Vol. 25(2024) No. 1

 

 

  Fixed point property of full Hilbert C*-modules over unital C*-algebras
 
Home
Volumes Selection

Fixed Point Theory, Volume 25, No. 1, 2024, 171-178, February 1st, 2024

DOI: 10.24193/fpt-ro.2024.1.11

Authors: Farhang Jahangir and Kourosh Nourouzi

Abstract: We show that full Hilbert C*-modules over a commutative unital C*-algebra 𝒜 have fixed point property for nonexpansive mappings if and only if 𝒜 is finite dimensional. We also show that the same is true for every Hilbert C*-module with unit vectors over an arbitrary unital C*-algebra. In particular, a classification of full Hilbert C*-modules with unit vectors over unital C*-algebras is given via fixed point property for nonexpansive mappings.

Key Words and Phrases: Fixed point, nonexpansive mapping, Hilbert C*-module, continuous field of Hilbert spaces, unit vector.

2010 Mathematics Subject Classification: 47H10, 46C50.

Published on-line: February 1st, 2024.

Fulltext pdf

Back to volume's table of contents


Home | Indexing-Abstracting | Aims and Scope | Editors | Editorial Board | Published Volumes | Instructions for authors | Subscription | Reviewers Ackn. | Secretaries | FPT Conferences | FPT Book Review