Vol. 18(2017) No. 1

 

Open access

  N-order uniformly noncreasy Banach lattices and the Suzuki nonexpansive-type mappings
 
Home
Volumes Selection

Fixed Point Theory, Volume 18, No. 1, 2017, 127-136, March 1st, 2017

DOI: 10.24193/fpt-ro.2017.1.10

Authors: Anna Betiuk-Pilarska

Abstract: We show that if K is a nonempty weakly compact convex subset of weakly orthogonal N-order uniformly noncreasy Banach lattice and T:K → K satisfies condition (C) or is continuous and satisfies condition (Cλ) for some λ ∈ (0,1), then T has a fixed point. This generalizes a result from [2].

Key Words and Phrases: Nonexpansive mapping, Fixed point, Weakly orthogonal lattice, Mapping satisfying condition (Cλ), N-order uniformly noncreasy Banach lattice.

2010 Mathematics Subject Classification: 47H10, 46B20, 47H09.

Published on-line: March 1st, 2017.

Abstract pdf          Fulltext pdf

Back to volume's table of contents


Home | Indexing-Abstracting | Aims and Scope | Editors | Editorial Board | Published Volumes | Instructions for authors | Subscription | Reviewers Ackn. | Secretaries | FPT Conferences | FPT Book Review