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1. Introduction

The topic of uniform convexities in metric spaces has recently become a focus of
attention for many mathematicians. The first form of uniform convexity for Banach
spaces was investigated by Clarkson [9]. After that Garkavi [16] introduced the notion
of uniform convexity in every direction. Recently, Alfuraidan and Khamsi [2] have
considered a variant form of uniform convexity in partially ordered Banach spaces.
In the non-linear setting of so called CAT(0)-spaces, uniform convexity is by now
well-understood (see [5], [7]). Only recently, Kuwae [25] based on the approach of
Noar and Silberman [29] studied spaces with the p-uniformly convex property similar
to that of Banach spaces.

In 2016, Dehaish and Khamsi [10] used uniform convexity for hyperbolic metric
spaces to prove the existence of fixed points for monotone nonexpansive mappings.
The function δ(r, ε), as discussed in [10], exhibits similarities to the modulus of con-
vexity in uniformly convex Banach spaces. However, the modulus of convexity in
uniformly convex Banach spaces (see Definition 1, [9]) only depends on ε. In the def-
inition of Dehaish and Khamsi, the function δ(r, ε) (see Definition 3.1, [10]) depends
not only on r and ε but also on the point a in the hyperbolic metric space X. There-
fore, it will be denoted by δa(r, ε) in this paper. In a uniformly convex hyperbolic
metric space (X, d), we have δa(r, ε) > 0 for every a ∈ X, r > 0, ε > 0. But this
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condition does not guarantee that inf{δa(r, ε) : a ∈ X, r > 0, ε > 0} is positive. For
example, in uniformly convex spaces Lp or lp, we have δ(ε) = 1 − [1 − (ε/2)p]1/p for
p > 1 (see [9]). If we take ε → 0, then δ(ε) → 0. If X = R2 is furnished with one of
the norm |(a, b)| = |a| + |b| or |(a, b)| = max{|a|, |b|} then δ(ε) = 0 for all 0 ≤ ε ≤ 2.
If X is a Hilbert space, then δ(ε) = 1− (1− ε2/4)1/2 → 0 as ε→ 0. In Section 2, we
assume that inf{δa(r, ε) : a ∈ X, r ≥ α, ε ≥ β} > 0 for every α > 0, β > 0. From that
we extend the definition of 2-uniformly convex property in [21] to p-UUC property.
Our definition extends the definitions of both Noar-Silberman [29] and Kuwae [25].
By taking an approach like that of Khamsi-Khan [21], we give simple proofs of some
properties in hyperbolic metric spaces.

In Section 3 we use the properties in Section 2 to show in Theorem 3.8 the exis-
tence of fixed points of monotone G-nonexpansive multivalued mappings in p-UUC
hyperbolic metric spaces, where p ≥ 2. It is a “monotone ”counterpart of the Lim
theorem [27].

2. Main results

Let (X, d) be a metric space. Recall that X is said to be uniquely geodesic if any
two points x, y in X are endpoints of a unique metric segment [x, y] (i.e., [x, y] is an
isometric image of the interval [0, d(x, y)]). We shall denote by αx⊕ (1−α)y a unique
point z of [x, y] which satisfies

d(x, z) = (1− α)d(x, y) and d(z, y) = αd(x, y),

where α ∈ [0, 1]. A set C ⊂ X is convex if the metric segment [x, y] ⊂ C for each x,
y ∈ C. Moreover, if for all x1, x2, y1, y2 in X and t ∈ [0, 1] we have

d(tx1 ⊕ (1− t)x2, ty1 ⊕ (1− t)y2) ≤ td(x1, y1) + (1− t)d(x2, y2),

then X is said to be a hyperbolic metric space [30]. The space satisfying the mentioned
conditions is also called a Busemann space in some references (see [24]).

Definition 2.1. Let (X, d) be a hyperbolic metric space. For any a ∈ X, r > 0, and
ε ≥ 0, define

δa(r, ε) = inf
{

1− 1

r
d
(
a,

1

2
x⊕ 1

2
y
)

: d(x, a) ≤ r, d(y, a) ≤ r, d(x, y) ≥ rε
}
.

(i) (see Definition 3.1, [10]) We say that X is uniformly convex (UC for short)
if and only if δa(r, ε) > 0 for any a ∈ X, r > 0 and ε > 0. The space X
satisfying this property is also known as weakly uniformly convex (see [26]).

(ii) (see Definition 4.1, [22]) We say that X is UUC if and only if for every
a ∈ X, s > 0 and ε ∈ (0, 2], there exists ηa(s, ε) > 0 such that δa(r, ε) ≥
ηa(s, ε) > 0 for r ≥ s > 0.

(iii) We say that X is UUUC if and only if for every α > 0 and β ∈ (0, 2], we have
inf{δa(r, ε) : a ∈ X, r ≥ α, ε ≥ β} > 0.

The following properties follow easily from Definition 2.1.

Proposition 2.2. The following conditions characterize relationship between the
above defined notions:
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(i) If X is UUC then X is UC.
(ii) If X is UUUC then X is UUC.

We are going to prove a simple property of δa(r, ε) in hyperbolic metric spaces.

Lemma 2.3. Let (X, d) be a hyperbolic metric space. Let a ∈ X, r > 0, and ε ≥ 0.

(i) δa(r, 0) = 0 and δa(r, ε) is an increasing function of ε for every fixed r and a.
(ii) Suppose that X is UC and tn > 0 for all n ≥ 1. If lim

n→∞
δa(r, tn) = 0 for a

fixed a ∈ X and r > 0, then inf
n≥1

tn = 0.

Proof. It is not difficult to see (i). We are going to prove (ii). Assume that
lim
n→∞

δa(r, tn) = 0 and inf
n≥1

tn 6= 0. Then there exists α such that

0 < α ≤ inf
n≥1

tn.

Consequently, α ≤ tn for all n ≥ 1. Since the function δa(r, ε) is increasing of ε, we
have

δa(r, α) ≤ δa(r, tn), (2.1)

for every n ≥ 1. Taking the limit on both sides of (2.1) as n→∞, we have

0 < δa(r, α) ≤ lim
n→∞

δa(r, tn).

It contradicts lim
n→∞

δa(r, tn) = 0. Therefore, inf
n≥1

tn = 0. �

Lemma 2.4 ([14]). Let (X, d) be a hyperbolic metric space. Assume that X is UUC.
Let r > 0, a ∈ X.

(i) Assume that t ∈ [α, β], where 0 < α ≤ β < 1. For any number ε > 0,
a, x, y ∈ X such that

d(x, a) ≤ r, d(y, a) ≤ r, d(x, y) ≥ rε,
there exists δ(r, 2εmin{α, 1− β}) ∈ (0, 1) such that

d(a, (1− t)x⊕ ty) ≤ r
(

1− δ(r, 2εmin{α, 1− β})
)
.

(ii) Assume that tn ∈ [α, β], where 0 < α ≤ β < 1 and (xn)n, (yn)n are
two sequences in X such that lim sup

n→∞
d(a, xn) ≤ r, lim sup

n→∞
d(a, yn) ≤ r,

lim
n→∞

d
(
a, tnxn ⊕ (1− tn)yn

)
= r. Then lim

n→∞
d(xn, yn) = 0.

In Theorem 2.3 [21], a metric version of the parallelogram identity is stated for the
case p = 2, the following theorem is an extension of it when p ≥ 2.

Theorem 2.5. Let (X, d) be a hyperbolic metric space. Let a ∈ X, p ≥ 2. For each
r > 0 and ε ≥ 0 set

ψa(r, ε) = inf
{1

2
dp(a, x) +

1

2
dp(a, y)− dp

(
a,

1

2
x⊕ 1

2
y
)}
,

where the infimum is taken over all x, y ∈ X such that d(a, x) ≤ r, d(a, y) ≤ r and
d(x, y) ≥ rε. Then ψa(r, ε) > 0 for any r, ε > 0. Moreover, for a fixed r > 0, we have:
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(i) ψa(r, 0) = 0;
(ii) ψa(r, ε) is a nondecreasing function of ε;

(iii) If lim
n→∞

ψa(r, tn) = 0, then inf
n≥1

tn = 0.

Proof. Assume on the contrary that ψa(r, ε) = 0 for some r > 0, ε > 0. Then there
exist two sequences (xn)n and (yn)n in X such that

lim
n→∞

[1

2
dp(a, xn) +

1

2
dp(a, yn)− dp

(
a,

1

2
xn ⊕

1

2
yn

)]
= 0,

where d(a, xn) ≤ r, d(a, yn) ≤ r and d(xn, yn) ≥ rε for every n ≥ 1. Now for p ≥ 2,
using the Clarkson’s inequality∣∣∣a+ b

2

∣∣∣p +
∣∣∣a− b

2

∣∣∣p ≤ 1

2
|a|p +

1

2
|b|p

for any a, b ∈ R, we get(d(a, xn) + d(a, yn)

2

)p
≤ 1

2
dp(a, xn) +

1

2
dp(a, yn)−

∣∣∣d(a, xn)− d(a, yn)

2

∣∣∣p.
Since X is a hyperbolic metric space, it follows that

dp
(
a,

1

2
xn ⊕

1

2
yn

)
≤ 1

2
dp(a, xn) +

1

2
dp(a, yn)−

∣∣∣d(a, xn)− d(a, yn)

2

∣∣∣p
for every n ≥ 1. Hence∣∣∣d(a, xn)− d(a, yn)

2

∣∣∣p ≤ 1

2
dp(a, xn) +

1

2
dp(a, yn)− dp

(
a,

1

2
xn ⊕

1

2
yn

)
for every n ≥ 1. It implies that lim

n→∞
|d(a, xn) − d(a, yn)| = 0. Since (d(a, xn))n is a

bounded sequence, we can choose a subsequence (d(a, xnk
))k of (d(a, xn))n such that

lim
k→∞

d(a, xnk
) = R. By our assumptions, we have

lim
k→∞

d(a, ynk
) = R and lim

k→∞
d(a,

1

2
xnk
⊕ 1

2
ynk

) = R.

Lemma 2.4 (ii) yields lim
k→∞

d(xnk
, ynk

) = 0 which contradicts d(xnk
, ynk

) ≥ rε > 0 for

all k ≥ 1. The proofs of (i)-(ii) are immediate.
By an argument analogous to that used in the proof of Lemma 2.3 (ii) we can

easily prove (iii). �

Remark 2.6. Assume that α ∈ (0, 2]. By Theorem 2.5 (iii) we have inf
ε≥α

ψa(r, ε) > 0.

The concept of p-uniform convexity was used extensively by Xu [31]. Its nonlinear
version for p = 2 is given by Khamsi and Khan [21]. We extend this definition in the
case of p ≥ 2 and give the definition of p-UUC property.

Definition 2.7. Let (X, d) be a hyperbolic metric space. Let a ∈ X, p ≥ 2. For each
r > 0 and ε > 0 we define ψa(r, ε) as in Theorem 2.5. We will say that (X, d) is
p-UUC if

cX = inf
{ψa(r, ε)

rpεp
: a ∈ X, r > 0, ε > 0

}
> 0.
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The following proposition can be easily deduced from Definition 2.1 and 2.7.

Proposition 2.8. If X is p-UUC then X is UUUC.

Proof. Let α > 0 and β > 0. Since X is p-UUC, then for every a ∈ X, r ≥ α, ε ≥ β
we have ψa(r, ε)/rp ≥ cXεp. Then ψa(r, ε)/rp ≥ cXβp for every a ∈ X, r ≥ α, ε ≥ β.

On the other hand, taking any a ∈ X, r ≥ α, ε ≥ β, we get

ψa(r, ε) ≤ 1

2
dp(a, x) +

1

2
dp(a, y)− dp(a, 1

2
x⊕ 1

2
y) ≤ rp − dp(a, 1

2
x⊕ 1

2
y)

for every x, y ∈ X such that d(a, x) ≤ r, d(a, y) ≤ r and d(x, y) ≥ rε. Hence

ψa(r, ε)/rp ≤ 1−
(d(a, 12x⊕

1
2y)

r

)p
≤ p
(

1− 1

r
d(a,

1

2
x⊕ 1

2
y)
)
.

It implies that

cXβ
p/p ≤ 1− 1

r
d(a,

1

2
x⊕ 1

2
y)

for every x, y ∈ X such that d(a, x) ≤ r, d(a, y) ≤ r and d(x, y) ≥ rε. Thus we have
cXβ

p/p ≤ δa(r, ε) for every a ∈ X, r ≥ α, ε ≥ β. Therefore, X is UUUC. �

Example 2.9. A geodesic metric space X is said to be a CAT(0) space (the term is
due to M. Gromov-see, e.g., [7], page 159) if every geodesic triangle in X is at least
as “thin” as its comparison triangle in the Euclidean plane.

In 2017, Khamsi and Shukri [23] have extended the Gromov geometric definition of
CAT(0) spaces to the case when the comparison triangles belong to a general Banach
space. In particular, to the case when the Banach space is lp, p ≥ 2.

Recall that a geodesic triangle 4(x1, x2, x3) in a geodesic metric space (X, d) con-
sists of three points x1, x2, x3 in X (the vertices of4) and a geodesic segment between
each pair of vertices (the edges of 4). A comparison triangle for geodesic triangle
4(x1, x2, x3) in (X, d) is a triangle 4(x1, x2, x3) := 4(x1, x2, x3) in the Banach space
lp, for p ≥ 2, such that ‖xi − xj‖ for i, j ∈ {1, 2, 3}. A point x ∈ [x1, x2] is called a
comparison point for x ∈ [x1, x2] if d(x1, x2) = d(x1, x2).

Let (X, d) be a geodesic metric space. X is said to be a CATp(0) space, for p ≥ 2,

if for any geodesic triangle 4 in X, there exists a comparison triangle 4 in lp such
that the comparison axiom is satisfied, i.e., for all x, y ∈ 4 and all comparison points
x, y ∈ 4, we have

d(x, y) ≤ ‖x− y‖.
It is obvious that lp, p > 2, is a CATp(0) space which is not a CAT(0) space [23]. Let
x, y1, y2 be in CATp(0), and 1

2y1 ⊕
1
2y2 be the midpoint of the geodesic [y1, y2], then

the comparison axiom implies

dp(x,
1

2
y1 ⊕

1

2
y2) ≤ 1

2
dp(x, y1) +

1

2
dp(x, y2)− 1

2p
dp(y1, y2).

This inequality is the (CNp) inequality of Khamsi and Shukri [23]. The (CNp) in-
equality implies that

ψa(r, ε) ≥ rpεp

2p
for every a ∈ CATp(0).
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This clearly implies that any CATp(0) space is p-UUC with cX ≥ 1
2p .

Example 2.10. Every p-uniformly convex space as defined in [25, 29] is p-UUC.

In [19], Kell introduced the notion of uniform p-convexity (where p ∈ [1,∞]) in
metric spaces admitting midpoints. A complete metric space (X, d) admits midpoints
if for every x, y ∈ X there is an m(x, y) ∈ X such that d(x,m(x, y)) = d(y,m(x, y)) =
1/2d(x, y). Obviously each such space is a geodesic space. Let us recall the definition
of uniform p-convexity.

Definition 2.11 (see Definition 1.3, [19]). A metric space X admitting midpoints is
called uniformly p-convex (UpC for short) if for every ε > 0 there exists ρp(ε) ∈ (0, 1)
such that for all x, y, a ∈ X satisfying d(x, y) > εMp(d(x, a), d(y, a)) for p > 1 and
d(x, y) > |d(x, a)− d(y, a)|+ εM1(d(x, a), d(y, a)) for p = 1, we have that

d(a,m(x, y)) ≤ (1− ρp(ε))Mp(d(x, a), d(y, a)),

where Mp(a, b) =
(
ap/2 + bp/2

)1/p
and M∞(a, b) = max{a, b}.

We show the connection between properties UpC and p-UUC.

Lemma 2.12. If X is p-UUC then X is UpC for all p ≥ 2.

Proof. We put

cX = inf
{ψa(r, ε)

rpεp
: a ∈ X, r > 0, ε > 0

}
.

Assume that ε > 0 and put ρ(ε) := (1 − cXε
p)1/p. Take any triples x, y, z ∈ X

satisfying

d(x, y) > ε
(1

2
dp(x, z) +

1

2
dp(y, z)

)1/p
.

Thus

d(x, z) <
p
√

2

ε
d(x, y), d(y, z) <

p
√

2

ε
d(x, y) and d(x, y) =

p
√

2

ε
d(x, y).

ε
p
√

2
.

Since X is p-UUC, we have

cX ≤
1

dp(x, y)

(1

2
dp(x, z) +

1

2
dp(y, z)− dp(z, 1

2
x⊕ 1

2
y)
)

≤ 1

εp
(

1
2d
p(x, z) + 1

2d
p(y, z)

)(1

2
dp(x, z) +

1

2
dp(y, z)− dp(z, 1

2
x⊕ 1

2
y)
)

It implies that

d(z,
1

2
x⊕ 1

2
y) ≤ (1− cXεp)1/p

(1

2
dp(x, z) +

1

2
dp(y, z)

)1/p
.

Therefore X is UpC. �
Next, we show some properties of hyperbolic metric space with UUUC and p-UUC

properties.

Theorem 2.13. Let (X, d) be a hyperbolic metric space. Assume that X is UUUC.
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Let p ≥ 2, r > 0. Assume that x0, y0 ∈ X such that x0 6= y0 and B(x0, r)∩B(y0, r) 6=
∅. Then

ψx0,y0(r) := inf{ψ(z) : d(x0, z) ≤ r, d(y0, z) ≤ r} > 0,

where ψ(z) = 1
2d
p(z, x0) + 1

2d
p(z, y0)− dp

(
z, 12x0 ⊕

1
2y0

)
.

Proof. It is not difficult to see that ψx0,y0(r) ≥ 0. Assume that ψx0,y0(r) = 0, then
there exists a sequence (zn)n in X such that

lim
n→∞

[1

2
dp(zn, x0) +

1

2
dp(zn, y0)− dp

(
zn,

1

2
x0 ⊕

1

2
y0

)]
= 0,

where d(zn, x0) ≤ r, d(zn, y0) ≤ r for every n ≥ 1. Similarly, we get∣∣∣d(zn, x0)− d(zn, y0)

2

∣∣∣p ≤ 1

2
dp(zn, x0) +

1

2
dp(zn, y0)− dp

(
zn,

1

2
x0 ⊕

1

2
y0

)
.

Thus

lim
n→∞

∣∣∣d(zn, x0)− d(zn, y0)

2

∣∣∣p = 0.

Since the sequence (d(zn, x0))n is bounded, passing to a subsequence if necessary,
we can assume that lim

n→∞
d(zn, x0) = r0. Hence lim

n→∞
d(zn, x0) = lim

n→∞
d(zn, y0). It

implies that

lim
n→∞

d(zn, x0) = lim
n→∞

d(zn, y0) = lim
n→∞

d
(
zn,

1

2
x0 ⊕

1

2
y0

)
= r0.

Obviously, 0 < r0 ≤ r. Let α = 1/2r0 and for every n ≥ 1, put

rn = max{d(zn, x0), d(zn, y0)}.
Clearly, lim

n→∞
rn = r0. Thus there exists n0 ≥ 1 such that rn ≥ α for every n ≥ n0.

We have

δzn(rn,
d(x0, y0)

rn
) ≤ 1− 1

rn
d
(
zn,

1

2
x0 ⊕

1

2
y0

)
for every n ≥ n0, where δzn(rn,

d(x0,y0)
rn

) = inf
{

1− 1
rn
d
(
zn,

1
2x⊕

1
2y
)}

, the infimum

is taken over all x, y ∈ X such that d(zn, x) ≤ rn, d(zn, y) ≤ rn, d(x, y) ≥ rn d(x0,y0)
rn

.
Thus we have

lim
n→∞

δzn(rn,
d(x0, y0)

rn
) = 0,

which contradicts the fact that for every n ≥ n0, δzn(rn,
d(x0,y0)
rn

) ≥ β where β =

inf{δa(r, ε) : a ∈ X, r ≥ α, ε ≥ d(x0,y0)
r } > 0 since X is UUUC. �

By using the inequality ψx0,y0(r) ≤ prpδx0,y0(r), where p ≥ 2, it is not difficult to
derive the following lemma.

Lemma 2.14. Let (X, d) be a hyperbolic metric space. Assume that X is UUUC. Let
r > 0, x0, y0 ∈ X such that x0 6= y0 and B(x0, r) ∩B(y0, r) 6= ∅. Then

δx0,y0(r) = inf
{

1− 1

r
d
(
z,

1

2
x0 ⊕

1

2
y0

)
: d(x0, z) ≤ r, d(y0, z) ≤ r

}
> 0.
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Lemma 2.15. Let (X, d) be a hyperbolic metric space. Assume that X is p-UUC.
Let (yn)n, (zn)n be two sequences in X such that lim

n→∞
d(yn, zn) = l. Assume that

there exist R ≥ 0 and a sequence (xm)m in X such that

lim sup
m→∞

d(xm, yn) ≤ R, lim sup
m→∞

d(xm, zn) ≤ R, lim sup
m→∞

d(xm,
1

2
yn ⊕

1

2
zn) = R

for every n ≥ 1. Then l = 0.

Proof. If R = 0, then lim sup
m→∞

d(xm, yn) = 0, lim sup
m→∞

d(xm, zn) = 0. It is not difficult

to see that l = 0.
Otherwise, assume that R > 0 and l 6= 0. Fix ε > 0. There exists N ≥ 1 such that

d(xm, yn) ≤ R+ ε, d(xm, zn) ≤ R+ ε, d(yn, zn) > ε

for any m ≥ N , n ≥ N . Using Theorem 2.13, we have

ψyn,zn(R+ ε) ≤ 1

2
dp(xm, yn) +

1

2
dp(xm, zn)− dp

(
xm,

1

2
yn ⊕

1

2
zn

)
for every m ≥ N , p ≥ 2. Letting m → ∞ we have ψyn,zn(R + ε) = 0 for all n ≥ N
which contradicts l 6= 0. Therefore, l = 0. �

In the case of convex modular spaces, uniform convexity in every direction was
introduced by Mostafa Bachar and Osvaldo Méndez [4]. We have a similar notion in
hyperbolic metric spaces.

Definition 2.16. A hyperbolic metric space X is said to be uniformly convex in every
direction (UCED for short) if and only if for any y, z ∈ X, y 6= z and R > 0, there
exists δ = δ(y, z, R) > 0 such that if d(x, y) ≤ R, d(x, z) ≤ R, then

d(x,
1

2
y ⊕ 1

2
z) ≤ R(1− δ).

From Lemma 2.14 we have the following proposition.

Proposition 2.17. Let (X, d) be a hyperbolic metric space.

(i) If X is UUUC then X is UCED.
(ii) If X is UCED then X is also strictly convex (see [15]) i.e., whenever x, y, z ∈

X with x 6= y if d(z, x) ≤ R and d(z, y) ≤ R then d(z, 12x⊕
1
2y) < R.

iii) Assume that X is uniformly convex defined in [13], i.e., for any r > 0 and
ε ∈ (0, 2], there exists δ ∈ (0, 1] such that for all a, x, y ∈ X with d(x, a) ≤ r,
d(y, a) ≤ r and d(x, y) ≥ rε, we have d(a, 12x ⊕

1
2y) ≤ (1 − δ)r. Then X is

UCED.

The type function was introduced by Bin Dehaish and Khamsi [10]. Recently, there
appeared many fixed point theorems using the type function in their proofs. First we
recall two important properties of a hyperbolic metric space satisfying UC property
that we apply to obtain the properties of the type function.

Theorem 2.18 ([21]). Let (X, d) be a hyperbolic metric space. Assume that X is
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UC. Let C be a nonempty closed convex subset of X. Then the following properties
hold.

(i) Let a ∈ X with d(a,C) = inf{d(a, x) : x ∈ C} < ∞. Then there exists a
unique c ∈ C such that d(a, c) = d(a,C).

(ii) Assume that (Cn)n≥1 is a decreasing sequence of nonempty bounded closed
convex subsets of X. Then

⋂
n≥1

Cn 6= ∅.

By taking the same approach as Dehaish and Khamsi (see Lemma 3.1, [10]), we
have the following counterpart in hyperbolic metric spaces with the UUUC property.

Theorem 2.19. Let C be a nonempty closed convex subset of a hyperbolic
metric space (X, d). Assume that X is UUUC. Let τ : C → [0,∞) be a type function,
that is, there exists a bounded sequence (xn)n ⊂ X such that

τ(x) = lim sup
n→∞

d(xn, x)

for any x ∈ C. Then τ is continuous. Since X is hyperbolic, τ is convex, that is the
subset {x ∈ C : τ(x) ≤ r} is convex for every r ≥ 0. Moreover, there exists a unique
minimum point c ∈ C such that

τ(c) = inf{τ(x) : x ∈ C}.

Proof. It is not difficult to prove the continuity and convexity of the function τ . We
are going to show the existence of the minimum point of τ . Set τ0 = inf{τ(x) : x ∈ C}.
Then for any n ≥ 1,

Cn = {x ∈ C : τ ≤ τ0 +
1

n
}

is not empty, closed, convex subset of C. Obviously, (Cn)n≥1 is a decreasing sequence.
It follows from Theorem 2.18 that C∞ =

⋂
n≥1

Cn 6= ∅. Clearly, C∞ = {z ∈ C : τ(z) =

τ0}. We are going to prove that C∞ consists of one point. Assume that z1, z2 ∈ C
with d(z1, z2) > 0. We have τ0 > 0. Take α ∈ (0, τ0). Then there exists n0 ≥ 1 such
that for any n ≥ n0 we have

d(xn, z1) ≤ τ0 + α and d(xn, z2) ≤ τ0 + α.

Since X is UUUC and d(z1, z2) ≥ (τ0+α)d(z1, z2)/2τ0, there exists δxn
(τ0+α, d(z1,z2)2τ0

)

and γ = inf{δx(r, ε) : x ∈ X, r ≥ τ0, ε ≥ d(z1, z2)/2τ0} such that δxn
(τ0+α, d(z1,z2)2τ0

) ≥
γ > 0. Hence

d(xn,
1

2
z1 ⊕

1

2
z2) ≤ (τ0 + α)

(
1− δxn

(τ0 + α,
d(z1, z2)

2τ0
)
)
≤ (τ0 + α)(1− γ).

Letting limsup as n→ +∞, we get

τ(
1

2
z1 ⊕

1

2
z2) ≤ (τ0 + α)(1− γ),

and letting α→ 0, we have

τ(
1

2
z1 ⊕

1

2
z2) ≤ τ0(1− γ).
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Since C∞ is convex, 1
2z1 ⊕

1
2z2 ∈ C. Hence

τ0 ≤ τ(
1

2
z1 ⊕

1

2
z2) ≤ τ0(1− γ)

which is a contradiction. The proof is complete. �

Theorem 2.20. Let C be a nonempty, closed, convex and bounded subset of a com-
plete hyperbolic metric space (X, d). Assume that X is p-UUC and τ is a type function
on C. Then any minimizing sequence of τ converges to c ∈ C and there exists M > 0
such that

τp(c) + 2Mdp(x, c) ≤ τp(x)

for all x ∈ C.

Proof. Suppose that (xm)m is a sequence in C such that for any x ∈ C,

τ(x) = lim sup
m→∞

d(xm, x).

Let τ0 = inf{τ(x) : x ∈ C}. Then there exists a minimizing sequence (yn)n of τ , that
is, lim

n→∞
τ(yn) = τ0. Since C is bounded, there exists r > 0 such that d(x, y) ≤ r

for every x, y ∈ C. We are going to prove that (yn)n is a Cauchy sequence. In the
contrary case, there exists ε > 0 and two subsequences (ynk

)k, (ynl
)l of (yn)n such

that

d(ynl
, ynk

) ≥ ε, for every l > k ≥ 1.

We have d(xm, ynl
) ≤ r, d(xm, ynk

) ≤ r, for every m ≥ 1, l > k ≥ 1. Hence for every
m ≥ 1,

ψxm(r,
ε

r
) ≤ 1

2
dp(xm, ynl

) +
1

2
dp(xm, ynk

)− dp(xm,
1

2
ynl
⊕ 1

2
ynk

),

where

ψxm
(r,

ε

r
) = inf

{1

2
dp(xm, x) +

1

2
dp(xm, y)− dp

(
xm,

1

2
x⊕ 1

2
y
)}
,

the infimum taken over all x, y ∈ X such that d(xm, x) ≤ r, d(xm, y) ≤ r, d(x, y) ≥
rε/r. Since X is p-UUC, ψxm

(r, εr ) ≥ cX > 0, where

cX = inf
{ψa(r1, ε1)

rp1ε
p
1

: a ∈ X, r1 > 0, ε1 > 0
}
.

Hence

CX ≤
1

2
dp(xm, ynl

) +
1

2
dp(xm, ynk

)− dp(xm,
1

2
ynl
⊕ 1

2
ynk

) (2.2)

for every 1 ≤ k < l, where CX = cXε
p > 0. Taking lim sup as m → ∞ of (2.2), we

get

CX ≤
1

2
τp(ynl

) +
1

2
τp(ynk

)− τp
(1

2
ynl
⊕ 1

2
ynk

)
for every 1 ≤ k < l. Since C is convex, 1

2ynl
⊕ 1

2ynk
∈ C. Hence

CX ≤
1

2
τp(ynl

) +
1

2
τp(ynk

)− τp0 (2.3)
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for every 1 ≤ k < l. Letting k → ∞ in (2.3), we have CX ≤ 0. It is a contraction.
Thus (yn)n is a Cauchy sequence. Hence there exists c ∈ C such that lim

n→∞
yn = c.

Clearly, τ0 = τ(c) since τ is a continuous function.
Furthermore, take an arbitrary x ∈ C, x 6= c. Since X is p-UUC, we have

dp
(
xm,

1

2
x⊕ 1

2
c
)
≤ 1

2
dp(xm, x) +

1

2
dp(xm, c)− ψxm

(
r,
d(x, c)

r

)
≤ 1

2
dp(xm, x) +

1

2
dp(xm, c)− cXdp(x, c)

for any m ≥ 1. Letting m→∞, we get

lim sup
m→∞

dp
(
xm,

1

2
x⊕ 1

2
c
)
≤ 1

2
lim sup
m→∞

dp(xm, x) +
1

2
lim sup
m→∞

dp(xm, c)− cXdp(x, c).

It implies that

lim sup
m→∞

dp(xm, c) ≤
1

2
lim sup
m→∞

dp(xm, x) +
1

2
lim sup
m→∞

dp(xm, c)− cXdp(x, c).

Hence

lim sup
m→∞

dp(xm, c) + 2cXd
p(x, c) ≤ lim sup

m→∞
dp(xm, x).

It follows that τp(c) + 2cXd
p(x, c) ≤ τp(x). This inequality is also clearly true when

x = c. Therefore, the proof is complete. �
The minimizer of τ(x) is called the asymptotic center. With this definition we can

define the weak sequential convergence as follows.

Definition 2.21 (Weak sequential convergence). We say that a sequence (xn)n con-
verges weakly sequentially to a point c if c is the asymptotic center for each subsequence

of (xn)n. We denote this by xn
w→ x.

Proposition 2.22. Let X be a hyperbolic metric space. Assume that X is UUUC.

Then each bounded sequence (xn)n has a subsequence (xnk
)k such that xnk

w→ x.

Proof. The proof can be found in ([5], Proposition 3.1.2) in the case of Hadamard
spaces. Since it is rather technical we leave it out. �

Assume that (xn)n is a bounded sequence in a hyperbolic metric space (X, d), K
is a nonempty subset of X. We denote

r(K, (xn)) = inf
{

lim sup
n→∞

d(xn, x) : x ∈ K
}
.

In what follows, we show an analogue of Lemma 15.2 [18] for hyperbolic metric
spaces. It will be used in the proof of Theorem 3.8.

Lemma 2.23. Let X be a hyperbolic metric space, K a nonempty subset of X and
(xn)n a bounded sequence in X. Then there exists a subsequence (xnk

)k of (xn)n such
that for every subsequence (xnl

)l of (xnk
)k,

r(K, (xnk
)) = r(K, (xnl

)).
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Proof. If (yn)n is a subsequence of (xn)n, we will use the notation (yn) ≺ (xn).
Denote

r0 := inf
{
r(K, (yn)) : (yn) ≺ (xn)

}
,

Then we can choose (y1n) ≺ (xn) such that

r(K, (y1n)) < r0 + 1.

Denote

r1 := inf
{
r(K, (zn)) : (zn) ≺ (y1n)

}
.

Now select (y2n) ≺ (y1n) such that

r(K, (y2n)) < r1 +
1

2
.

Continuing this process, we can construct sequences (yin) and

ri := inf
{
r(K, (zn)) : (zn) ≺ (yin)

}
such that (yin) ≺ (yi−1n ) and

r(K, (yi+1
n )) < ri +

1

i+ 1

for any i ≥ 1. Since (ri)i is nondecreasing and bounded from above by r(K, (xn)), it
has a limit, say r. Hence lim

i→∞
r(K, (yi+1

n )) = r.

Now take the diagonal sequence (ynn) and denote r = r(K, (ynn)). Then (ynn) ≺ (yin),
and hence r ≥ ri. On the other hand, we have (ynn) ≺ (yi+1

n ), which gives r ≤ ri+ 1
i+1 .

Thus r = r.
Since any subsequence (zn) of (ynn) also satisfies (for the same reasons) the inequal-

ities

r(K, (un) ≥ ri and r(K, (un)) ≤ ri +
1

i+ 1

for any i ≥ 1, one gets r(K, (un)) = r. We conclude that (ynn)n is the desired
subsequence. �

Proposition 2.24. Let (X, d) be a uniformly convex hyperbolic metric space, C be
a nonempty closed convex subset of X. Assume that T : C → X is a nonexpansive

mapping. If (xn)n is a sequence in C such that xn
w→ x and lim

n→∞
d(xn, Txn) = 0,

then x ∈ C and Tx = x.

Proof. Notice that

τ(Tx) = lim sup
n→∞

d(xn, Tx) ≤ lim sup
n→∞

d(xn, Txn) + lim sup
n→∞

d(Txn, Tx)

≤ lim sup
n→∞

d(xn, Txn) + lim sup
n→∞

d(xn, x)

and hence τ(Tx) ≤ τ(x). Since x is the unique minimizer of τ , we have Tx = x. �
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3. Monotone multivalued nonexpansive mappings

Let (X, ‖.‖) be a Banach space, C be a nonempty weakly compact convex subset
of X and Pcp(C) be the family of nonempty compact subsets of C equipped with
the Hausdorff metric H(., .). A multivalued mapping T : C → Pcp(C) is said to be
nonexpansive if for each x, y ∈ C, H(T (x), T (y)) ≤ ‖x − y‖. In 1968, Markin [28]
established a fixed point theorem for such mappings in Hilbert spaces. Later, Browder
[8] proved a similar result for spaces with weakly continuous duality mapping, and
Lami Dozo [12] proved it for spaces satisfying Opial’s condition. Assad and Kirk
[3] then generalized Lami Dozo’s result. In 1974, Lim [27] established a fixed point
theorem by considering a closed convex subset of a uniformly convex Banach space.
It is natural to extend these fixed point results to the case of monotone nonexpansive
mappings. In this section we are going to prove the existence of fixed points of
monotone G-nonexpansive multivalued mappings in hyperbolic metric spaces.

We start this section with recalling some basic notions in graph theory (see [6, 11]).

Definition 3.1. A graph G is a pair (V (G), E(G)), where the elements of a
nonempty set V (G) are called vertices of G, and E(G) is a set of paired vertices
called edges. If a direction is imposed on each edge, we call the graph a directed graph
or a digraph.

Definition 3.2. Assume that G = (V (G), E(G)) is a digraph.

(i) G is reflexive if for each x ∈ V (G), (x, x) ∈ E(G).
(ii) G is transitive if for every x, y, z ∈ V (G) with (x, y), (y, z) ∈ E(G), we have

(x, z) ∈ E(G).
(iii) We call (V ′, E′) a subgraph of G if V ′ ⊆ V (G), E′ ⊆ E(G), and x, y ∈ V ′

whenever (x, y) ∈ E′.
(iv) For a, b ∈ V (G), we define G-intervals as follows:

[a,→) = {x ∈ V (G) : (a, x) ∈ E(G)},
(←, b] = {x ∈ V (G) : (x, b) ∈ E(G)},

[a, b] = [a,→) ∩ (←, b].

Definition 3.3. ([20]) Let (X, d) be a hyperbolic metric space. A graph G on X is
said to be convex if and only if for any x, y, z, t ∈ X and α ∈ [0, 1], we have

(x, z), (y, t) ∈ E(G)⇒
(
αx⊕ (1− α)y, αz ⊕ (1− α)t

)
∈ E(G)

We note that this property implies any G-interval is convex.

Definition 3.4. ([1]) Let (X, d) be a metric space with a digraph G and C a nonempty
subset of X. We say that a mapping T : C → C is G-monotone if

∀(x, y) ∈ C ((x, y) ∈ E(G) ⇒ (Tx, Ty) ∈ E(G)).

Definition 3.5. ([1]) Let (X, d) be a metric space with a digraph G, C be a nonempty
subset of X, and P (C) be a family of nonempty subsets of C. A multivalued mapping
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T : C → P (C) is said to be monotone G-nonexpansive if for any x, y ∈ C with
(x, y) ∈ E(G) and any u ∈ Tx, there exists v ∈ Ty such that

(u, v) ∈ E(G), and d(u, v) ≤ d(x, y).

A point x ∈ C is called a fixed point of T if and only if x ∈ Tx. The set of all fixed
points of a mapping T is denoted by Fix(T ).

Definition 3.6. Let (X, d) be a metric space and T : X → P (X) be a multivalued
mapping. A sequence (xn)n is called an approximate fixed point sequence if for any
n ≥ 1, there exists yn ∈ Txn such that lim

n→∞
d(xn, yn) = 0.

Let C be a nonempty closed convex bounded subset of a hyperbolic metric space
X with a reflexive, transitive digraph G and T : C → P (C) be a monotone G-
nonexpansive multivalued mapping. Assume that all G-intervals are closed and con-
vex, and (x0, y0) ∈ E(G) for some y0 ∈ T (x0). Put x1 = 1

2x0⊕
1
2y0. Since G-intervals

are convex, we have (x0, x1), (x1, y0) ∈ E(G). Since T is a monotone G-nonexpansive
multivalued mapping, there is y1 ∈ T (x1) such that

(y0, y1) ∈ E(G) and d(y1, y0) ≤ d(x1, x0).

Continuing in this manner, we get a sequence (xn)n, (yn)n in C defined by

xn+1 =
1

2
xn ⊕

1

2
yn, yn ∈ T (xn) for all n ≥ 0. (3.1)

By induction, we have

(xn, xn+1), (xn+1, yn), (yn, yn+1) ∈ E(G)

and

d(yn+1, yn) ≤ d(xn+1, xn) =
1

2
d(xn, yn)

for any n ≥ 0. We have

d(xn+1, yn+1) ≤ d(xn+1, yn) + d(yn+1, yn)

≤ 1

2
d(xn, yn) + d(xn+1, xn) =

1

2
d(xn, yn) +

1

2
d(xn, yn) = d(xn, yn).

Hence d(xn+1, yn+1) ≤ d(xn, yn) for every n ≥ 0.
The following important proposition is a consequence of the result of Goebel and

Kirk [17].

Proposition 3.7. Let (X, d) be a hyperbolic metric space. Let (xn)n and (yn)n be
two sequences in (X, d) such that

xn+1 =
1

2
xn ⊕

1

2
yn

for any n ∈ N. Suppose that

d(yn, yn+1) ≤ d(xn, xn+1), n ∈ N.

Then we have

(1 +
n

2
)d(xi, yi) ≤ d(xi, yi+n) + 2n

(
d(xi, yi)− d(xi+n, yi+n)

)
, (3.2)
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for every i, n ∈ N. In particular, lim
n→∞

d(xn, yn) = 0.

Next we give the main result of this section. This theorem presents a “mono-
tonic”counterpart of the Lim’s theorem [27].

Theorem 3.8. Let (X, d) be a complete hyperbolic metric space with a reflexive, tran-
sitive digraph G. Assume that X is p-UUC and G-intervals are closed and convex.
Let C be a nonempty, closed, convex and bounded subset of X. Let T : C → Pcp(C)
be a monotone G-nonexpansive multivalued mapping. If there exists x0 ∈ C such that
(x0, y0) ∈ E(G) for some y0 ∈ Tx0 then Fix(T ) 6= ∅.

Proof. The argument above and Proposition 3.7 yield that there are two sequences
(xn)n, (yn)n in C such that

xn+1 =
1

2
xn ⊕

1

2
yn, yn ∈ T (xn),

d(xn+1, yn+1) ≤ d(xn, yn) for all n ≥ 0 and lim
n→∞

d(xn, yn) = 0.

By the properties of (xn) and transitivity of G, {[xn,→), n ≥ 0} is a nonincreasing
sequence of nonempty convex and closed subsets of X. It follows from Theorem 2.18
that

C∞ =
⋂
n≥0

[xn,→) ∩ C =
⋂
n≥0

{x ∈ C : (xn, x) ∈ E(G)} 6= ∅.

Now Lemma 2.23 implies the existence of a subsequence (xnk
)k of (xn)n such that for

each subsequence (xnl
)l of (xnk

)k we have

r(C∞, (xnl
)) = r(C∞, (xnk

)).

From Theorem 2.19 there exists a unique c ∈ C∞ such that

lim sup
k→∞

d(xnk
, c) = inf{lim sup

k→∞
d(xnk

, x) : x ∈ C∞} = r(C∞, (xnk
)).

Thus we have (xnk
, c) ∈ E(G) for any k ≥ 0. Since T is a monotone G-nonexpansive

multivalued mapping, there exists cnk
∈ T (c) such that

(ynk
, cnk

) ∈ E(G) and d(ynk
, cnk

) ≤ d(xnk
, c)

for any k ≥ 0. Since Tc is compact, there exists a subsequence (cnl
)l of (cnk

)k such
that lim

l→∞
cnl

= c′ ∈ T (c). First we prove that c′ ∈ C∞. Indeed, it is not difficult to

see that

∅ 6=
⋂
k≥0

[ynk
,→) ⊆

⋂
k≥0

[xnk
,→) =

⋂
n≥0

[xn,→) = C∞.

For each m ≥ 0 and nl ≥ m, we get

(ym, ym+1), (ynl
, cnl

) ∈ E(G).

It implies that (cnl
)nl≥m is in [ym,→). Hence c′ ∈ [ym,→) for every m ≥ 0. Thus

c′ ∈ ∩m≥0[ym,→) and therefore,

c′ ∈
⋂
m≥0

[xm,→).



290 DAU HONG QUAN

Now, we are going to prove that c = c′. Assume that ε = d(c, c′) > 0. We have
d(xnl

, c) ≤ r, d(xnl
, c′) ≤ r, where (xnl

)l is a subsequence of (xn)n, r = diam(C) and
hence

dp(xnl
,

1

2
c⊕ 1

2
c′) ≤ 1

2
dp(xnl

, c) +
1

2
dp(xnl

, c′)− ψxnl
(r, ε/r).

Since X is p-UUC, we have

dp(xnl
,

1

2
c⊕ 1

2
c′) ≤ 1

2
dp(xnl

, c) +
1

2
dp(xnl

, c′)− cXεp

for every k ≥ 1, where

cX = inf
{ψa(r1, ε1)

rp1ε
p
1

: a ∈ X, r1 > 0, ε1 > 0
}
.

Taking limsup as l→∞, we have

lim sup
l→∞

dp(xnl
,

1

2
c⊕ 1

2
c′) ≤ 1

2
lim sup
l→∞

dp(xnl
, c) +

1

2
lim sup
l→∞

dp(xnl
, c′)− cXεp

≤ 1

2
lim sup
l→∞

dp(xnl
, c) +

1

2
lim sup
l→∞

[
d(xnl

, ynl
) + d(ynl

, cnl
) + d(cnl

, c′)
]p
− cXεp

≤ 1

2
lim sup
l→∞

dp(xnl
, c) +

1

2
lim sup
l→∞

dp(ynl
, cnl

)− cXεp

≤ lim sup
l→∞

dp(xnl
, c)− cXεp

≤ lim sup
k→∞

dp(xnk
, c)− cXεp = r(C∞, (xnk

))− cXεp.

On the other hand, since C∞ is nonempty bounded, closed and convex, we have

lim sup
l→∞

dp(xnl
,

1

2
c⊕ 1

2
c′) ≥ r(C∞, (xnl

)).

Thus we have

r(C∞, (xnk
)) = r(C∞, (xnl

)) ≤ r(C∞, (xnk
))− cXεp.

This is a contradiction since cXε
p > 0. Thus c = c′. Therefore, c ∈ T (c), i.e, c is a

fixed point of T . �
Our first corollary is an application of Theorem 3.8 to the case of a partial order

≤:= E(G). We recall that on (X,≤), order intervals are sets of the forms [a,→) =
{x ∈ X : a ≤ x}, (←, b] = {x ∈ X : x ≤ b} and [a, b] = [a,→) ∩ (←, b] for some
a, b ∈ X.

Corollary 3.9. Let (X, d,≤) be a complete hyperbolic metric space with a partial
order ≤. Assume (X, d) is p-UUC and all order intervals are closed and convex. Let
C be a nonempty convex closed bounded subset of X. Let T : C → Pcp(C) be a
monotone nonexpansive multivalued mapping. Assume that there exists x0 ∈ C such
that x0 ≤ y0 for some y0 ∈ Tx0. Then there exists c ∈ X such that T (c) = c.

In the case of single-valued mappings, we recall that a mapping T : X → X is said
to be monotone (or increasing) if T (x) ≤ T (y) whenever x, y ∈ X such that x ≤ y,
and T is monotone nonexpansive if T is monotone and for every x, y ∈ X such that
x ≤ y, d(Tx, Ty) ≤ d(x, y). Thus we have the following corollary.
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Corollary 3.10. Let (X, d,≤) be a complete hyperbolic metric space with a partial
order ≤. Assume that (X, d) is p-UUC and all order intervals are closed and convex.
Let C be a nonempty convex closed bounded subset of X. Let T : C → C be a
monotone nonexpansive mapping. If there exists x0 ∈ C such that x0 ≤ Tx0 then T
has a fixed point.

Acknowledgements. We would like to express our sincere appreciation to the re-
viewers for their constructive feedback, which has greatly improved the quality of this
paper.
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