Vol. 20(2019) No. 1

 

Open access

  Fixed points of generalized hybrid mappings on L2-embedded sets in Banach spaces
 
Home
Volumes Selection

Fixed Point Theory, Volume 20, No. 1, 2019, 203-210, February 1st, 2019

DOI: 10.24193/fpt-ro.2019.1.13

Authors: A. Jabbari and R. Keshavarzi

Abstract: In this paper, first we generalize the notion of L-embedded sets in Banach spaces, defined by A.T.-M. Lau and Y. Zhang in “Fixed point properties for semigroups of nonlinear mappings and amenability”, Journal of Functional Analysis, 263 (2012), pp. 2949-2977, to the notion of Lp-embedded sets (p > 0). Then, for a given generalized hybrid mapping T, we introduce the concepts of T-Chebyshev radius and T-Chebyshev center, generalizing the concepts of Chebyshev radius and Chebyshev center for nonexpansive mappings. Finally, we study the existence of fixed points of generalized hybrid mappings on L2-embedded subsets of a Banach space by using the notions of T-Chebyshev radius and T-Chebyshev center.

Key Words and Phrases: fixed point, generalized hybrid mapping, L2 − embedded set, Chebyshev center.

2010 Mathematics Subject Classification: 47H10, 37C25.

Published on-line: February 1st, 2019.

Abstract pdf          Fulltext pdf

Back to volume's table of contents


Home | Indexing-Abstracting | Aims and Scope | Editors | Editorial Board | Published Volumes | Instructions for authors | Subscription | Reviewers Ackn. | Secretaries | FPT Conferences | FPT Book Review