the performance of experts who use the technique from those who do

not use the technique? The main idea is whether or not the technique gets in the way of the experts
who would be more effective using their own method.
• Number and type of defects reported by development experts using the technique
• Number and type of defects reported by development experts using their own technique

• Does the technique allow for the freedom of the expert to perform the same task in a way that they feel
is better or more productive?
• Qualitative data – development experts may respond that the technique was too restrictive or not

• Is the technique too detailed for domain experts?
• This information will come from qualitative data collected in post-experiment questionnaires and

surveys. If a large number of the experienced subjects report that the technique is difficult to use,
and feel they would be more effective with their own way, then we know the technique may be too
detailed.

EQ18 Does the technique affect how development novices per form?
• Do the novice inspectors find more defects and different defects than they would have using an ad-hoc

technique?
• Number and type of defects found using inspection technique
• Number and type of defects found using ad-hoc technique

• Is the technique not detailed enough for novices?
• This information will come from qualitative data collected in post-experiment questionnaires and

surveys. If a large number of the novices report difficulty understanding what to do, then the
technique is not detailed enough.

3.3.5 Exper ience in another similar inspection process

50

EQ19 Does the inspector have exper ience in another similar technique?
• If the technique under study is a reading technique, Inspector’s experience with reading techniques

• None
• Used a technique in an inspection in the same lifecycle phase in class
• Used a technique in an inspection in another lifecycle phase in class
• Used a technique in an inspection in this lifecycle phase in industry
• Used a technique in an inspection in another lifecycle phase in industry

EQ20 Does this knowledge or lack of it, help or hinder the inspector in the application of a
technique?
• How do the readers feel their experience or lack of it affected their application of the technique?

• This will be collected from qualitative data provided by the subjects in post-experiment
questionnaires and surveys.

3.3.6 Exper ience with this inspection process

EQ21 Do the inspectors get better or worse after prolong exposure to the technique?
• How much experience does the inspector have with this technique?

• None
• In Class
• Industry

• Based on qualitative data, do the inspectors feel that they become more effective at using the technique
by repetition?
• Became more effective
• Effectiveness remained the same
• Became less effective

• Does the performance of the inspector improve, stay the same, or get worse each successive time the
use the technique?
• Number and type of defects detected during each inspection

EQ22 Do the readers tend to follow the techniques better or worse the longer they are exposed to
them?
• Based on intermediate artifacts created, and qualitative answers from the subjects, do they continue to

follow the technique after they become familiar with it, or do they assume that they understand the
process and try to execute without following the instructions?

EQ23 Do the techniques need to evolve to become less restr ictive as readers become more exper t?
• Do experts feel, based on qualitative data, that they would be more effective if the technique told them

the goals of each step, but allowed the inspector the freedom to accomplish that step in the best way
they could think of?

3.3.7 Natural Language

EQ24 Is the reader familiar with the language that the documents and instructions are wr itten in?
• Based on data collected in background questionnaires, we can know how familiar the inspector is with

the language being used.
• Spoken only
• Written only
• Spoken and written
• Very familiar
• Native speaker

51

3.3.8 Process Conformance

EQ24 Other than exper ience and domain knowledge, are there other reasons that inspectors deviate
from the technique?
• Based on qualitative data from the post-experiment questionnaires and surveys, do a large number of

inspectors state a reason for not following the process other than experience and domain knowledge?

EQ25 Is it always bad for readers to deviate from the process?
• Based on the qualitative data from the post-experiment questionnaires, and the quantitative data about

the performance during the inspection we can determine if inspectors that deviate from the process
justify it based on past experience and perform better than those that follow the technique?

EQ26 Is it possible to modify the technique so that it gives a “ bounding box” instead of a “ straight
jacket” ? Would this make things better or worse?
• Same idea as the use by domain and technique experts. Based on qualitative data, do the experts feel

that the technique would be more useful if it gave them guidelines to follow instead of strict steps? If a
large number of experts feel this way, then this hypothesis could be evaluated in a future experiment
that is not part of this work.

EQ27 When the technique is not followed, can we determine the reason?
• Based on qualitative data, do the inspectors state why the deviated from the technique? If so, what is

the reason? For example, did the inspector think the technique was not useful?
• Was the deviation done on accident?

52

3.4 Understanding and Validation of L inkage between Var iables and Defects
Once we have a clear understanding of what our defect classification schemes are and what our experience
variables are, we can begin to understand the correlation between the two. The assumption should not be
made that a high value in a variable will always be helpful or beneficial. We have seen some instances in
the literature where high domain knowledge can actually hinder the finding of defects. Sometimes
someone with a fresh perspective can see things that someone who is very familiar with the material
overlooks. It is conceivable that we could either confirm or deny this finding. It would also be possible for
situations like this to occur with the other variables.

The research published in the literature has hinted at relationships between the variables we have defined
and overall defect detection effectiveness. We want to confirm or deny the findings of other researchers
published in the literature. The relationship between our defect classes and the variables are more difficult
to predict. Indications were made in the literature that experts in certain aspects of the software lifecycle or
the domain might perform better in that area of the inspection. This means that development experts may
do a better job of uncovering defects dealing with object states, because they better understand what a state
should or should not be. On the other hand, a development or domain novice might do better at uncovering
some of the defects concerning data. Because they are looking at the artifact with a fresh perspective, they
will not have some of the implicit assumptions that experts might have.

EQ28 Which of the var iables contr ibute to finding the largest number of defects?
For each variable, we will split the inspectors up into groups based on their values for that variable. We
will perform a 2-tailed t-test or ANOVA between the groups to see if any one finds significantly more or
less defects than the other. This will be repeated for each of the background and experience variables that
are in our list. There will be no new metrics collected to answer this question, but we will use the metrics
discussed in the previous questions to get the number of defects as well as the groupings for the inspectors.

EQ29 Do some var iables increase or decrease the likelihood of finding cer tain classes of defects?
For each variable, we will split the inspectors into groups based on their values for that variable. Then for
each group, we will look at the number of defects from each of our defect classes that that group found.
We will again perform either at 2-tailed t-test or ANOVA between the groups to see if any group finds
significantly more or less defects in each of our defect classes. Like the previous question, no new metrics
need to be collected here. We can reuse the data that was discussed earlier.

53

4 Summary
In this paper we have shown the necessity for inspections within the software development process.
Software inspections are widespread. The environments in which they are used are varied as well as well
as the inspectors. This variation leads to some discrepancy as to the results of the inspections. Researchers
have pointed out that the variations among inspectors have an impact on the outcome of the inspection.
While the researchers realize this fact, very little work has been done to determine what qualities or
background and experience in an inspector has an impact on the outcome of the inspection. We have
proposed an approach to this problem. We have discussed our method for evaluating the relationship
between the background and experiences of an inspector to his or her performance in an inspection.

To do this, we have discussed three steps that must be taken. The first step we identified was to create
defect classification schemes into which we could group related defects from different application domains.
These schemes give us a way to measure not only inspectors performance in finding defects in general, but
more specifically finding defects in a given defect class. Secondly, we must identify what variations
between inspectors are important and useful to study. To do this, we have developed an initial list of
background and experience variables. This list will be evaluated and possibly modified so that it contains
the important differences among inspectors. Once we have this list, we can then explore the relationship
between the variables and the defects. We will be exploring how the various background and experience
variable affect the outcome of an inspection in two ways. First, we will examine each variable’s impact on
defect detection in general, i.e. how many defects are found. Secondly, we will examine how each variable
impacts the discovery of defects from each of the defect classes that we have identified.

The results of this work will provide guidance to the inspection planner. We will provide a set of heuristics
or guideline with which the inspection manager can choose inspectors for his or her team. Based on the
organization’s historical profile of defect types, we can suggest the background and experience that
inspectors should have that will give them the best chance of finding those important defects.

54

References

[Ackerman89] Ackerman, A.F., Buchwalk, L.S., and Lewski, F.H. “Software Inspections: An Effective
Verification Process.” IEEE Software. May 1989. pp. 31-36.

[Basili81] Basili, V. R., Weiss, D. M. “Evaluation of a Software Requirements Document By
Analysis of Change Data.” In Proceedings 5th Int’ l Conference On Software Engineering,
IEEE CS Press, Los Alamintos, Calif., Mar. 1981, pp. 314-323.

[Basili84] Basili, V.R., Weiss, D.M. “A Methodology for Collection Valid Software Engineering
Data.” IEEE Transactions on Software Engineering, SE-10 (6): 728-738, Nov. 1984.

[Basili87] Basili, V.R., and Selby, R.W. “Comparing the Effectiveness of Software Testing
Strategies.” IEEE Transactions on Software Engineering, SE-12 (7): 1278-1296, Dec.
1987.

[Basili88] Basili, V.R., Rombach, H.D. “The TAME Project: Towards Improvement-Oriented
Software Environments.” IEEE Transactions on Software Engineering, SE14 (6): 758-
773, June 1998.

[Basili96] Basili, V. R., Green, S. ,Laitenberger, O., Lanubile, F., Shull, F., Sorumgard, S.,
Zelkowitz, M.V., “The Empirical Investigation of Perspective-Based Reading” ;
Empirical Software Engineering – An International Journal, vol. 1, no. 2, 1996.

[Bush90] Bush, M. “ Improving Software Quality: The Use of Formal Inspections at the Jet
Propulsion Laboratory.” Proc. 12th Int’ l Conf. Software Eng., IEEE CS Press, Los
Alamintos, Calif., 1990, p 196-199.

[Chaar93] Chaar, J.K., Halliday, M.J., Bhandari, I.S. and Chillarege, R. “ In-Process Evaluation for
Software Inspection and Test.” IEEE Transactions on Software Engineering, SE-19 (11):
1055-1070. November 1993.

[Chaar95] Chaar, J.K. “On the Evaluation of Software Inspections and Tests.” In Proceedings of the
8th International Quality Week, Software Research, Inc., San Francisco, CA, June, 1995.

[Chillarege91] Chillarege, R., Kao, W., and Condit, R.G. “Defect Type and its Impact on the Growth
Curve.” In Proc. Of 13th International Conference on Software Engineering, May 1991,
p. 246-255.

[Day93] Day, I. Qualitative data analysis: A user-friendly guide for social scientists. New York:
Routledge. 1993

[Doolan92] Doolan, E.P. “Experience with Fagan’s Inspection Method.” Software-Practice and
Experience. 22(2): 173-182. Feb. 1992.

[Dow94] Dow, H.E., and Murphy, J.S. “Detailed Product Knowledge is not a Prerequisite for an
Effective Formal Software Inspection.” In Proceedings of the 7th Software Engineering
Process Group Meeting, Boston, MA, May, 1994.

[Fagan76] Fagan, M. E., “Design and code inspections to reduce errors in program development.”
IBM Systems Journal. 15(3). 1976. 182-211.

[Fagan 86] Fagan, M. E., “Advances in Software Inspections.” IEEE Transactions on Software
Engineering 12 (7): 1986. 744-751.

55

[Fowler86] Fowler, P.J. “ In-process Inspections of Workproducts at AT&T.” AT&T Technical
Journal 65(2): 102-112, March-April 1986.

[Glaser67] Glaser, B. G., and Strauss, A.L. The Discovery of Grounded Theroy: Strategies for
qualitative research. New York : Aldine de Gruyter. 1967.

[Glass99] Glass, R. L. “ Inspections-Some Surprising Findings.” Communications of the ACM, Apr.
1999, pp. 17-19.

[Gilb93] Gilb, T, and Graham, D. Software Inspections. Workingham, England: Addison-Wesley.
1993.

[Gilgun92] Gilgun, J.F., “Definitions, Methodologies, and Methods in Qualitative Family Research.”
Qualitative Methods in Family Research. Sage, 1992. pp. 22-29

[Grady94] Grady, R.B., and Van Slack, T. “Key Lessons In Achieving Widespread Inspection Use.”
IEEE Software. July 1994. pp. 46-57.

[IBM99] IBM, Center for Software Engineering. “Details on Orthogonal Defect Classification for
Design and Code.” IBM Research Whitepaper. 1999. Available at:
http://www.research.ibm.com/softeng/ODC/DETODC.HTM

[Johnson94] Johnson, P.M. “An Instrumented Approach to Improving Software Quality.” Proc. 16th

Int’ l Conf. Software Eng., IEEE CS Press, Los Alamintos, Calif., 1994, p 113-122.

[Kelly92] Kelly, J. C., Sherif, J. S., Hops, J. “An Analysis of Defect Densities Found During
Software Inspections.” Journals of Systems and Software, Feb. 1992, pp. 111-117.

[Knight93] Knight, J.C., Myers, E.A. “An Improved Inspection Technique.” Communications of the
ACM. 36(11): 51-61, Nov. 1993.

[Laitenberger99] Laitenberger, O. and Atkinson, C. “Generalizing Perspective-based Inspection to handle
Object-Oriented Development Artifacts.” Proceedings of 21st International Conference
on Software Engineering, 1999, p 494-503.

[Laitenberger00] Laitenberger, O., Atkingson, C., Schlich, M., and El Emam, Khaled. “An experimental
comparison of reading techniques for defect detection in UML design documents.”
Journal of Systems and Software, 53 (2), August, 2000, pp. 183-204.

[Parnas85] Parnas, D.L., and Weiss, D.M. “Active Design Reviews: Principles and Practice.” Proc of
8th International Conference on Software Engineering, 1985, p132-136.

[Porter 94] Porter, A.A., Votta, L.G. “An Experiment to Assess Different Defect Detection Methods
for Software Requirements Inspections.” Proc. 16th Int’ l Conf. Software Eng., 1994,
p103-112.

[Porter95] Porter,A. A., Votta, L.G. Jr., and Basili, V. R. “Comparing Detection Methods for
Software Requirements Inspections: A Replicated Experiment.” IEEE Transactions on
Software Engineering 1995, 21(6): 563-575.

[Porter97] Porter, A.A., and Johnson, P.M. “Assessing Software Review Meetings: Results of a
Comparative Analysis of Two Experimental Studies.” IEEE Transactions on Software
Engineering. Vol. 23, no. 3. March 1997. pp 129-145.

56

[Porter98] Porter, A.A., Siy, H., Mockus, A., and Votta, L. “Understanding the Sources of Variation
in Software Inspections.” ACM Transactions on Software Engineering and Methodology,
Vol. 7, No.1, Jan. 1998, pp. 41-79.

[Russell91] Russell, G.W. “Experience with Inspection in Ultralarge-Scale Developments.” IEEE
Software. January 1991. pp. 25-31.

[Sauer00] Sauer, C., Jeffery, D.R., Land, L., and Yetton, P. “The Effectiveness of Software
Development Technical Reviews: A Behaviorally Motivated Program of Research.”
IEEE Transactions on Software Engineering. SE-26(1) : 1-14.

[Schneider92] Schneider, G.M., Martin, J., and Tsai, W.T. “An Experimental Study of Fault Detection
In User Requirements Documents.” ACM Transactions on Software Engineering and
Methodology, April 1992, Vol. 1, No. 2. p188-204.

[Seaman97] Seaman, C.B., and Basili, V.R. “An Empirical Study of Communication in Code
Inspection” , in Proc. ICSE ’97, pp. 96-106.

[Shull98] Developing Techniques for Using Software Documents: A Series of Empirical Studies.
Ph.D. thesis, University of Maryland, College Park, December 1998.

[Shull99] Shull, F. Travassos, G.H., Carver, J., and Basili, V.R. “Evolving a Set of Techniques for
OO Inspections.” University of Maryland Technical Report CS-TR-4070, October 1999.

[Shull00] Shull, F., Lanubile, F. and Basili, V.R. “ Investigating Reading Techniques for Object-
Oriented Framework Learning.” Accepted for publication by IEEE Transactions on
Software Engineering. Available at:
http://www.cs.umd.edu/projects/SoftEng/ESEG/papers/postscript/framework_reading.ps

[Shull00b] Shull, F., Carver, J., and Travassos, G.H. “Process Evolution: A Toolkit and Example for
OO Design Inspections.” Submitted to ICSE. Available at:

 http://www.cs.umd.edu/projects/SoftEng/ESEG/papers/pdf/icse2001.pdf

[Siy96] Siy, H.P. “ Identifying the Mechanisms Driving Code Inspection Costs and Benefits.”
PhD Dissertation, University of Maryland, 1996.

[Travassos99] Travassos, G.; Shull, F.; Fredericks, M.; and Basili, V. R. Detecting Defects in Object-
Oriented Designs: Using Reading Techniques to Increase Software Quality. In Proc.
OOPSLA’99 (Denver CO, Nov. 1999), ACM Press, 47-56.

[Travassos99b] Travassos, G. H., Shull, F., Carver, J. “Evolving a Process for Inspecting OO Designs.”
XIII SBES: Workshop on Software Quality. Florianopolis, Curitiba, Brazil. October
1999.

[Votta93] Votta, L. G. Jr. Does Every Inspection Need a Meeting? Proc. of ACM SIGSOFT ’93
Symp. Foundations of Software Eng. Assoc. for Computing Machinery, Dec. 1993.

[Weller93] Weller, E.F. “Lessons from Three Years of Inspection Data.” IEEE Software. September
1993. pp. 38-45.

[Zhang99] Z. Zhang. The Design and Empirical Studies of Perspective-Based Usability Inspection.
PhD. Thesis, University of Maryland, College Park, June 1999.

