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1. Introduction

The hierarchical variational inequality problem (HVI for short) is a fundamental
problem in nonlinear analysis and has applications in optimization, nonlinear analysis,
differential equations and related fields. A viscosity scheme is a prominent method in
solving this kind of problem when a contraction mapping is involved. The scheme was
initially proposed by Moudafi in [25], building on the results of [5]. Xu later studied
the scheme in the context of Banach spaces [31]. One of the substantial properties of
this scheme is that it solves a variational inequality problem over a set of fixed points
of a given mapping without the computation of metric projection at any stage.
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Consider Q defined in such a way that

Q(v, w, x, y) :=
1

2

(
d2(v, y) + d2(w, x)− d2(v, x)− d2(w, y)

)
∀ v, w, x, y ∈ H. (1.1)

In a geodesic space (H, d), the HVI we consider is to find u ∈ Fix(T1) such that

Q(u, T2u,w, u) ≥ 0 ∀ w ∈ Fix(T1), (1.2)

where T1, T2 : H → H are mappings and Fix(T1) denotes the set of fixed points of
T1. The operator Q is what is referred to as quasilinearization in [6]. When H is
an inner-product space with the usual norm, then HVI coincides with the problem of
finding u ∈ Fix(T1) such that

〈u− T2u,w − u〉 ≥ 0, ∀ w ∈ Fix(T1). (1.3)

Moreover, it is worth noting that when T1 is the metric projection onto C and G ≡
I − T2, (1.2) is exactly the classical variational inequality problem involving G with
constrained C. For the classical variational inequality, we refer to the texts [24, 18,
21].

The problem at hand involves the concepts of convexity, constraints, and differ-
entiability. However, geodesic spaces provide a framework for viewing non-convex or
constrained (and non-smooth) problems as convex or constrained (and smooth) in the
sense of geodesics. As a result, many researchers are interested in geodesic spaces.
In [20], the problem (1.3) was analyzed in the context of CAT(0) spaces and the ex-
istence and approximation of solutions were discussed using a quasilinearization and
a nonexpansive mapping. Similar problems have also been considered in the setting
of Hadamard manifolds using tangent spaces (see, e.g., [3, 26]). Huang studied the
viscosity scheme using a weak contraction mapping instead of the Banach contrac-
tion and analyzed the convergence of the scheme with certain control conditions in
[19]. Thereafter, a general problem is considered in [1] using φ-contraction mapping.
It is worth noting that CAT(0) spaces include both Hilbert spaces and Hadamard
manifolds. Moreover, the problem considered provides a general framework for many
nonlinear problems including certain bilevel optimization and monotone vector field
inclusion problems (see, for example, [1, 4, 2] and the references therein).

Our objective in this paper is to develop a viscosity scheme with an enriched
contraction mapping for solving variational inequality problems over the set of fixed
points of enriched nonexpansive mappings. We provide a convergence analysis and
identify the conditions required for the control parameters. The enriched classes of
mappings considered herein are from [28], and the analysis is based on the setting of
CAT(0) spaces. This scheme and the problem have not been studied even in the case
of linear spaces. However, the results presented in this paper apply to Hilbert spaces
as well since CAT(0) spaces include both Hilbert spaces and Hadamard manifolds. In
this regard, the results of this paper, complement the results in [9, 8, 7].

2. Preliminaries

Consider H endowed with a metric d. By the definition of Q in (1.1), it follows
that for all (x, y, v, w, z) ∈ H5;

(P1) Q(v, w, x, y) = Q(x, y, v, w);
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(P2) Q(v, w, x, y) = −Q(v, w, y, x) = Q(w, v, y, x);
(P3) Q(v, w, x, y) = Q(v, w, x, z) +Q(v, w, z, y).

A geodesic path from u to w is a map γwu : [0, 1]→ H such that

γwu (0) = u, γwu (1) = w and d(γwu (s), γwu (t)) = |s− t|d(u,w), ∀ s, t ∈ [0, 1].

The image of γwu is often called a geodesic segment connecting u and w. If such
a segment is unique, we write [[u,w]] to mean γwu ([0, 1]). The space (H, d) in which
every two points are connected by a geodesic segment (resp. unique geodesic segment)
is called a geodesic space (resp. unique geodesic space). A set is convex if it contains
the geodesic segment connecting any two of its points. For u,w ∈ H having unique
geodesic segment and for any t ∈ [0, 1], there exists a unique point z ∈ [[u,w]] such
that

d(u, z) = td(u, w) and d(z, w) = (1− t)d(u, w). (2.1)

We shall henceforth denote such a point z by (1− t)u⊕ tw.
This work focuses on geodesic spaces in which the following inequality of Bruhat

and Tits [13] holds. Let u,w ∈ H, we have

d2
(

1

2
u⊕ 1

2
w, y

)
≤ 1

2
d2(w, y) +

1

2
d2(w, y)− 1

4
d2(u, w), (2.2)

for every y ∈ H. In general, this kind of space is referred to as CAT(0) space and a
complete CAT(0) space is called a Hadamard space. It is well-known that Hadamard
manifolds, Hilbert spaces, classical hyperbolic spaces, R-trees, complex Hilbert balls,
and Euclidean buildings are all examples of CAT(0) spaces [23, 12]. Furthermore,
CAT(0) spaces are unique geodesic spaces.

It is known that CAT(0) spaces satisfy the following Cauchy Schwartz inequality:

Q(x, y, v, w) ≤ d(x, y)d(v, w), ∀x, y, v, w ∈ H. (2.3)

In fact CAT(0) spaces are characterized by (2.3) following [6, Corollary 3]. In addition
to the above properties, the following inequalities are crucial in obtaining our results.
Take u,w arbitrary in a CAT(0) space (H, d) then it is known (see, e.g., [17]) that for
every z ∈ H,

d((1− t)u⊕ tw, z) ≤ (1− t)d(u, z) + td(w, z); (2.4)

d2((1− t)u⊕ tw, z) ≤ (1− t)d2(u, z) + td2(w, z)− t(1− t)d2(u, w); (2.5)

for every t ∈ [0, 1]. From these inequalities, several other inequalities can easily be
generated. For instance, for all u,w, x, y ∈ H and t, s ∈ [0, 1],

d
(
(1− t)u⊕ tw, (1− t)x⊕ ty

)
≤ (1− t)d(u, x) + td(w, y); (2.6)

d
(
(1− t)u⊕ tw, (1− s)u⊕ sw

)
≤ |s− t|d(u,w); (2.7)

d2((1− t)u⊕ tw, z) ≤ (1− t)2d2(u, z) + t2d2(w, z) + 2t(1− t)Q(u, z, w, z). (2.8)

For detailed discussion on CAT(0) spaces, see for example, [11, 29].
Let {un} be a bounded sequence in H and let ρ (·, {un}) : H → [0,∞) be the

function defined by ρ(y, {un}) := lim sup
n→∞

d(y, un), y ∈ H. Then the asymptotic radius
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R({un}) of {un} is given by R({un}) := infu∈H ρ(u, {un}) and the asymptotic center
A({un}) of {un} is the set

A({un}) :=
{
y ∈ H : ρ(y, {un}) = R({un})

}
.

It is known (see [16, Proposition 7] ) that A({un}) is a singleton set in every complete
CAT (0) space.

Lemma 2.1. [15] If C is closed convex set and {un} is a bounded sequence in C, then
the asymptotic centre A({un}) is in C.

A bounded sequence {un} ∆-converges to y in H if y is the unique asymptotic
centre for every subsequence {unk

} of {un} or equivalently, if

lim sup
k→∞

d(unk
, y) ≤ lim sup

k→∞
d(unk

, z),

for every subsequence {unk
} of {un} and for every z ∈ H [22], and {un} converges

strongly to y in H if lim
n→∞

d(un, y) = 0.

Lemma 2.2. [22, Proposition 3.6] Every bounded sequence {un} in H has a ∆-
convergent subsequence {unk

}.

For our results, we will use the following results from [28].

Lemma 2.3. Let (H, d) be a Hadamard space and let T : H → H be a mapping. For
σ ∈ (0, 1], let Tσ be defined by

Tσu := (1− σ)u⊕ σTu, ∀u ∈ H. (2.9)

Then

(i) Fix(T ) = Fix(Tσ);
(ii) d2

(
Tσu, Tσw

)
≤ (1− σ)2d2

(
u,w

)
+ σ2d2

(
Tu, Tw

)
+ 2σ(1− σ)Q(u,w, Tu, Tw).

Definition 2.4. Let (H, d) be a metric space. A mapping T : H → H is called
an (γ, β)-enriched contraction if there exist two real numbers γ ∈ [0,+∞) and β ∈
[0, γ + 1) such that

d(Tu, Tw)2 + γ2d(u,w)2 + 2γQ(u,w, Tu, Tw) ≤ β2d(u,w)2, ∀u,w ∈ H. (2.10)

When β = γ + 1, T is called γ-enriched nonexpansive mapping.

For recent findings regarding enriched nonexpansive mappings, refer to [10, 27].

Proposition 2.5. Let T be a mapping and α, β be such that (2.10) is satisfied. Then

d

(
γ

γ + 1
u⊕ 1

γ + 1
Tu,

γ

γ + 1
w ⊕ 1

γ + 1
Tw

)
≤ β

(γ + 1)
d(u,w)
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Proof. For σ =
1

γ + 1
, Lemma 2.3 (ii) gives

d2
(

γ

γ + 1
u⊕ 1

γ + 1
Tu,

γ

γ + 1
w ⊕ 1

γ + 1
Tw

)
≤ γ2

(γ + 1)2
d2
(
u,w

)
+

1

(γ + 1)2
d2
(
Tu, Tw

)
+ 2

γ

(γ + 1)2
Q(u,w, Tu, Tw)

≤ β2

(γ + 1)2
d2(u,w).

This completes the proof. �

The following substantial lemma can be found in [30, Lemma 2.5].

Lemma 2.6. Let {θn} be a sequence in [0,+∞) ⊂ R with

θn+1 ≤ (1− σn)θn + σnφn + γn, n ≥ 1, (2.11)

where {σn}, {φn} and {γn} satisfy the following conditions:

{σn} ⊂ [0, 1],

∞∑
n=1

σn =∞, lim sup
n→∞

φn ≤ 0, {γn} ⊂ [0,∞) and

∞∑
n=1

γn <∞.

Then lim
n→∞

θn = 0.

3. Viscosity scheme and its convergence analysis

For the proposed algorithm, we adopt the ‘oplus’ notation from [14], in the sense
that for u, v, w ∈ H and t1, t2, t3 ∈ [0, 1] such that t1 + t2 + t3 = 1,

t1u⊕ t2v ⊕ t3w := t1u⊕ (1− t1)

(
t2

1− t1
v ⊕ t3

1− t1
w

)
. (3.1)

Algorithm 1 Viscosity Scheme

Choose an arbitrary element u1 ∈ H, define a sequence {un} by

wn =

(
1− αn

1 + γ1

)
un ⊕

αn
1 + γ1

T1un,

un+1 = (1− βn)wn ⊕
γ2βn

1 + γ2
un ⊕

βn
1 + γ2

T2un, n ≥ 1;

where {αn} , {βn} are sequences in (0, 1] and γ1, γ2 are non-negative real numbers.

We consider a class of mappings satisfying the conditions below.

(A1) T1 : H → H is γ1-enriched nonexpansive mapping;
(A2) T2 : H → H is (γ2, β)-enriched contraction mapping.
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Lemma 3.1. Let (H, d) be a CAT(0) space. Suppose that T1 and T2 satisfy (A1) and
(A2), and Fix(T1) 6= ∅. Then {un} generated by Algorithm 1 is bounded.

Proof. Let p ∈ Fix(T1). It follows from (2.4) that

d (un+1, p) = d

(
(1− βn)wn ⊕ βn

(
γ2

1 + γ2
un ⊕

1

1 + γ2
T2un

)
, p

)
≤ (1− βn)d(wn, p) + βnd

(
γ2

1 + γ2
un ⊕

1

1 + γ2
T2un, p

)
≤ (1− βn)d(wn, p) + βnd

(
γ2

1 + γ2
un ⊕

1

1 + γ2
T2un,

γ2
1 + γ2

p⊕ 1

1 + γ2
T2p

)
+ βnd

(
γ2

1 + γ2
p⊕ 1

1 + γ2
T2p, p

)
= (1− βn)d(wn, p) + βnd

(
γ2

1 + γ2
un ⊕

1

1 + γ2
T2un,

γ2
1 + γ2

p⊕ 1

1 + γ2
T2p

)
+

βn
1 + γ2

d (T2p, p) .

Since T2 is (γ2, β)-enriched contraction, it follows from Proposition 2.5 that

d (un+1, p) ≤ (1− βn)d(wn, p) + βn
β

1 + γ2
d (un, p) +

βn
1 + γ2

d (T2p, p) . (3.2)

Also,

d(wn, p) = d

(
(1− αn)un ⊕ αn

(
γ1

1 + γ1
un ⊕

1

1 + γ1
T1un

)
, p

)
≤ (1− αn)d (un, p) + αnd

(
γ1

1 + γ1
un ⊕

1

1 + γ1
T1un, p

)
= (1− αn)d (un, p) + αnd

(
γ1

1 + γ1
un ⊕

1

1 + γ1
T1un,

γ1
1 + γ1

p⊕ 1

1 + γ1
T1p

)
.

Since T1 is γ1-enriched nonexpansive mapping, we get from Proposition 2.5 that

d(wn, p) ≤ (1− αn)d (un, p) + αnd (un, p) ≤ d(un, p). (3.3)

It follows from (3.2) and (3.3) that

d (un+1, p) ≤ (1− βn)d(un, p) + βn
β

1 + γ2
d (un, p) +

βn
1 + γ2

d (T2p, p)

≤
(

1− βn
(

1− β

1 + γ2

))
d (un, p) +

βn
1 + γ2

d (T2p, p)

≤ max

{
d(un, p),

d (T2p, p)

1 + γ2 − β

}
...

≤ max

{
d(u1, p),

d (T2p, p)

1 + γ2 − β

}
.
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This implies that {un} is bounded. �

In the next result, we may require the following control conditions:

(C1) lim
n→∞

αn = 1; (C2) lim
n→∞

βn = 0; (C3)
∑
n≥1

βn = +∞;

(C4) lim
n→∞

|αn − αn−1|
βn

= 0; (C5) lim
n→∞

|βn − βn−1|
βn

= 0.

Lemma 3.2. Let H, T1 and T2 be as in Lemma 3.1. Suppose that {un} is generated
by Algorithm 1 such that {αn} and {βn} satisfied (C1)-(C3). Then

lim
n→∞

d (un+1, un) = lim
n→∞

d (un, wn) = lim
n→∞

d (wn, G1un) = 0. (3.4)

Proof. From Lemma 3.1, we can easily deduce that {wn}, {T1un} and {T2un} are all

bounded. Now, consider the mapping G1 in which u 7→ γ1
1 + γ1

u⊕ 1

1 + γ1
T1u. From

(2.6) and (2.7), we have that

d (wn, wn−1) = d ((1− αn)un ⊕ αnG1un, (1− αn−1)un−1 ⊕ αn−1G1un−1)

≤ d ((1− αn)un ⊕ αnG1un, (1− αn)un−1 ⊕ αnG1un−1)

+ d ((1− αn)un−1 ⊕ αnG1un−1, (1− αn−1)un−1 ⊕ αn−1G1un−1)

≤ (1− αn)d(un, un−1) + αnd(G1un, G1un−1)

+ |αn − αn−1| d(un−1, Gun−1).

Since T1 is γ1-enriched nonexpansive mapping, we have

d (wn, wn−1) ≤ (1− αn)d(un, un−1) + αnd(un, un−1) + |αn − αn−1| d(un−1, Gun−1)

≤ d(un, un−1) + |αn − αn−1| d(un−1, Gun−1)

≤ d(un, un−1) + |αn − αn−1|M1, (3.5)

where M1 := sup {d(un−1, G1un−1) : n ≥ 1}. Note that {G1un−1} is bounded by the
boundedness of {un} and that of {T1un}.

Now, let G2 be such that u 7→ γ2
1 + γ2

u⊕ 1

1 + γ2
T2u. Then we have from (2.6) and

(2.7) that

d (un+1, un) = d ((1− βn)wn ⊕ βnG2un, (1− βn−1)wn−1 ⊕ βn−1G2un−1)

≤ d ((1− βn)wn ⊕ βnG2un, (1− βn)wn−1 ⊕ βnG2un−1)

+ d ((1− βn)wn−1 ⊕ βnG2un−1, (1− βn−1)wn−1 ⊕ βn−1G2un−1)

≤ (1− βn)d (wn, wn−1) + βnd (G2un, G2un−1)

+ |βn − βn−1| d (wn−1, G2un−1) .
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Consequently, (3.5) and (A2) yield

d (un+1, un) ≤ (1− βn)d (wn, wn−1) +
βnβ

1 + γ2
d (un, un−1))

+ |βn − βn−1| d (wn−1, G2un−1)

≤ (1− βn)d(un, un−1) + (1− βn) |αn − αn−1|M1

+
βnβ

1 + γ2
d (un, un−1) + |βn − βn−1| d (wn−1, G2un−1)

≤
(

1− βn
(

1− β

1 + γ2

))
d(un, un−1) + |αn − αn−1|M1

+ |βn − βn−1|M2

≤
(

1− βnβ̃
)
d(un, un−1) + |αn − αn−1|M1 + |βn − βn−1|M2,

where M2 := sup {d (wn−1, G2un−1) : n ≥ 1} and β̃ =

(
1− β

1 + γ2

)
. The last in-

equality is equivalent to

d (un+1, un) ≤
(

1− βnβ̃
)
d(un, un−1) + βnβ̃

(
|αn − αn−1|

βnβ̃
M1 +

|βn − βn−1|
βnβ̃

M2

)
.

This, together with Lemma 2.6 and the conditions (C3)-(C5), imply that

lim
n→∞

d (un+1, un) = 0. (3.6)

It follows from (2.1) and (C1)-(C2) that

d (un+1, wn) = d ((1− βn)wn ⊕ βnG2un, wn) = βnd (G2un, wn)→ 0;

and

d (wn, G1un) = d ((1− αn)un ⊕ αnG1un, G1un) = (1− αn)d(un, G1un)→ 0.

�

Theorem 3.3. Let (H, d) be a complete CAT(0) space. Assume that T1 and T2 satisfy
(A1) and (A2), and Fix(T1) 6= ∅. Suppose that {un} is generated by Algorithm 1 such
that {αn} and {βn} satisfied (C1)-(C5). Then {un} strongly converges to a solution
of the problem (1.2).

Proof. Let p∗ be a solution of the problem (1.2). We claim that

lim sup
n→∞

Q(p∗, G2p
∗, wn, p

∗) ≥ 0.

To show the claim, we start by observing that {Q(p∗, G2p
∗, wn, p

∗)} is bounded by
the boundedness of {wn}. Thus the upper limit exists. Moreover, without loss of
generality, we may choose a subsequence {wnk

} of {wn} that ∆-converges to w∗ and

lim sup
n→∞

Q
(
p∗, G2p

∗, wn, p
∗) = lim

k→∞
Q(p∗, G2p

∗, wnk
, p∗
)
. (3.7)
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Moreover,

d (wnk
, G1w

∗) ≤ d (wnk
, G1unk

) + d (G1unk
, G1w

∗)

≤ d (wnk
, G1unk

) + d (unk
, w∗)

≤ d (wnk
, G1unk

) + d (unk
, unk+1) + d (unk+1, wnk

) + d (wnk
, w∗) .

This together with (3.6) and (3.4) yield

lim sup
k→∞

d (wnk
, G1w

∗) ≤ lim sup
k→∞

d (wnk
, w∗) .

The uniqueness of asymptotic center implies that w∗ = G1w
∗. Consequently, we have

that w∗ ∈ Fix(T1). Since p∗ is a solution of (1.2), it follows that

Q (p∗, G2p
∗, w∗, p∗) ≥ 0.

Thus

lim sup
n→∞

Q (p∗, G2p
∗, wn, p

∗) = lim
k→∞

Q (p∗, G2p
∗, wnk

, p∗) = Q (p∗, G2p
∗, w∗, p∗) ≥ 0,

that is,

lim sup
n→∞

Q (p∗, G2p
∗, p∗, wn) ≤ 0. (3.8)

Let p∗ be a solution of the problem (1.2). Then

d2 (un+1, p
∗) = d2 ((1− βn)wn ⊕ βnG2un, p

∗)

≤ (1− βn)2d2 (wn, p
∗) + β2

nd
2 (G2un, p

∗) + 2βn(1− βn)Q(wn, p
∗, G2un, p

∗)

= (1− βn)2d2 (wn, p
∗) + β2

nd
2 (G2un, p

∗)

+ 2βn(1− βn)Q(wn, p
∗, G2un, G2p

∗) + 2βn(1− βn)Q(p∗, G2p
∗, p∗, wn).

This together with the Cauchy-Schwartz inequality, (A2) and (3.3), yield

d2 (un+1, p
∗) ≤ (1− βn)2d2 (wn, p

∗) + β2
nd

2 (G2un, p
∗)

+ 2βn(1− βn)d(wn, p
∗)d (G2un, G2p

∗) + 2βn(1− βn)Q(p∗, G2p
∗, p∗, wn)

≤ (1− βn)2d2 (un, p
∗) + β2

nd
2 (G2un, p

∗)

+ 2
ββn(1− βn)

1 + γ2
d2(un, p

∗) + 2βn(1− βn)Q(p∗, G2p
∗, p∗, wn)

≤ (1− 2βn(1− κ))d2 (un, p
∗) + β2

n

(
d2 (G2un, p

∗) + d2 (un, p
∗)
)

+ 2βn(1− βn)Q(p∗, G2p
∗, p∗, wn),

where κ =
β

1 + γ
. Hence, we have

d2 (un+1, p
∗) ≤ (1− θn)d2 (un, p

∗) + θnϕn, (3.9)

where ϕn =
1

2(1− k)

[
βnd

2 (G2un, p
∗) +βnd

2 (un, p
∗) + 2(1−βn)Q(p∗, G2p

∗, p∗, wn)

]
and θn = 2βn(1 − κ). Observe that lim sup

n→∞
ϕn ≤ 0. Consequently, Lemma 2.6 and

(3.9) guarantee that lim
n→∞

d (un, p
∗) = 0. �
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The following result follows from the fact that every nonexpansive mapping is
0-enriched nonexpansive.

Corollary 3.4. Let (H, d) be a complete CAT(0) space. Assume that T1 is a non-
expansive mapping with a fixed point and let T2 satisfies (A2). Suppose that {un} is
generated by

wn = (1− αn)un ⊕ αnT1un,

un+1 = (1− βn)wn ⊕
γ2βn

1 + γ2
un ⊕

βn
1 + γ2

T2un, n ≥ 1;

where {αn} , {βn} are sequences in (0, 1] that satisfied (C1)-(C5). Then {un} strongly
converges to a solution of the problem (1.2).

Another substantial result that follows from Theorem 3.3 is the case when T2
is Banach contraction mapping. Recall that every κ-contraction mapping is (0, κ)-
enriched contraction mapping.

Corollary 3.5. Let (H, d) be a complete CAT(0) space. Assume that T1 satisfied
(A1) with a nonempty fixed points set and let T2 be a contraction mapping. Suppose
that {un} is generated by

wn =

(
1− αn

1 + γ1

)
un ⊕

αn
1 + γ1

T1un,

un+1 = (1− βn)wn ⊕ βnT2un, n ≥ 1;

where {αn} , {βn} are sequences in (0, 1] that satisfied (C1)-(C5). Then {un} strongly
converges to a solution of the problem (1.2).

Next corollary follows from Corollary 3.4 using the Banach contraction mapping.

Corollary 3.6. Let (H, d) be a CAT(0) space. Assume that T1 is a nonexpansive
mapping with a fixed point and let T2 be a contraction mapping. Suppose that {un}
is generated by

wn = (1− αn)un ⊕ αnT1un,
un+1 = (1− βn)wn ⊕ βnT2un, n ≥ 1;

where {αn} , {βn} are sequences in (0, 1] that satisfied (C1)-(C5). Then {un} strongly
converges to a solution of the problem (1.2).

Remark 3.7. It is important to note that setting αn ≡ 1 and taking (H, d) as Hilbert
space, the algorithm of the Corollary 3.6 coincides with the Moudafi’s viscosity itera-
tion.

By the fact that CAT(0) spaces contained Hilbert spaces, we have the following
results based on Theorem 3.3 and Corollaries 3.4-3.6.
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Corollary 3.8. Let (H, ‖ · ‖) be a Hilbert space. Assume that T1 and T2 satisfy (A1)
and (A2), and Fix(T1) 6= ∅. Suppose that {un} is generated by

wn =

(
1− αn

1 + γ1

)
un +

αn
1 + γ1

T1un,

un+1 = (1− βn)wn +
γ2βn

1 + γ2
un +

βn
1 + γ2

T2un, n ≥ 1;

where {αn} , {βn} are sequences in (0, 1] that satisfied (C1)-(C5). Then {un} strongly
converges to a solution of the problem (1.2).

Corollary 3.9. Let (H, d) be a complete CAT(0) space. Assume that T1 is a non-
expansive mapping with a fixed point and let T2 satisfies (A2). Suppose that {un} is
generated by

wn = (1− αn)un + αnT1un,

un+1 = (1− βn)wn +
γ2βn

1 + γ2
un +

βn
1 + γ2

T2un, n ≥ 1;

where {αn} , {βn} are sequences in (0, 1] that satisfied (C1)-(C5). Then {un} strongly
converges to a solution of the problem (1.2).

Corollary 3.10. Let (H, d) be a complete CAT(0) space. Assume that T1 satisfied
(A1) with a nonempty fixed points set and let T2 be a contraction mapping. Suppose
that {un} is generated by

wn =

(
1− αn

1 + γ1

)
un +

αn
1 + γ1

T1un,

un+1 = (1− βn)wn + βnT2un, n ≥ 1;

where {αn} , {βn} are sequences in (0, 1] that satisfied (C1)-(C5). Then {un} strongly
converges to a solution of the problem (1.2).

Corollary 3.11. Let (H, d) be a complete CAT(0) space. Assume that T1 is a non-
expansive mapping with a fixed point and let T2 be a contraction mapping. Suppose
that {un} is generated by

wn = (1− αn)un + αnT1un,

un+1 = (1− βn)wn + βnT2un, n ≥ 1;

where {αn} , {βn} are sequences in (0, 1] that satisfied (C1)-(C5). Then {un} strongly
converges to a solution of the problem (1.2).

4. Numerical example

Example 4.1. Let m ≥ 2 be a fixed natural number. Consider Rm endowed with the
metric d defined by

d(u,w) =

√√√√m−1∑
i=1

(ui − wi)2 + (u2m−1 + wm − um − w2
m−1)2,
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for all u = (u1, u2, . . . , um) ∈ Rm and w = (w1, w2, . . . , wm) ∈ Rm. For u,w ∈ Rm,
consider γwu : [0, 1]→ Rm such that

γwu (t) =
(
γ1(t), γ2(t), . . . , γm(t)

)
,

where γi(t) = (1− t)ui + twi for all i = 1, 2, · · · ,m− 1 and

γm(t) = um + t(wm − um)− t(1− t)(wm−1 − um−1)2.

It follows that γwu is the geodesic connecting u and w, and (Rm, d) is a complete
CAT(0) space. In fact, using the identity that

|tx+ (1− t)y|2 = tx2 + (1− t)y2 − t(1− t)|x− y|2, ∀x, y ∈ R,

the inequality (2.5) can be shown to be equality by a simple computation. However,
(Rm, d) is not a Hilbert space.

Now, take any a > 1 and consider T2 : Rm → Rm by

T2u = (−au1,−au2, . . . ,−aum−1, a2u2m−1).

Clearly T2 is not contraction and not nonexpansive mapping. However, T2 is an
enriched contraction mapping with respect to (Rm, d). Indeed for all u,w ∈ Rm, we
have

d2(T2u, T2w) = a2
m−1∑
i=1

(ui − wi)2

and

2Q(u,w, T2u, T2w) = d2(u, T2w) + d2(w, T2u)− d2(u, T2u)− d2(w, T2w)

=

[
m−1∑
i=1

(ui + awi)
2 + (u2m−1 − um)2

]
+

[
m−1∑
i=1

(wi + aui)
2 + (w2

m−1 − wm)2

]

−

[
m−1∑
i=1

(ui + aui)
2 + (u2m−1 − um)2

]
−

[
m−1∑
i=1

(wi + awi)
2 + (w2

m−1 − wm)2

]

=

m−1∑
i=1

[
(ui + awi)

2 + (wi + aui)
2 − (ui + aui)

2 − (wi + awi)
2
]

= −2a

m−1∑
i=1

(ui − wi)2 .
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Thus, we get

d(T2u, T2w)2 + α2d(u,w)2 + 2αQ(u,w, T2u, T2w)

= a2
m−1∑
i=1

(ui − wi)2 + α2
m−1∑
i=1

(ui − wi)2

+ α2(u2m−1 + wm − um − w2
m−1)2 − 2aα

m−1∑
i=1

(ui − wi)2

= (a− α)2
m−1∑
i=1

(ui − wi)2 + α2(u2m−1 + wm − um − w2
m−1)2.

Hence, for any α ≥ 0 such that |a− α| ≤ α+
1

2
, we get that

d2(T2u, T2w) + α2d2(u,w) + 2αQ(u,w, T2u, T2w) ≤
(
α+

1

2

)2

d2(u,w).

This implies that for α =
2a− 1

4
, T2 is (α, β)-enriched contraction with β = α+

1

2
.

Consider, T1 : Rm → Rm by

T1u = (−5u1,−5u2, . . . ,−5um−1, 25u2m−1).

Following similar fashion as in the case of T2, we obtain that

d(T1u, T1w)2+α2d(u,w)2 + 2αQ(u,w, T1u, T1w)

= (5− α)2
m−1∑
i=1

(ui − wi)2 + α2(u2m−1 + wm − um − w2
m−1)2.

Hence, for any α ≥ 0 such that |5− α| ≤ α+ 1, we get that

d2(T1u, T1w) + α2d2(u,w) + 2αQ(u,w, T1u, T1w) ≤ (α+ 1)
2
d2(u,w).

Hence for α = 3, we have that T1 is α-enriched nonexpansive mapping with respect to
(Rm, d). Observe that Fix(T2) = Fix(T1) = {0}.

For the numerical sake, we take αn =
n2 − 1

n2
and βn =

1

n
. Clearly, αn and βn

satisfy conditions (C1)-(C5). Also, we take γ1 = 3 and γ2 =
2a− 1

4
since T1 is

2-enriched nonexpansive mapping and T2 is

(
2a− 1

4
,

2a+ 1

4

)
-enriched contraction

mapping. Then Algorithm 1 yield the results in Table 1 for different values of a and
m.
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Table 1. Report of Numerical Experiments for Example 4.1

n d (un+1, un)

m = 5, u1 = [10, 10, · · · , 10] m = 100, u1 = [5, 5, · · · , 5]

a = 2 a = 10 a = 50 a = 100 a = 2 a = 10 a = 50 a = 100

1 1410.684 2147.071 2385.722 2418.652 87.78738 112.1003 120.1704 121.278

2 364.8119 422.508 916.794 997.4766 32.73974 51.06676 72.51798 76.235

3 521.243 716.1982 662.1826 646.0764 29.59942 39.01646 37.12957 36.57538

4 299.9425 701.892 854.9075 875.459 17.25447 36.98129 44.28359 45.25116

5 153.4569 485.9599 666.3377 694.6907 9.087196 25.81621 34.74674 36.14387

6 77.3291 304.5363 452.2964 477.0773 4.748873 16.38064 23.81465 25.05638

7 39.35134 183.7841 290.2926 308.9324 2.526705 10.05299 15.4762 16.4206

...
...

...
...

...
...

...
...

...

95 7.70E-12 7.04E-11 1.44E-10 1.59E-10 1.71E-12 1.56E-11 3.19E-11 3.53E-11

96 5.75E-12 5.29E-11 1.08E-10 1.19E-10 1.28E-12 1.18E-11 2.40E-11 2.65E-11

97 4.29E-12 3.97E-11 8.13E-11 8.98E-11 9.54E-13 8.82E-12 1.81E-11 2.00E-11

98 3.20E-12 2.98E-11 6.11E-11 6.76E-11 7.12E-13 6.62E-12 1.36E-11 1.50E-11

99 2.39E-12 2.24E-11 4.60E-11 5.09E-11 5.32E-13 4.97E-12 1.02E-11 1.13E-11

100 1.79E-12 1.68E-11 3.46E-11 3.83E-11 3.97E-13 3.73E-12 7.69E-12 8.50E-12

Concluding remarks. In this work, we have developed a viscosity scheme for vari-
ational inequality problems involving enriched contraction mappings, with the con-
strained set being the set of fixed points of an enriched nonexpansive mapping. We
have analyzed certain essential properties of the proposed scheme and stated control
conditions upon which the sequence generated from the scheme is shown to converge
strongly to a solution of the problem. Finally, we provide a numerical example in a
non-linear setting to demonstrate the possibility of implementing the scheme. The re-
sults presented herein hold for Hadamard manifolds, R-trees, Hilbert spaces, Hilbert
balls, and all CAT(κ) spaces for κ ≤ 0.
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