Vol. 21(2020) No. 1

 

 

  A common maximal element of condensing mappings
 
Home
Volumes Selection

Fixed Point Theory, Volume 21, No. 1, 2020, 125-132, February 1st, 2020

DOI: 10.24193/fpt-ro.2020.1.09

Authors: Liang-Ju Chu and Chien-Hao Huang

Abstract: In this paper, we establish a general existence theorem of maximal elements of condensing mappings in the product X : = ∏α ∈ IXα of noncompact l.c.-spaces. As an application, we prove that a family of Lπα-majorized Qα-condensing mappings Tα: X →2Xα admit a common maximal element under the mild condition that each {x | Tα(x) ≠ ∅} is compactly open.

Key Words and Phrases: l.c.-space, Qα-condensing mapping, maximal element, Lθ-majorized.

2010 Mathematics Subject Classification: 47H04, 52A99, 54H25.

Published on-line: February 1st, 2020.

Abstract pdf          Fulltext pdf

Back to volume's table of contents


Home | Indexing-Abstracting | Aims and Scope | Editors | Editorial Board | Published Volumes | Instructions for authors | Subscription | Reviewers Ackn. | Secretaries | FPT Conferences | FPT Book Review