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Abstract. Cyclic (1-cyclic) operators have been studied in a long list of papers over the last
decade. r-cyclic operators were introduced recently [Păcurar, M., Synchronous r-cyclic contractions

on metric spaces, Fixed Point Theory, 24 (2023), No. 2, 683-700] and show interesting properties. In

the present paper we introduce asynchronous r-cyclic contractions condition and study the conditions
under which they are Picard operators. Their behavior is compared to the one of the synchronous
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with some potential, both theoretical and practical.
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1. Introduction

A considerable number of papers were written on cyclic operators satisfying various
contraction conditions, see for example [1, 5, 7, 10, 11, 12, 13, 14, 15, 16, 18, 17,
20, 23, 25] for a very short list of them. Directly or indirectly this research was
inspired by the results of Kirk et al. in [8], where a Banach type cyclic contraction

was considered, namely an operator f : X → X, cyclic w.r.t. X =
m
∪·
i=1

Xi, that is,

satisfying f(X1) ⊂ X2, f(X2) ⊂ X3, . . . , f(Xm−1) ⊂ Xm, f(Xm) ⊂ X1, for which
there exists c ∈ [0, 1) such that

d(f(x), f(y)) ≤ c · d(x, y),∀x ∈ Xi, y ∈ Xi+1, 1 ≤ i ≤ m. (1.1)

Theorem 1.3 in [8] states that if the metric space X is complete and all the sets
Xi, i = 1,m are closed, then the cyclic operator f is Picard, that is, it has a unique
fixed point that can be obtained as the limit of the Picard iteration starting from any
point in X.

A new general class of cyclic operators were introduced in [14], where some fixed
point results were established for the so-called synchronous r-cyclic contractions. In
the present paper we continue and complete this approach with the study of asyn-
chronous r-cyclic contractions.
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2. Preliminaries. Cyclic and r-cyclic operators on metric spaces

Let us start from a simple example. Consider the sets Xi = {xi}, i = 1,m and

X =
m
∪
i=1

Xi, and two operators f, g : X → X defined by

f(x1) = x2, f(x2) = x3, . . . , f(xm−1) = xm, f(xm) = x1,

respectively

g(x1) = x4, g(x2) = x5, . . . , g(xm−3) = xm,

g(xm−2) = x1, g(xm−1) = x2, g(xm) = x3.

Then f is a cyclic operator w.r.t.
m
∪
i=1

Xi, while g is not, but g is a 3-cyclic operator

w.r.t. the same covering.
Generally, if X is a nonempty set, f : X → X an operator and there exists a

covering of X =
m
∪
i=1

Xi, m ≥ 2 such that

f(X1) ⊆ X2, f(X2) ⊆ X3, . . . , f(Xm−1) ⊆ Xm, f(Xm) ⊆ X1,

then
m
∪
i=1

Xi is called a cyclic covering of X w.r.t. f , while f is called a cyclic operator

w.r.t. the covering
m
∪
i=1

Xi (see [21]).

Since the union of sets is commutative and the order of the sets proves to be

essential when determining if an operator is cyclic w.r.t. to X =
m
∪
i=1

Xi, we introduced

in [14] the notation
m
∪·
i=1

Xi = X1 ∪· X2 ∪· · · · ∪· Xm to indicate a cyclic covering w.r.t. to

an operator, which will actually say that each of the m cyclic permutations X1∪X2∪
X3∪· · ·∪Xm−1∪Xm, X2∪X3∪· · ·∪Xm−1∪Xm∪X1, . . . , Xm∪X1∪X2∪· · ·∪Xm−1

is a cyclic covering of X w.r.t. f , while generally any other permutation is not.
Considering this notation, we defined in [14] the r-cyclic operators w.r.t. to a

covering:

Definition 2.1 ([14]). Let X be a nonempty set, f : X → X an operator and m ≥ 2,

1 ≤ r ≤ m integers. If there is a covering X =
m
∪·
i=1

Xi such that

f(X1) ⊆ X1+r, f(X2) ⊆ X2+r, . . . , f(Xm) ⊆ Xm+r,

where for p > m by Xp we mean Xp mod m, then:

i)
m
∪·
i=1

Xi is called a r-cyclic covering of X w.r.t. f ;

ii) f is called a r-cyclic operator w.r.t. the covering
m
∪·
i=1

Xi.

Obviously, any cyclic operator is 1-cyclic in view of this definition.
Note that in several papers (see for example [11]) the term p-cyclic is used to

indicate an operator that is actually 1-cyclic or simply cyclic, but p denotes the
number of sets in the cyclic covering, which is denoted in this paper by m. This is
still essentially different from what we understand by r-cyclic operators.
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In [14] are presented some examples and properties of r-cyclic operators. At this
point we have to note that visual representations play an important role in under-
standing the behavior of r-cyclic operators, since the rigorous mathematical notation
gets somewhat hairy in stating and proving the results. Let us take as an example
the case m = 10:
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Figure 2.1. Cyclic coverings for m = 10 and r = 1, respectively r = 3
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Figure 2.2. Cyclic coverings for m = 10 and r = 5, respectively r = 6

We pictured here only four of all possible cases, namely when the operator f defined
on a covering with 10 sets X = X1 ∪· X2 ∪· · · · ∪· X10 is 1-cyclic, 3-cyclic, 5-cyclic, and
6-cyclic, respectively. It is depicted how the sets of the covering are mapped by f ,
according to the definition of an r-cyclic operator.

Although not a necessity, the color code used in these representations facilitates
understanding the properties of r-cyclic operators on a given covering. For r = 1, the
classical case of cyclic operators, no matter where the starting point, the Picard iter-
ation {fn(x)}n≥0 will pass infinitely many times through all the sets of the covering.
The same happens in the case r = 3, but the order of the sets is not the same.
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A different phenomenon is to be observed if r = 5. In this case the Picard iteration
starting in X1 will have all its terms in X1 ∪X6. The one starting in X2 will remain
in X2 ∪X7 and so on. In this manner one can see that 5 closed circuits appear with
respect to the Picard iteration. Similarly in the case r = 6, one can easily spot the 2
closed circuits in which the Picard iteration will take its successive values.

The intention of these few examples is to illustrate two essentially different cases,
depending on the value of gcd(m, r), that is, the greatest common divisor of m and
r: first when gcd(m, r) = 1 and second when gcd(m, r) = k > 1. They are summed
up in the following two lemmas, which we recall from [14], for the sake of readability
of this paper.

Lemma 2.2. Let f : X → X be r-cyclic w.r.t. X =
m
∪·
i=1

Xi, m ≥ 2, 1 ≤ r < m

integers. If gcd(m, r) = k > 1, then there exists a covering X =
k
∪·

j=1
Yj with the

following properties:

i) The k subcoverings Yj, 1 ≤ j ≤ k are given by

Y1 = X1 ∪· X1+r ∪· · · · ∪· X1+( m
k −1)r,

Y2 = X2 ∪· X2+r ∪· · · · ∪· X2+( m
k −1)r,

...

Yk = Xk ∪· Xk+r ∪· · · · ∪· Xk+( m
k −1)r,

or generally Yj =
m
k −1

∪·
i=0

Xj+i·r, 1 ≤ j ≤ k.

ii) The subcoverings (circuits) Yj, 1 ≤ j ≤ k are invariant for f .

iii) For each j ∈ {1, . . . , k}, the corresponding restriction f |Yj
is a 1-cyclic oper-

ator w.r.t. Yj.

Lemma 2.3. Let f : X → X be r-cyclic w.r.t. X =
m
∪·
i=1

Xi, where m ≥ 2, 1 ≤ r < m.

If gcd(m, r) = 1, then for any x ∈ X the sequence {fn(x)}n≥0 has infinitely many
terms in each Xi, 1 ≤ i ≤ m.

3. Asynchronous r-cyclic contractions and fixed points

Analyzing condition (1.1), it is immediate that for r-cyclic operators two directions
have to be investigated: first if the inequality holds for any x ∈ Xi, y ∈ Xi+r, and
second if it holds for any x ∈ Xi, y ∈ Xi+1. In the first case the operators are called
synchronous r-cyclic contractions and were investigated in [14], in the latter they are
called asynchronous r-cyclic contractions and are the object of the present paper,
therefore we introduce the following:

Definition 3.1. Let (X, d) be a metric space, f : X → X and X =
m
∪·
i=1

Xi a r-cyclic

covering w.r.t. f , where m ≥ 2 and 1 ≤ r < m are integers. If there exists c ∈ [0, 1)
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such that for any x ∈ Xi, y ∈ Xi+1, 1 ≤ i ≤ m,

d(f(x), f(y)) ≤ c · d(x, y),

then f is called asynchronous r-cyclic contraction w.r.t.
m
∪·
i=1

Xi.

Because for r = 1 the discussion would reduce to the cyclic contraction condition
in [8], we shall continue the discussion for r ≥ 2. Consequently we shall take m ≥ 3.
The behavior of the asynchronous r-cyclic contractions is somehow intuitive, but if
one wishes to keep the notation rigorous for the general case, it becomes complicated.
That is why we shall first analyze the case r = 2. The discussion is dictated by the
greatest common divisor of m and r. For the case r = 2 this means m odd or even,
and both situations are covered in the next result:

Theorem 3.2. Let (X, d) be a complete metric space, X =
m
∪·
i=1

Xi, m ≥ 3 a covering

such that Xi closed, 1 ≤ i ≤ m, and c ∈ [0, 1) such that f : X → X is asynchronous

2-cyclic contraction with constant c w.r.t.
m
∪·
i=1

Xi.

Then f is a Picard operator.

Proof. Let us start by resuming what the hypothesis of the theorem actually implies.

Since f is 2-cyclic operator on
m
∪·
i=1

Xi, we have that

f(X1) ⊂ X3, f(X2) ⊂ X4, . . . ,

f(Xm−2) ⊂ Xm, f(Xm−1) ⊂ Xm+1, f(Xm) ⊂ Xm+2,

while Xp = Xp mod m, for any p > m. The fact that f is asynchronous cyclic
contraction means that

d(f(x), f(y)) ≤ c · d(x, y),

for any x ∈ Xi, y ∈ Xi+1, i = 1,m.
In view of the general result that will be stated later on, we will separate the

proof in two cases, m odd, respectively m even, although in this case r = 2 the two
arguments partially coincide.

Case 1. If m is odd, so gcd (m, 2) = 1, we consider two orbits starting from
two different points x0 and y0 belonging to successive sets of the cyclic covering.
Without loss of generality, we may assume that x0 ∈ X1 and y0 ∈ X2 and define
xn = fn(x0), n ≥ 0 and yn = fn(y0), n ≥ 0.

The sequence {yn}n≥0 plays a secondary role in the next reasoning, it only helps
proving the convergence of {xn}n≥0, although the same can be shown for {yn}n≥0,
too.

The sequences {xn}n≥0 and {yn}n≥0 have their terms in X1, X3, X5, . . . and, re-
spectively, in X2, X4, X6, . . . . It follows that

d(x1, y1) = d(f(x0), f(y0)) ≤ c · d(x0, y0)

d(y1, x2) = d(f(y0), f(x1)) ≤ c · d(y0, x1),
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then

d(x2, y2) = d(f(x1), f(y1)) ≤ c2 · d(x0, y0)

d(y2, x3) = d(f(y1), f(x2)) ≤ c2 · d(y0, x1),

and so on

d(xn, yn) ≤ cn · d(x0, y0) (3.1)

d(yn, xn+1) ≤ cn · d(y0, x1).

So for n ≥ 1 we have that

d(xn, xn+1) ≤ d(xn, yn) + d(yn, xn+1) ≤ cn · [d(x0, y0) + d(y0, x1)]. (3.2)

If we denote by A = d(x0, y0)+d(y0, x1) ≥ 0, we have that d(xn, xn+1) ≤ cn ·A,n ≥ 1.
For p ≥ 1 we obtain that

d(xn, xn+p) ≤ cn · 1− cp

1− c
·A,

which leads to the conclusion that {xn}n≥0 is a Cauchy sequence in the complete
metric space (X, d), so there exists its limit x ∈ X. Since gcd (m, 2) = 1, the sequence
{xn}n≥0 has infinitely many terms in each Xi, i = 1,m (see Lemma 2.3), so from each
Xi one can extract a subsequence of {xn}n≥0 that converges to x. As Xi, i = 1,m

are all closed, it follows that x ∈
m
∩
i=1

Xi.

Case 2. If m is even, so gcd (m, 2) = 2, there arise two closed circuits X1 ∪· X3 ∪·
· · · ∪· Xm−1 and X2 ∪· X4 ∪· · · · ∪· Xm which are invariant for f (see Lemma 2.2). We
consider two sequences {xn}n≥0 and {yn}n≥0 defined as in Case 1. Note that {xn}n≥0

and {yn}n≥0 do not have infinitely many terms in each Xi, i = 1,m. Similarly to the

previous case we come to the conclusion that {xn}n≥0 converges, but in
m
2∪

i=1
X2i−1,

to x ∈
m
2∩

i=1
X2i−1 and {yn}n≥0 converges in

m
2∪

i=1
X2i to y ∈

m
2∩

i=1
X2i. Still the inequality

d(xn, yn) ≤ cn · d(x0, y0), n ≥ 0, valid also in this case, ensures that {xn}n≥0 and

{yn}n≥0 have the same limit x = y ∈
m
∩
i=1

Xi.

So for both cases m odd and m even we know for sure that
m
∩
i=1

Xi 6= ∅. Then

the restriction f | m
∩

i=1
Xi

is a Banach contraction with constant c on
m
∩
i=1

Xi, having a

unique fixed point x∗ ∈
m
∩
i=1

Xi which can be obtained by means of the Picard iteration

starting from any point in
m
∩
i=1

Xi.

We still have to see if x∗ can be obtained starting from any initial point in X.
Therefore we take an arbitrary x ∈ X. Then there is some l ∈ {1, 2, . . . ,m} such that
x ∈ Xl. As x∗ ∈ Xl+1, the following holds: d(f(x), f(x∗)) ≤ c · d(x, x∗). Since f is
2-cyclic, it follows that f(x) ∈ Xl+2. But x∗ ∈ Xl+3 as well, so

d(f2(x), x∗) = d(f(f(x)), f(x∗)) ≤ c · d(f(x), x∗) ≤ c2 · d(x, x∗).
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In this manner we obtain that

d(fn(x), x∗) ≤ cn · d(x, x∗), n ≥ 1.

Now this implies that fn(x) → x∗, as n → ∞, for any x ∈ X. In conclusion f has a
unique fixed point, no matter if m is odd or even and this fixed point may be obtained

as the limit of the Picard iteration starting from any point in X =
m
∪
i=1

Xi.

�

Remark 3.3. The proof of the previous theorem is essentially based on considering
the sequence {yn}n≥0. We need a closer look at its role. Since f was assumed to be
2-cyclic, we had to consider two Picard iterations starting from two different points,

belonging to consecutive sets of the covering
m
∪·
i=1

Xi.

Due to the asynchronous cyclic contraction condition, one obtains the inequalities
(3.1), involving terms of both sequences. Further on {yn}n≥0 behaves like the opposite
part of a ”zipper” which, by closing, gets to the desired inequality (3.2).

Therefore such a sequence will be called a zipper sequence. As we shall outline
in the next Remark, the number and kind of zipper sequences needed for proving a
fixed point result for asynchronous r-cyclic contractions depend on r and the relation
between m and r.

Analyzing the proof of Theorem 3.2 and having in view Lemmas 2.2 and 2.3, it is
not difficult to imagine how the same works for any r ≥ 2, where m ≥ 3, r ≤ m. In
the general case, three different situations arise:

Case 1. If k = gcd(m, r) = 1, then one needs to employ r zipper sequences in the
proof:

{x1
n} ⊂ X1 ∪· X1+r ∪· · · · ∪· X1+(m−1)r,

{x2
n} ⊂ X2 ∪· X2+r ∪· · · · ∪· X2+(m−1)r,

...

{xr
n} ⊂ Xr ∪· X2r ∪· · · · ∪· Xmr.

Each of them has infinitely many terms in each Xi, i = 1,m and converges to the
unique fixed point of f .

Case 2. If k = gcd(m, r) = r, then one needs to consider again r zipper sequences,
but each of them will be contained in one of the r closed circuits, such that they start
in successive sets of the cyclic covering:

{x1
n} ⊂ X1 ∪· X1+r ∪· · · · ∪· X1+m−r,

{x2
n} ⊂ X2 ∪· X2+r ∪· · · · ∪· X2+m−r,

...

{xr
n} ⊂ Xr ∪· X2r ∪· · · · ∪· Xmr.

Similar to Case 2 in the previous proof, each of them will converge to the same
(unique) fixed point of f .
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Case 3. If 1 < k = gcd(m, r) < r, then one still needs to consider r zipper
sequences, but each of them will be contained in one of the k closed circuits, such
that they start in successive sets of the cyclic covering and each of the k circuits will
be ”traversed” r/k times:

{x1
n} ⊂ X1 ∪· X1+r ∪· · · · ∪· X1+( m

k −1)r,

{x2
n} ⊂ X2 ∪· X2+r ∪· · · · ∪· X2+( m

k −1)r,

...

{xk
n} ⊂ Xk ∪· Xk+r ∪· · · · ∪· Xk+( m

k −1)r,

{xk+1
n } ⊂ Xk+1 ∪· Xk+1+r ∪· · · · ∪· Xk+1+( m

k −1)r,

which coincides with X1 ∪· X1+r ∪· · · · ∪· X1+( m
k −1)r,

...

{xr
n} ⊂ Xr ∪· X2r ∪· · · · ∪· Xr+( m

k −1)r,

which coincides with Xk ∪· Xk+r ∪· · · · ∪· Xk+( m
k −1)r.

Due to the contraction condition, they will all converge to the unique fixed point
of f .

Having in view the above discussion, we may state now the following general result
without a proof, which would imply the same technique as in the proof of Theorem
3.2, but a more complicated notation. In the case r = 1, the next theorem reduces to
the result due to Kirk et al. [8].

Theorem 3.4. Let (X, d) be a complete metric space, X =
m
∪·
i=1

Xi, m ≥ 3 a covering

of X such that Xi, i = 1,m are closed.

If f : X → X is an asynchronous r-cyclic contraction w.r.t.
m
∪·
i=1

Xi, 2 ≤ r < m,

then f is a Picard operator.

Remark 3.5. We have to note an important difference between synchronous and,
respectively, asynchronous r-cyclic contractions.

In the case of synchronous r-cyclic contractions, see [14], the operator f has a
different behavior conditional on gcd(m, r). If gcd(m, r) = 1, f is a Picard operator.
If gcd(m, r) > 1, then f is a 1-cyclic contraction on each of the closed circuits which
arise, and consequently it is a weakly Picard operator.

But in the case of asynchronous r-cyclic contractions, as Theorem 3.4 asserts, f is
a Picard operator, no matter if gcd(m, r) = 1 or gcd(m, r) > 1. Note that f is not a
cyclic contraction on the closed circuits which arise in case that gcd(m, r) > 1. The
proof is based on different arguments, and the zipper sequences play the key role.

Example. Consider a cyclic covering with m = 10 and let us take some simple cases.
If r = 2, so gcd(10, 2) = 2, then two zipper sequences {xn} ⊂ X1 ∪· X3 ∪· X5 ∪· X7 ∪·

X9, {yn} ⊂ X2 ∪· X4 ∪· X6 ∪· X8 ∪· X10 are needed in the proof, while d(xn, yn) →
0 as n→∞, see Fig. 3.1.
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x1 y1

x2 y2
x3 y3
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x5 y5
x6 y6x7 y7x8 y8

Figure 3.1. Convergence if the two zipper sequences are involved

If r = 3, so gcd(10, 3) = 1, then three zipper sequences are needed:

{xn} ⊂ X1 ∪· X4 ∪· X7 ∪· X10 ∪· X3 ∪· X6 ∪· X9 ∪· X2 ∪· X5 ∪· X8

{yn} ⊂ X2 ∪· X5 ∪· X8 ∪· X1 ∪· X4 ∪· X7 ∪· X10 ∪· X3 ∪· X6 ∪· X9

{zn} ⊂ X3 ∪· X6 ∪· X9 ∪· X2 ∪· X5 ∪· X8 ∪· X1 ∪· X4 ∪· X7 ∪· X10,

while d(xn, yn) → 0 and d(yn, zn) → 0 as n → ∞, so d(xn, zn) → 0 as n → ∞, see
Figure 3.2.
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Figure 3.2. Convergence if three zipper sequences are involved

If r = 4, so gcd(10, 4) = 2, then four zipper sequences are needed:

{xn} ⊂ X1 ∪· X5 ∪· X9 ∪· X3 ∪· X7; {yn} ⊂ X2 ∪· X6 ∪· X10 ∪· X4 ∪· X8

{zn} ⊂ X3 ∪· X7 ∪· X1 ∪· X5 ∪· X9; {tn} ⊂ X4 ∪· X8 ∪· X2 ∪· X6 ∪· X10.
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while d(xn, yn)→ 0, d(yn, zn)→ 0, d(zn, tn)→ 0 as n→∞, so d(tn, xn)→ 0 as n→
∞, see Fig. 3.3.
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Figure 3.3. Convergence if four zipper sequences are involved

4. Related results

In [14] it is shown that, given a covering X =
m
∪·
i=1

Xi, the set of all r-cyclic operators

w.r.t.
m
∪·
i=1

Xi, 1 ≤ r ≤ m, denoted

CycGm = {fr is r-cyclic w.r.t.
m
∪·
i=1

Xi|1 ≤ r ≤ m}, (4.1)

is an abelian group relative to the composition of functions denoted by ◦.

Remark 4.1. Considering the set SCycGm of all synchronous r-cyclic contractions

on
m
∪·
i=1

Xi, this is generally not a subgroup of (CycGm, ◦). Note that for some r the

contraction condition holds for elements x ∈ Xi and y ∈ Xi+r, i = 1,m, with a
certain constant cr ∈ [0, 1). But even if fr1 ◦ fr2 ∈ CycGm for some given r1, r2 ∈
{1, 2, . . . ,m}, the contraction condition cannot be guaranteed anymore in the general
case.

Remark 4.2. We denote by ACycGm the set of all asynchronous r-cyclic contractions

on
m
∪·
i=1

Xi. Then (ACycGm, ◦) is an abelian subgroup of (CycGm, ◦). Moreover, it is

cyclic in the algebraic sense, that is, all elements in ACycGm are generated by f1 (so
1-cyclic contraction, which is both synchronous and asynchronous, see (4.1)), up to
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a contraction constant C, taken as the maximum of all contraction constants of the
elements in ACycGm.

Next are some other interesting properties.

Remark 4.3. Let X =
m
∪·
i=1

Ai =
m
∪·
i=1

Bi be two coverings of the nonempty set X. If

f : X → X is r-cyclic w.r.t.
m
∪·
i=1

Ai and, respectively, w.r.t.
m
∪·
i=1

Bi, then f is r-cyclic

w.r.t.
m
∪·
i=1

(Ai ∪Bi).

There remains the open question what happens if X =
m
∪·
i=1

Ai =
n
∪·

j=1
Bj , and f is

r-cyclic w.r.t.
m
∪·
i=1

Ai, 1 ≤ r ≤ m and q-cyclic w.r.t.
n
∪·

j=1
Bj , 1 ≤ q ≤ n, while m 6= n.

An answer for a particular case is given by the next example.

Example. Let Ai, i = 1, 6 and Bj , j = 1, 3 nonempty sets such that f is 2-cyclic w.r.t.
6
∪·
i=1

Ai and 1-cyclic w.r.t.
3
∪·

j=1
Bj .

Then one can check that f is 1-cyclic w.r.t. (B1 ∪ A1) ∪· (B2 ∪ A3) ∪· (B3 ∪ A5),
respectively w.r.t. (B1 ∪A2) ∪· (B2 ∪A4) ∪· (B3 ∪A6).

Remark 4.4. Things change if we consider additional properties on the cyclic opera-
tors, in our case if they satisfy contraction conditions.

1) If f is r-cyclic contraction (either synchronous or asynchronous) w.r.t.
m
∪·
i=1

Ai

and w.r.t.
m
∪·
i=1

Bi, then generally f does not satisfy the same cyclic contraction

condition w.r.t.
m
∪·
i=1

(Ai ∪Bi).

2) If f is 1-cyclic contraction w.r.t.
m
∪·
i=1

Ai and w.r.t.
m
∪·
i=1

Bi, then it is a synchro-

nous 2-cyclic contraction w.r.t.
m
∪·
i=1

(Ai ∪· Bi). This can be generalized.

Another remark refers to the case of two operators.

Remark 4.5. Let X =
m
∪·
i=1

Xi a covering of the nonempty set X and Y =
m
∪·
i=1

Yi a

covering of the nonempty set Y . Let f : X −→ X and g : Y −→ Y two r-cyclic

operators w.r.t. the two considered coverings, respectively. Let U =
m
∪·
i=1

(Xi × Yi).

Then the restriction of the Cartesian product f × g : X × Y −→ X × Y to U is a
r-cyclic operator w.r.t. U , see [16] for the case r = 1.

Remark 4.6. Other interesting facts about synchronous and asynchronous r-cyclic

contractions on a covering
m
∪·
i=1

Xi are the following:

1) in case gcd(m, r) = 1, both synchronous and asynchronous r-cyclic contrac-
tions are Picard operators.

2) in case gcd(m, r) = k > 1, only asynchronous r-cyclic contractions are Picard
operators, while synchronous r-cyclic contractions are weakly Picard opera-
tors, having at most k fixed points.
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Based on these observations, we can prove a generalization of an interesting result in
[19]. Lemma 1.3.3 in [19] asserts that, assuming X is a nonempty set and f : X → X a
mapping, if there exists n ∈ N such that Ffn = {x∗}, then Ff = {x∗}. Consequently, if
(X, d) is a complete metric space and there exists n ∈ N such that fn is a contraction,
then Ff = {x∗}, see Theorem 1.3.2 in [19]. Now we may state the following:

Theorem 4.7. Let (X, d) be a complete metric space and f : X → X. Assume there
exist a nonempty strict subset Y ⊂ X and an integer n0 > 0 such that

X = Y ∪· f(Y ) ∪· f2(Y ) ∪· · · · ∪· fn0−1(Y ),

while fn0(Y ) ⊆ Y .

1) If there exists l ∈ {1, 2, . . . , n0} such that f l is a synchronous l-cyclic con-

traction w.r.t.
n0−1
∪·
i=0

f i(Y ), then Ff 6= ∅.
Moreover, if gcd(n0, l) = 1, then Ff = {x∗}. If gcd(n0, l) > 1, then f has

at least one and at most gcd(n0, l) fixed points.
2) If there exists k ∈ {1, 2, . . . , n0} such that fk is an asynchronous k-cyclic

contraction w.r.t.
n0−1
∪·
i=0

f i(Y ), then Ff = {x∗}.

Proof. Denoting by Xi = f i−1(Y ), i = 1, 2, . . . , n0 − 1, it is immediate that fk is

k-cyclic operator w.r.t.
n0∪·
i=1

Xi, for any k ∈ {1, 2, . . . , n0}, see Example 3.5 in [14].

1) If there is l ∈ {1, 2, . . . , n0} such that f l is a synchronous l-cyclic contraction

w.r.t.
n0∪·
i=1

Xi, then there are two cases:

If gcd(n0, l) = 1, then by Theorem 5.1 in [14] it follows that f l is a Picard
operator. Then by Lemma 1.3.3 in [19] Ff = {x∗}.
If gcd(n0, l) > 1, then by Theorem 5.2 in [14] it follows that f l is a
weakly Picard operator, so Ff 6= ∅.

2) If there is k ∈ {1, 2, . . . , n0} such that f l is an asynchronous k-cyclic con-

traction w.r.t.
n0∪·
i=1

Xi, then by Theorem 3.4 it follows that Ffk = {x∗}, so

consequently Ff = {x∗}.
�

We end this section by applying the general Theorem 3.4 to give a short new proof
of the result of Kirk et al. in [8], that we recall in its original notation.

Theorem 4.8 ([8]). Let {Ai}pi=1 be nonempty closed subsets of a complete metric

space and suppose F :
p
∪
i=1

Ai →
p
∪
i=1

Ai satisfies the following conditions (where Ap+1 =

A1):

(1) F (Ai) ⊆ Ai+1, for 1 ≤ i ≤ p;
(2) ∃k ∈ (0, 1) such that d(F (x), F (y)) ≤ k · d(x, y), ∀x ∈ Ai, y ∈ Ai+1, for

1 ≤ i ≤ p.

Then F has a unique fixed point.
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Proof. Since F is cyclic (1-cyclic) contraction with constant k w.r.t.
p
∪
i=1

Ai, it follows

that for any n ∈ N∗, Fn is a n-cyclic asynchronous contraction with constant kn ∈
(0, 1) w.r.t.

p
∪
i=1

Ai.

By Theorem 3.4 it follows that FF = FFn = {x∗}, n ∈ N∗. �

5. Conclusions

The results presented in this paper continue and complete our approach in [14]
regarding r-cyclic operators in general and r-cyclic contractions in particular. We
introduced the asynchronous r-cyclic contractions and we established the existence
and uniqueness of the fixed point, which can be obtained by means of the Picard
iteration starting from any point in the definition domain. Compared to the synchro-
nous r-cyclic contractions, the asynchronous ones show a different behavior, which is
discussed in the paper.

Based on these new notions and results, one can continue exploring other classes of
cyclic operators satisfying a generalized contraction condition, both in a synchronous
and in an asynchronous manner.

Being a rather new topic, there is not much evidence of practical applications yet.
For example, recent research in fields like systems biology, climatology, meteorology,
oceanology, etc. involves very complex numeric models based on some measurable
data in order to describe, understand, diagnose or predict the evolution of certain
processes. One of the challenges in such studies is finding a way to include seasonal
changes of certain indicators in models in which only annual means are usually em-
ployed. It is reported, for example, that some errors, which further propagate, come
from ”holding the seasonal cycles of specific carbonate systems variables constant over
time” [2] or that ”seasonal variability is of limited use in diagnosing the inter-annual
variability of carbon fluxes” [22]. Researchers in specific fields use different methods
to partially overcome such drawbacks.

We think that reevaluating the mathematical instruments that lie beneath the
models, such that the indicators reported to have small seasonal variations can be
taken into account, could lead to more accurate and realistic models, in which our
results could probably be of some use.
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