Vol. 25(2024) No. 1

 

 

  Multiplicity of periodic solutions for dynamic Liénard equations with delay and singular φ-Laplacian of relativistic type
 
Home
Volumes Selection

Fixed Point Theory, Volume 25, No. 1, 2024, 31-42, February 1st, 2024

DOI: 10.24193/fpt-ro.2024.1.03

Authors: P. Amster, M.P. Kuna and D.P. Santos

Abstract: We study the existence and multiplicity of periodic solutions for singular φ-Laplacian Liénard-like equations with delay on time scales. We prove the existence of multiple solutions using topological methods based on the Leray-Schauder degree. Special cases are the T-periodic problem for the forced pendulum equation and the sunflower equation with relativistic effects.

Key Words and Phrases: Functional dynamic equations, Leray-Schauder degree, periodic solutions, continuation theorem, time scales, fixed point.

2010 Mathematics Subject Classification: 34N05, 34C25, 47H11, 47H10.

Published on-line: February 1st, 2024.

Fulltext pdf

Back to volume's table of contents


Home | Indexing-Abstracting | Aims and Scope | Editors | Editorial Board | Published Volumes | Instructions for authors | Subscription | Reviewers Ackn. | Secretaries | FPT Conferences | FPT Book Review